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Graphical Models for Hybrid AI
Design with Intuition1 and Logic2

Graphical models (GMs), Guaranteed Optimization and Hybrid AI
T. Schiex, S. Barbe, S. de Givry, G. Katsirelos, D. Simoncini

The ”Design with intuition and logic” chair is organized around the use of guaranteed optimization over graphical models as a way to connect ML/DL (using stochastic GMs such as Markov Random Fields or Bayesian
Nets) with Automated reasoning (using Boolean GMs, as in Constraint Programming). This is achieved using Toulbar2, an exact award-winning ”Cost Function Network” prover that deals with Boolean and numerical
tensors. Because exact optimization of discrete GMs is decision NP-complete, improving algorithmic efficiency is always crucial (block 3, 5 and 6). Applications (CPD) also motivate the resolution of new queries (block
4). With the growth of ML/DL we also interact with ML, trying to inject data in the graphical model’s factors (criteria or constraints - block 1) or using CP to exactly optimize GM learning (eg. Bayes Nets, block 2).

1 - Learning how to play Sudoku6

For learning ”how to reason”, learning how to play Sudoku from solved grids has become a standard
benchmark. Recurrent Relational Net (RRN, NeurIPS18), a Graph neural network, solves 96.6% of hard
minimal grids using a 180,000 grids training set, SATNet (ICML’19), with a differentiable convex optimization
layer, solves 98.3% of easy grids using 10,000 samples.
We propose a non-end-to-end-differentiable architecture combining an ADMM-
based approximate L1-regularized loglikelihood learning algorithm (AISTATS’17)
with Toulbar2. We reach 100% accuracy on hard problems from 10,024
samples. While non-differentiable, our architecture is able to learn how to play the
Visual Sudoku, outperforming SATNet both in accuracy and sampling efficiency.

As a preamble to learning energy functions for protein design, we designed a neural network taking Sudoku
grid coordinates as inputs and producing a full pairwise GM as output. The loss function combines pseudo-
loglikelihood, Hinge loss (computed from Toulbar2’s solution) and L1 regularization of the output. This
fully differentiable architecture reaches 100% accuracy on hard grids, using 1,000 training samples.

3 - Efficient SDP Bounds for Discrete Graphical Models3

Computing the extremum (Maximum A Posteriori/MAP) assignment of a Graphical Model is NP-Hard.
Different methods derived from linear programming (LP) and semidefinite programming (SDP) have been
defined to compute bounds. We developed a dedicated block coordinate descent (BCD) algorithm which
can be applied to a multi-label GM-dedicated SDP relaxation with diagonal and linear constraints.

For scalability, our algorithm follows a Burer-Monteiro scheme with a low rank
factorization. On GMs optimization, it is far more efficient than open source
solvers such as CVXPY but also dedicated industrial solvers such as MOSEK,
both in terms of memory and cpu-time. We reached a speed-up of 20 compared
to MOSEK on problems with matrices of size 1500 x 1500.

On the hardest dense instances our approach outperforms the (LP-
related) message passing algorithm TRW-S providing tighter bounds
on the optimal value. Despite being Burer-Monteiro based, our method
applies directly to non-binary variables. The figure shows optimality
gaps for domain sizes varying from 3 to 10.

5 - Multiple-Choice Knapsack Constraint in Graphical Models2

There is no native way to express linear constraints in a graphical model. This is in large part due to the
algorithms used to compute lower bounds, which require all constraints to be expressed in extension. We
defined a specialized structure that encodes Multiple-Choice Knapsack Constraint (MCKC) without inducing
an exponential representation. Using that structure it is possible derive a local lower bound for each MCKC
and associated unary costs (costs associated to the values). We implemented this method in toulbar2,
where we compute a lower bound at each node of a branch and bound algorithm. This new possibility
of embedding linear constraints in graphical models provides greater modeling flexibility and allows the
GM solver toulbar2 to solve problems that were previously out of its reach, like capacitated warehouse
location problem or Knapsack Problem with Conflict Graph, where it is competitive with CPLEX. MCKC can
also encode the Hamming distance constraint used to produce diverse solutions. On Computational Protein
Design problem (CPD), MCKC shown competitive performance compared to automata-based encoding.
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tuple direct tuple direct

C1 708 694 720 720 701 720
C3 571 477 609 712 507 639
C10 485 316 459 609 337 559
R1 720 703 720 720 704 720
R3 709 566 676 717 578 682
R10 524 368 528 634 385 598

Number of solved instances (left) and number of
times a solver found the best solution within the time

limit (right) for six different classes of KPCG.

Cactus plot of CPU solving time (log scale) to
compute 10 diverse solutions on CPD problems,
using different encodings of Hamming distance
constraint.

2 - Learning Optimal Bayesian Network Structures5

Bayesian Network Structure Learning (BNSL) from discrete observations corresponds to finding a compact
Bayes Net model which best explains the data. BNSL is NP-hard.
We developed ELSA (Exact Learning of Bayesian Network Structure Using Acyclicity Reasoning). ELSA
extends CPBayes by using a polynomial-time algorithm that discovers a class of cluster cuts that provably
improve the linear relaxation, producing strong bounds. It also uses a more compact representation of
candidate parent sets.

We compared ELSA to state-of-the-art BNSL
constraint programming (CPBayes) and inte-
ger programming (GOBNILP) solvers on several
datasets from UCI ML Repository with a maxi-
mum CPU time of 10 hours. The † symbol indi-
cates time-outs.

CPBayes GOBNILP ELSA
Data Set n Σd Time Time Time
bnetflix.ts 100 446406 629.0 † 1 065.1
plants.test 69 520148 † † 18 981.9
jester.ts 100 531961 † † 10 166.0
accidents.ts 111 568160 † 1 274.0 2 238.7
plants.valid 69 684141 † † 12 347.6
jester.test 100 770950 † † 17 637.8
bnetflix.test 100 1103968 3 525.2 † 8 197.7
bnetflix.valid 100 1325818 1 456.6 † 9 282.0
accidents.test 111 1425966 † 4 975.6 3 661.7

4 - Guaranteed Diverse Solutions in Graphical Models4,7

To produce a library of diverse solutions of minimum cost, for GMs representing approximate or uncertain
knowledge, we introduce an incremental solver and show that it can enumerate local minima. Among
various existing approaches, our approach is the only one that guarantees diversity and minimum cost
(given previously generated solutions) with no compromise or approximation. We encode the (weighted)
Hamming distance constraint using optimized ternary and pairwise decompositions of the CