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1 Introduction

This document describes the use and methods of a Fortran90 software for
multiple trait estimation of variance components, breeding values and fixed
effects in threshold, linear and censored linear models in animal breeding.
The program is self-contained and quite standard so it should compile almost
everywhere. It has been tested with AIX xlf90, DVF, g95 and NAG f95 for
Linux.

1.1 History

The core of the program is a small multiple trait program by Luis Varona
which we converted into a multiple trait 1-threshold trait program. Program
grew for our own research [14, 3, 1, 5]. The software has been used in, at least,
the following publications: [14, 26, 1, 16, 24, 25, 3, 5, 17, 7, 4, 18, 19, 2, 12, 9,
23]. I (AL) added many things, including multiple threshold traits, different
models per trait, proper handling of conditional inverted Wishart, permanent
environment, censored traits, generalized inverses, and so on. Evangelina
López de Maturana added several pieces of code here and there, including the
sire models and covariates. There are several subroutines taken from Ignacy
Misztal’s BLUPF90 distribution at http://nce.ads.uga.edu/~ignacy, and
others are from the Alan Miller web page at http://users.bigpond.net.

au/amiller/ .

2 Functionality

The program computes:

• Posterior distributions for variance components and relevant ratios
(heritabilities, correlations).

• Posterior distributions for breeding values and fixed effects with known
or unknown variance components.

The program handles:

• Any number of continuous traits.

• Several continuous traits, several polychotomous traits and one binary
trait.

• Several binary traits (with some restrictions).
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• Theoretically, it can handle several continuous and binary traits at the
same time but this can give some problems.

• Censored continuous traits.

• Missing values.

• Sire and animal models.

• User-defined covariance matrices g usr

• Simultaneous correlated animal effects (e.g., sire-dam models for fertil-
ity [1] –but not “reduced animal models”– or maternal effects).

• Several random environmental effects (permanent effect).

• Different design matrices.

• It is possible to test contrasts of fixed or random effects.

• Cross-classified (i.e., effects with “levels”) and covariates.

• Optional different random seeds

The program does not handle:

• Nested covariates (neither random regression)

• Heterogeneous variances

2.1 Other software

There are other software doing similar tasks but not many. None (up to
my knowledge) can include normal right-censored traits, except for survival
traits (i.e., the Survival Kit). Van Tassell et al. MTGSAMTHR [21] can also
run threshold models, but is much slower and we had numerical problems for
multiple traits. Sampling of the residual covariance matrix is an approxima-
tion of unknown quality [22]. Same for GIBBS90THR1 [15], which on the
other hand has a more flexible modeling (covariates, etc.). The exact method
by Korsgaard et al. [10] for sampling the residual covariance is implemented
here. I’ve tried to put better output (results of variance component estimates
and random effects) as well as the BLUP option. Program is quite fast.
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3 Methods

3.1 Gibbs sampling

MCMC and Gibbs sampling methods are used. A good reference for Gibbs
sampling is Sorensen and Gianola [20]. The advantage of the MCMC and
Gibbs sampling is that you can keep the same core (a “standard” multiple-
trait Gibbs sampling) if you manage to integrate the liability by “data aug-
mentation” (see the book of Tanner “Tools for statistical inference” for de-
tails). Most of the relevant theory is there. Flat priors are used for fixed
effects and variance components, so the univariate estimators are equivalent
to REML and the multivariate estimators are the VEIL estimators of Gianola
and Foulley [6].

3.2 Threshold models

The threshold (or probit) models are quite known and well described in
Sorensen and Gianola [20]. They always consider one or several thresholds
and a liability that, over a given threshold, produces an observed phenotype.
The key idea of the Gibbs sampler for threshold models is to include this
liability as a nuisance parameter and to integrate it out in the Gibbs sampler.
At each iteration, for each polychotomous record (say 0 or 1), a liability is
“generated” below or over the threshold such that the observed value is 0
or 1. To avoid over/underflows, the liability is bounded between -999 and
+999.

For dichotomous traits, for the parameters to be identifiable, a restriction
is set so that residual variance is set to 1 and threshold is set to 0. This
poses problems for multiple binary traits. For polychotomous traits, a single
restriction is enough, namely, the difference between the first and second
threshold is set to 1. This is more convenient computationally.

3.2.1 Restrictions in the residual covariance matrix

For binary traits, the residual variance is set to 1. Therefore, each sample of
the matrix of residual covariances R0 has the following shape:

R0 =


σ2
e11 σe12 · · · σe1n

σe21
. . .

· · ·
σen1 · · · · · · 1
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Therefore it is not any longer a standard inverted Wishart distribution, but a
conditional inverted Wishart distribution. This is sampled according to Inge
Riis Korsgaard et al. [10]. The problem is that, when there are several binary
traits, the algorithm assumes that they are uncorrelated at the residual level.
If there are 4 traits, the last two binary, the residual covariance matrix is
forced to be:

R0 =


σ2
e11 σe12 σe13 σe14
σe21 σe22 σe23 σe24
σe31 σe32 1 0
σe41 σe42 0 1


which is very unnatural. This gives also numerical problems. There are
tricks to avoid this problem, but they have to be checked. One is to add
an artificial environmental variance for each record, which will substitute
part of the residual one (e.g., an “equivalent” model [8]). This should work
for several binary traits. The other is to let the residual variance free (non
identifiable). It usually does not go out of bounds and correlations and
heritabilities are still identifiable. However, breeding values and fixed effects
are not and (if desired) should be rescaled in each iteration. To run this
trick, you need to “cheat” the program telling him that the binary trait is a
3-categories trait. The idea is by Romdhane Rekaya and can be found in J.
Anim. Sci. Vol. 81, Suppl. 1: 113.

3.3 Censored traits

Censored traits are handled by “integrating” out the conditional distribution
of the censored data. That means that, if we have observed a censored phe-
notype y∗ (say interval between calvings), and we know the effects affecting
this phenotype (say herd and cow), the real, unobserved phenotype yr follows
a truncated normal distribution

f(yr|y∗, herd, cow) ∼ N(cow + herd, σ2)

bounded at y∗, which means that the real phenotype yr can not be less
than the observed one y∗. At each iteration of the Gibbs sampler, yr are
generated according to the values of the effects and the variances. To avoid
over/underflows, yr is also bounded between -999 and +999. The procedure
is also described by Korsgaard [10]. This is “right” censoring (observed values
are less than real ones). “Left” censoring is not included.

7



3.4 Breeding values

Breeding values are estimated. The output provides mean and standard error
for all traits. They are always estimable because one genetic group is set to
0.

3.5 Fixed effects

The output also provides values for fixed effects (mean and standard errors).
For cross-classified effects (e.g., season), solutions are not estimable unless
the model is full rank, therefore, they should not be considered in themselves.
To test fixed effects, the best is to sample them and to get contrasts (which
are estimable) and their posterior distribution from these samples. It will be
shown in 4.6.10 how to do that.

4 Use

4.1 Size of the problem

Implementation is with allocatable matrices and a dynamic linked list struc-
ture. Therefore there is no need to recompile the software for new problems.
In principle, there are no limits for the size of the problem; but the linked
list structure is slow for big problems (say 100,000 unknowns).

4.2 Pedigree file

A pedigree file has to be included. The pedigree file has to be numeri-
cally sorted ( a typical sort -n pedigree -o pedigree in Unix/Linux is
enough).

For animal models, the pedigree is composed of three columns, animal,
sire, dam, in free format (separated by spaces). For unknown ancestors,
genetic groups must be used. It is possible to fit only one genetic group for
all unknown parents and the model is equivalent to a model without genetic
groups.

For sire models, the pedigree file is of the form

sire, sire of sire, maternal grandsire of sire.

No genetic groups are allowed in this case. For unknown parents, a zero
has to be used.

8



4.2.1 Renumbering

Animals ID have to be recodified to integer numbers ranging from 1 to the
number of animals (say nanim). The genetic groups must be codified as
nanim+1, nanim+2, etc. The order of the animals in the recodification does
not matter.

4.3 User supplied G−1

It is possible to supply the program with a user defined inverse of a covariance
matrix G−1 (for instance, a “genomic relationship matrix”), when the model
is of type g usr. You need to create and invert the covariance matrix by
yourself. This file will substitute the pedigree file and has to be written as

i, j, value

where i and j are the positions in the matrix and value is the corre-
sponding value. The file has to be upper or lower stored but not full stored.
Only non-zero elements need to be stored. For instance, the inverse of the
numerator relationship matrix of this pedigree:

1 0 0

2 0 0

3 1 2

4 1 2

can be stored and read as:

1 1 2.0000

1 2 1.0000

1 3 -1.0000

1 4 -1.0000

2 2 2.0000

2 4 -1.0000

2 3 -1.0000

3 3 2.0000

4 4 2.0000

4.4 Data file

The order in the data file is important. The data file has to be arranged in
columns separated by spaces, and in the following order:
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covariables (if any),

fixed cross-classified effects,

random environmental effects,

animal genetic effects,

continuous traits,

polychotomous traits,

binary traits

The only mandatory columns in the data file are the animal genetic effect
and at least one trait.

This is an example of a data file with 4 cross-classified fixed effects, an
animal effect, a continous and a binary trait.

legarra@cluster:~/TM$ head datoskk

4 18 722 6 1101 462.5423 2.0000

3 17 81 4 1102 290.9461 1.0000

1 20 606 3 1103 344.5742 2.0000

2 3 31 7 1104 363.5641 1.0000

10 14 420 2 1105 400.2891 2.0000

7 12 54 8 1106 337.3424 1.0000

2 2 537 1 1107 387.7675 2.0000

5 19 345 4 1108 443.7464 1.0000

9 19 80 7 1109 367.4686 1.0000

7 16 678 5 1110 482.7182 1.0000

This is an example of a data file with 1 covariable and 3 cross-classified
fixed effects, an animal effect, a continous and a binary trait.

legarra@cluster:~/TM$ head datoskk

0.4 18 722 6 1101 462.5423 2.0000

3 17 81 4 1102 290.9461 1.0000

11 20 606 3 1103 344.5742 2.0000

0.256 3 31 7 1104 363.5641 1.0000

-10 14 420 2 1105 400.2891 2.0000

-7 12 54 8 1106 337.3424 1.0000

2 2 537 1 1107 387.7675 2.0000

0.5 19 345 4 1108 443.7464 1.0000

0.9 19 80 7 1109 367.4686 1.0000

70.3 16 678 5 1110 482.7182 1.0000

4.4.1 Renumbering

All effects (except the covariables) have to be renumbered from 1 to the
number of levels.
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4.4.2 Codifying of binary and polychotomous traits

Binary traits have to be codified as 1 or 2. For example 1=non pregnancy,
2=pregnancy. The 0 value is reserved to missing values. Polychotomus traits
have to be codified as 1, 2, 3 . . . . For example, calving ease is codified as
1=no assistance, 2=slight assistance, 3=difficult, 4=very difficult.

4.4.3 Codifying of censored traits

A censored value is observed as a lower bound for the real value. For example,
a cow was not pregnant 105 days after previous calving and then was sold.
The lower value for days open is 105, but the real value will be higher than
that (as explained previously, section 3.3). To inform the software about it,
censored recordings are codified as negative numbers: -105 in this case.

4.4.4 Missing values

Missing values are codified as 0 (actually, any number between -0.01 and
0.01) and included in the analysis by “data augmentation” also. If you have
non random missingness (a trait is observed if the other is not observed, say
litter size and fertility) then the data augmentation theory does not hold and
results will not make sense.

Note that there is no handling of missing covariates!

4.5 Parameter file

The program is driven by a parameter file with titles and comments. These
are skipped by its position, therefore one has to be very careful when writing
it. This is an example of the parameter file with 5 fixed effects. Note that
the number of levels for the covariate is 1 (mandatory).

Data file

datoskk

Pedigree file

geneakk

Model

animal

6 Number of effects (including animal)

1 Number of covariates

1 Number of genetic groups

2 Number of traits

1 Number of threshold traits

2 Categories for the threshold traits
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0 Number of random environmental effects

1 Number of animal effects

1 10 20 100 20 1000 Levels for each effect (do not include genetic group)

1 1 1 1 1 1 Model for trait 1

0 1 1 1 1 1 Model for trait 2 ... repeat as many lines as traits

Task

VCE

Total number of iterations

100000

Burn-in (discarded only in the results and solutions file)

30000

Thin interval (samples are taken every...)

100

Genetic variance

1 0

0 1

Permanent (keep always this title)

Residual

1 0

0 1

4.6 Variations

4.6.1 Number of iterations and burn-in

The number of iterations has to be set a priori, but one must not wait forever.
Prudent guesses are (to my experience):

1. For continuous traits, 50000 iterations give a good guess and 100000 to
200000 are good enough.

2. For complex models (threshold models, maternal effects, etc) 300000
to 500000 can be enough.

Then I usually discard about 1/5 of the iterations, but this can be done using
a post-gibbs software. For the thin interval, I change it to have 1000 or 5000
samples (more are hard to handle in the post-gibbs analysis and not much
informative). The software prints in screen one sample every thin iterations.
From this, the total running time can be calculated. If it is too much, just
stop the program and change it.

4.6.2 Sire models

Write sire instead of animal; verify that your genealogy is in
sire-sire of sire-maternal grandsire form; set the number of genetic
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groups to 0.

4.6.3 User defined G−1 g usr

Write g\_usr instead of animal; verify that your g\_usr file with elements
in G−1 is in the format described above (4.3); set the number of genetic
groups to 0.

4.6.4 Several threshold traits

For example, 1 trait with 5 categories and 1 trait with 2 categories.

2 Number of traits

2 Number of threshold traits

5 2 Categories for the threshold traits

4.6.5 Permanent environment

It is possible to include as many permanent environmental effects as desired.
In the same example, if the 4th effect is random:

1 Number of random environmental effects

...

Genetic variance

1 0

0 1

Permanent (keep always this title)

permanent 1

1000 0

0 1

Residual

1 0

0 1

Note that permanent 1 and a corresponding matrix has to be added for
each random environmental effect, i.e., if there are two:

Permanent (keep always this title)

permanent 1

1000 0

0 1
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permanent 2

100 0

0 10

But if there is no permanent environment:

1 Number of random environmental effects

...

Genetic variance

1 0

0 1

Permanent (keep always this title)

Residual

1 0

0 1

4.6.6 Different models per trait

Say that 1st trait is affected by the 2nd effect only (not even the animal
effect!). The program sets those effects to zero. This works for any trait/effect
combination, including random and genetic effects.

10 20 100 10 1000 Levels for each effect

0 1 0 0 0 Model for trait 1

1 1 1 1 1 Model for trait 2 ...

4.6.7 Variance components or breeding values

We can estimate genetic parameters as shown, or we can estimate breeding
values with fixed variance components (BLUP) if use the word BLUP instead
of VCE. Evangelina López de Maturana uses this option to get breeding values
of calving ease in dairy cattle.

4.6.8 Covariance matrices

The covariance matrices which are included at the parameter file are used
as known if we are running BLUP. If not, they are used as starting points.
Zeros out of the diagonal do not imply the covariance is set to zero. There
are two particular cases in which they have to be well chosen:

• If we are in a sire model, where σ2
s <

1
4
σ2
e .
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• When there are censored traits, the censored value has to be “likely”
under the variance chosen. That is, if we see values of 54, the variance
should not be 1. Without this caution, the program gets stuck trying
to sample “real” records. The best is to use the phenotypic variance or
something similar.

For models with different random matrix per trait, the program handles
them well because it uses generalized Inverted Wishart based on generalized
inverses. For example, for this model,

10 20 100 10 1000 Levels for each effect

0 1 0 0 0 Model for trait 1

1 1 1 1 1 Model for trait 2 ...

the genetic variance is only defined for trait 2. The program produces the
output

0.0000000000000000E+000 0.0000000000000000E+000

0.0000000000000000E+000 35.2971843629242059

therefore σ2
a2,2 = 35.29 and the rest is zero. For multiple animal effects

the genetic variances as organized traits within effects. That is, for a bull-cow
model for fertility and 2 traits (say, days open and success at first insemina-
tion), the genetic covariance is:

G0 =

(
A B
B′ D

)
=


σ2
a11 σa12 σa13 σa14
σa21 σ2

a22 σa23 σa24
σa31 σa32 σ2

a33 σa34
σa41 σa42 σa43 σ2

a44


Then A is the matrix of genetic covariances of the effect bull for the traits

days open and success insemination; B is the covariance between bull and
cow effects for those traits; and D is the covariance matrix of the effect cow
for the traits days open and success at first insemination.

4.6.9 Maternal effects or several animal effects

It is possible to include several animal effects (e.g., maternal effects or bull
- cow models in fertility), for example: 2 Number of animal effects. We
will need to put them correctly in the effects part of the model. The same
pedigree is assumed for all of them. Note that sire models for maternal
effects model are also possible, although backtransforming the sire variances
into genetic variances is quite awful [11]. We have done it with good results.
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For a model with two traits and maternal effects affecting the second,
this is a parameter file:

Data file

datoskk

Pedigree file

geneakk

Model

animal

5 Number of effects (including animal)

1 Number of genetic groups

2 Number of traits

1 Number of threshold traits

2 Categories for the threshold traits

1 Number of random environmental effects

2 Number of animal effects

100 10 100 1000 1000 Levels for each effect

1 1 0 1 0 Model for trait 1

1 1 1 1 1 Model for trait 2 ...

Task

VCE

Total number of iterations

100000

Burn-in (discarded only in the results and solutions file)

30000

Thin interval (samples are taken every...)

100

Genetic variance

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

Permanent (keep always this title)

permanent 1

0 0

0 1

Residual

1 0

0 1

Note that this model includes one random environmental effect (dam,
non genetic), a genetic effect for both traits (individual) and a genetic effect
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for the second trait (dam). The order of the genetics effects does not matter.
The data file is:

legarra@cluster:~/TM$ head datoskk

60 7 25 111 35 388.2996 1.0000

2 4 69 112 79 390.9525 2.0000

74 9 86 113 96 449.0446 2.0000

72 9 63 114 73 366.7321 1.0000

25 8 68 115 78 453.1664 2.0000

96 10 68 116 78 364.5786 1.0000

70 5 35 117 45 427.0817 1.0000

4 3 81 118 91 323.0574 1.0000

61 10 63 119 73 318.4384 1.0000

95 3 21 120 31 343.8603 1.0000

Note that the dam environmental effect (3rd column) has to be renum-
bered and this number is not the same as the one in the genetic effect (5th
column), because there are less levels. The 4th column is the individual. One
sample of the genetic covariance matrix is:

37.7116 37.3271 0.00000000E+000 -6.75222

37.3271 65.8084 0.00000000E+000 -4.90055

0.000000E+000 0.00000E+000 0.000000E+000 0.0000E+000

-6.75222 -4.9005 0.0000000E+000 3.37377

which shows that the genetic variance component of the dam for the 1st
trait is zero.

4.6.10 Contrasts

It is hard to think in a standard type of contrasts, so this is the way to
program them. The idea is to print out samples of the vector of solutions to
a file, just as the variance components are. Look for this section:

! ---------

! Contrasts

! ---------

! uncomment next line if you want contrasts

! write(20,’(20f15.8)’) b(31:33,1),b(31:33,2)

! -------------

! end contrasts

! -------------
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This prints out to unit 20 (’samplesFE.txt’) the solution vector (b) in the
positions 31 to 33 for the 1st and 2nd trait. The positions are obtained by the
sum of the levels of all the previous effects, plus the level we are interested
in. In the example in 4.5 this corresponds to the 1st to 3rd level of the 3rd
effect. Other way of doing the same is using the vector ifac which stores the
starting address of each effect. For the same example, this would be:

write(20,’(20f15.8)’) b( (ifac(3)+1):(ifac(3)+3),1), &

b(ifac(3)+1):(ifac(3)+3),2)

If you do not want this output, just comment it (as it is usually).

4.6.11 Changing random seeds

If you want to check your results with a different run, you can change the
random seeds by using an OPTION statement. This is a line at the end of
the program as follows:

OPTION RandomSeeds seed1 seed2 seed3

where seed1 seeds2 seed3 are (positive or negative) integers, for instance

OPTION RandomSeeds 1234 -5687 -986

Please respect the case of OPTION RandomSeeds or it will not work.

4.7 Compiling

4.7.1 NAG for Linux

There is a fairly good amount of legacy code and compilers might complain
about that. To compile it in the Linux cluster of INRA-SAGA (NAG com-
piler):

legarra@cluster:~/TM$ f95 -O3 -o TM tm.f90 . As this is Gibbs sam-
pling, speed matters. An optimization option (say, -O3) may run much faster
depending on the compiler.

4.7.2 AIX xlf

Two ways to compile in using xlf90 for AIX:
dga2:/utou/utouale/TM # f90 tm.f90 -o TM,
or change the extension of the program to .f and:
dga2:/utou/utouale/TM # xlf90 tm.f -o TM.
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4.7.3 g95 for Windows XP

This compiler is free (comes with GNU license) and available for many other
operating systems. Other option is gfortran.
C:\Documents and Settings\TM>g95 tm.f90 -O3 -o TM

produces an executable TM.exe.

4.8 Run

Just write the name of the executable and answer:

legarra@cluster:~/TM$ ./TM

-----------------

TM - 31 October 2008

by A Legarra, L Varona, E Lopez de Maturana

-----------------

started:

date: 31/10/2008

time: 11:30:05

Parameter file?

simul.par

simul.par

number of traits with var(e) constrained to 1 --> 0

or “echo” it: echo simul.par|./TM

4.9 Output

There are prints to the screen every thin iterations. The print gives time
and the present sample of covariance components (in the order: genetic,
environmental, residual). It is interesting to check it because very high or
low variances usually mean convergence problems.

1.469048E+02 -0.74877 0.E+000 0.95498

-0.74877 0.288388 0.E+000 -0.167496

0.E+000 0.E+000 0.E+000 0.E+000

0.95498 -0.16749 0.E+000 0.137198

0.E+000 0.E+000

0.E+000 8.610746E-03

1.941E+03 1.4602

1.4602 6.130E-02

imue 1
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05/04/2006 14:21:23

4.9.1 results.txt

This is a file produced every 100 · thin iterations after burn-in, which gives
the present estimates (mean and standard errors) for variance components
and genetic correlations, heritabilities, etc, after discarding burn-in. The h2,
hp12, he2 stand for the ratios (and associated correlations) of total variance
due to additive, permanent and residual effects. This is an extract:

Parameter file: simul.par

Iteration number: 10000

Burn-in: 3000

Average additive variance

7.59901448 -0.16399846 0.00000000 0.01532234

-0.16399846 0.27350263 0.00000000 -0.15480405

0.00000000 0.00000000 0.00000000 0.00000000

0.01532234 -0.15480405 0.00000000 0.08896942

Sd Additive variance

3.22667610 0.34369945 0.00000000 0.19072825

0.34369945 0.01706567 0.00000000 0.01195900

0.00000000 0.00000000 0.00000000 0.00000000

0.19072825 0.01195900 0.00000000 0.00989067

Average environmental variance 1-th

0.00000000 0.00000000

0.00000000 0.02117482

Sd environmental variance

0.00000000 0.00000000

0.00000000 0.00615793

Average residual variance

2035.84818836 0.79387308

0.79387308 0.06443367

Sd residual variance

107.81988846 0.59492772

0.59492772 0.00685906

Average h2 and additive correlation

0.00373137 -0.11954332 0.00000000 0.01751802

-0.11954332 0.00000000 0.00000000 -0.99344407

0.00000000 0.00000000 0.00000000 0.00000000
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0.01751802 -0.99344407 0.00000000 0.00000000

Sd h2 and additive correlation

0.00160243 0.21534016 0.00000000 0.21255278

0.21534016 0.00000000 0.00000000 0.00502002

0.00000000 0.00000000 0.00000000 0.00000000

0.21255278 0.00502002 0.00000000 0.00000000

For sire models all this correlations are not correctly calculated and there-
fore not printed, because the sire variance is 1/4 of the genetic variance. They
have to be inferred from the covariance samples. Same for maternal models
or sire-dam models.

4.9.2 solutions.txt

This file produced every 100 · thin iterations after burn-in contains the solu-
tions (mean and standard error, after burn-in) for fixed and random effects,
in order. The file is organized in columns, the first one is the solution for
the 1st trait, the 2nd one its s.e., the 3rd is the solution of the same effect
for the 2nd trait, the 4th its s.e., and so on. To get the breeding values you
must start from the corresponding level, i.e., the sum of the levels of all the
previous effects. In the example in 4.5 the line for the 1st breeding value is
1 + 10 + 20 + 100 + 10 + 1 = 141. This is an example of the file:

548.93036050 45.16501306 1.64939092 0.27237214

537.20447345 45.45495594 1.80820386 0.32165669

556.11838284 44.45897965 1.88057097 0.29986198

545.63172656 44.45013299 1.90946556 0.26104840

542.96121989 44.92410454 1.64755362 0.39665811

550.09841527 44.20431687 1.88156240 0.30906273

4.9.3 thresholds.txt

This file is produced every thin iterations, and gives the samples of the thresh-
olds, plus an +∞ threshold which is set to 999. It is not of much interest
because, for binary traits, the threshold is fixed to 0, and for polychotomous
traits the first threshold is 0 and the second threshold is 1. Therefore it may
be of interest for traits with more than 3 levels. The thresholds are ordered
threshold within trait. Each line is one sample taken every thin iterations.

4.9.4 samples.txt

This is the file with samples from the posterior distribution of variance com-
ponents. Each line is one sample. There is a header file indicating what
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is each column, e.g, this fragment is the first row of the genetic covariance
matrix:

vara_0101 vara_0102 vara_0103 vara_0104

337.61511729 -0.65333460 0.00000000 1.49091783

273.35178896 0.63688959 0.00000000 0.30858498

384.97065327 2.17405027 0.00000000 0.58115261

342.89653329 6.01183500 0.00000000 -1.58711165

342.91126139 9.17706121 0.00000000 -1.79774013

299.79676759 -1.19988111 0.00000000 0.21024740

And, for example, varp0i_jk is the environmental covariance of the i-th
random environmental effect for the traits j and k. If j = k, it is the variance.

4.9.5 samplesFE.txt

This is the file with samples from the posterior distribution of fixed (or
random) effects if desired as explained in 4.6.10). Each line is one sample.
There is no header line. It looks like:

101.61328547 100.81883503 100.06813214 1.88082650 2.01280556 1.98134262

101.10080979 100.66554871 100.35605747 1.91243514 2.01313644 1.97147973

101.26135644 100.61985381 100.70051116 1.95634873 2.00828649 1.99967744

Following the example in 4.6.10, the first three columns correspond to
samples of the solutions for the 3 levels of fixed effects for the first trait,
and the second three columns to the solutions for the second trait. For fixed
effects, these are non-estimable parameters and therefore meaningless. To do
a proper analysis one needs to compute the contrasts, which are estimable
functions, e.g., in SAS:

data one;

infile ’samplesFE.txt’;

input age1 age2 age3;

contrast1=age2-age1;

contrast2=age3-age1;

run;

4.10 Post-gibbs analysis

Although results.txt provides a lot of information, it is important to check
the Gibbs sampler and to get plots, etc. This can be done in several ways.
One is to use SAS to get means and s.e. of the variance components and
their functions. To compute features of functions of variance components,
compute the function (say, h2) for each sample and you get the posterior
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distribution of h2. This procedure is statistically correct and much easier
than using Taylor expansions. Another nice thing is that you get more precise
confidence intervals and perhaps non-symmetric intervals (no more genetic
correlations of 0.9 ± 0.10 beyond the bounds). To test if a correlation is
different from zero one can just count how many times was it greater than
zero in the posterior distribution. For example, to compute the s.e. of the
heritability one can do the following in SAS:

data one;

infile ’samples.txt’;

input vara varp vare;

* discard burn-in;

if _N_>1000;

h2=vara/(vara+vare+varp);

* get features of the posterior distribution of h2;

proc univariate plot;

var h2;

run;

Or to compute the posterior distribution of the contrast:

data one;

infile ’samplesFE.txt’;

input age1 age2 age3;

* discard burn-in;

if _N_>1000;

contrast1=age2-age1;

contrast2=age3-age1;

* get features of the posterior distribution of the contrast;

proc univariate plot;

var contrast1 contrast2;

run;

4.10.1 R and BOA

The best is usually to use R (or S-plus) and BOA (they are in the cluster
and there is R free for Windows). First some simple analysis in R:

> a=read.table("samples.txt",header=TRUE)

> summary(a)

vara_0101 vara_0102 vara_0202 varp01_0101

Min. :0.1364 Min. :0.1045 Min. :0.1864 Min. :0.05019
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Figure 1: Histogram

1st Qu.:0.2001 1st Qu.:0.1855 1st Qu.:0.2394 1st Qu.:0.23435

Median :0.2244 Median :0.2027 Median :0.2577 Median :0.37637

Mean :0.2261 Mean :0.2027 Mean :0.2594 Mean :0.39773

3rd Qu.:0.2506 3rd Qu.:0.2196 3rd Qu.:0.2779 3rd Qu.:0.54658

Max. :0.4718 Max. :0.3246 Max. :0.3530 Max. :0.80572

...

> # the genetic correlation

> rg=a$vara_0102/sqrt(a$vara_0101*a$vara_0202)

> summary(rg)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2683 0.7932 0.8475 0.8423 0.9018 0.9750

> hist(rg)

BOA (google for “Bayesian Output Analysis Program”) is a specialized
package of R for MCMC output checking with many options. It is best not
to include too many variables in BOA at the same time because you don’t
see anything in the plots. BOA is useful for:

• Checking convergence visually and numerically.

• Plotting.

The file samples.txt has a good format for BOA. What I usually do is:

• Checking convergence by plotting running means, traces, and com-
puting statistics (usually Heidelberg and Welch). The best is to plot
correlations, which are harder to estimate.
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Figure 2: Trace

• Get means and relevant percentiles

• Plot graphs

After opening R, you start boa by > boa.menu(). Then there are menus.
You read the samples.txt file by:

BOA MAIN MENU -> file -> import data -> Options

-> Working directory

Enter new character string

1: C:\Documents and Settings\legarra\Mes documents\manualTM

BOA MAIN MENU -> file -> import data -> Flat Ascii file

Enter filename prefix without the .txt extension [Working Directory: ""]

1: "samples"

It is very important to enter the working directory. Then you can plot
and check following the menu and BOA manual. This is an example of plots
of genetic correlation between mammary insertion in first and later parities
[14].

4.11 Problems

The main problems come from mistakes or very complex models. The good
thing is that when Gibbs sampling does not work, it is obvious (for example,
h2 = 0.99). The bad thing is that problems take long to show and usually is
an awful numerical error.
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Figure 3: Running mean

Mistakes It is important to verify that codifying is correct, parameter file
is good and the data and pedigree files are correct.

Cycling In very complex models (sire maternal models for several poly-
chotomous traits) programs cycled. This can be seen by plotting traces
in BOA. This was solved by using a better random number generator
by L’Ecuyer.

Positive-definiteness In complex models matrix of variance components
might be non-positive definite. This will give numerical problems. This
might be solved by “bending” but it is not very nice because we are
forcing them.

Complex models They take long time to run, are prone to errors and may
not run at all. Sometimes it is better to move to other models (sire
models for example).

Binary traits Binary traits may go out of bounds. The liability can be sam-
pled very far away from the threshold if the breeding values are very
high. This leads to big additive variances, which lead to big breeding
values . . . To avoid this, a good solution is to change to sire models.
Another one is that the liability in binary traits may be set to at max-
imum ±4 residual standard deviations from the current mean (change
it by the liabilitybound variable in the program). Other option is
not set the residual variance to 1 (3.2.1). Multiple binary traits may
produce non-positive definite matrices. Some tricks to avoid this were
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described in 3.2.1. Use with caution. At some point, problems come
mainly from lack of good data and there is no simple solution.

Extreme case problem If there is an uneven distribution of phenotypes in
one class of a fixed effect (that is, one herd with all calving ease=1), its
effect is non estimable. It is recommended to fit it as a random effect.
This was reported, for example, by Misztal et al. (JDS 72:1557) and
Carlos Moreno (GSE 29:145).

4.12 Example and test

A simulated bivariate data set (rg = −0.5) is provided for animal (data file,
datoskk pedigree file geneakk) and sire datoskksire geneakksiremodels.
The corresponding parameter files are simul.par and simulsire.par. This
is a typical output from running simul.par:

legarra@cluster:~/TMdist$ echo simulsire.par ./tm

simulsire.par ./tm

legarra@cluster:~/TMdist$ echo simulsire.par | ./tm

Parameter file?

simulsire.par

number of records 8900

number of covariables: 1

number of observed traits 2

number of traits with var(e) constrained to 1 --> 0

Animals, unknown parent groups = 100 0

Model for trait 1

1 1 1 1 0 1

Model for trait 2

0 1 0 1 1 1

Estimating variance components

Total n of iterations: 11000

Burn-in: discarded for results.txt and solutions.txt 1000

Thin interval 100

Total n of samples in the Gibbs sampler: 110

sire model

number of records, non-null elements = 8900 29628

11.3561111793608251 -0.3476993336463193

-0.3476993336463193 4.3448850123729565E-02

55.1171609582973758 -0.5592405287514247

-0.5592405287514247 0.2152450780010031

27



imue 1

31/10/2008 10:19:21

with solutions file

1.06141889 0.26566714 0.00000000 0.00000000

6.32449195 2.83650750 1.42324365 0.31620909

6.29836679 2.82475144 1.44403390 0.31708041

5.78829387 2.82585841 1.47732260 0.31485805

6.28683428 2.84174016 1.45555319 0.31460713

6.52408758 2.81833951 1.47606107 0.31749095

6.41384068 2.78175451 1.46082427 0.31747790

6.20643893 2.87275380 1.46963281 0.31477530

6.50733017 2.80505533 1.46167945 0.31717126

6.70572253 2.83513320 1.44402953 0.31537910

5.96764855 2.83464849 1.46578857 0.31286806

4.52275743 2.91573995 0.00000000 0.00000000

4.44778629 2.88866689 0.00000000 0.00000000

4.96364402 2.90414365 0.00000000 0.00000000

4.38549987 2.86524471 0.00000000 0.00000000

4.92880843 2.94032235 0.00000000 0.00000000

and final result (note that the number of iterations is too small):

Parameter file: simul.par

Iteration number: 11000

Burn-in: 1000

ve stat=true 0

vp stat=true 0

va stat=true 0

Average additive variance

28.11639263 -0.83182075

-0.83182075 0.11718751

Sd Additive variance

1.95622311 0.09656303

0.09656303 0.00743259

Average residual variance

33.72525120 0.06169531

0.06169531 0.12649562

Sd residual variance
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1.42452324 0.06349272

0.06349272 0.00476781

Average h2 and additive correlation

0.45440480 -0.45818941

-0.45818941 0.48062477

Sd h2 and additive correlation

0.02659841 0.04318270

0.04318270 0.02398042

Average he2 and residual cor

0.54559520 0.03032925

0.03032925 0.51937523

Sd he2 and residual cor

0.02659841 0.03138916

0.03138916 0.02398042

You should obtain the same results as far as you do not change random seeds
in module MODULE Ecuyer_random.
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5 Appendix: how the linked list works

This is basically a reminder for myself. I (AL) do not know the origin of the
linked list, LV already had it. A sparse matrix B is stored as follows:

1. zhz: values in B.

2. iplace:auxiliary variable.

3. ifirst(i): points to the first stored element of row i. To start looping
through the row, auxiliary variable is set as iplace=ifirst(i).

4. ivcol(iplace): which column are we at.

Thus zhz(iplace) stores the i,j where j =ivcol(iplace) element in B.
inext(iplace) indicates where is the next element in the same row.

When this is 0, this is the end of the row.
So one round of Gauss Seidel for B a = xy is:

do i=1,neq

rhs=xy(i)

iplace=ifirst(i)

do

! correcting

rhs=rhs-zhz(iplace)*sol(ivcol(iplace))

! catch diagonal element

if(i==ivcol(iplace)) lhs=zhz(iplace)

! go to next element

iplace=inext(iplace)

! test for end

if(iplace==0) exit

enddo

rhs=rhs+lhs*sol(i)

sol(i)=rhs/lhs

enddo

Interestingly, converting this to ia ja a format should be fairly simple.
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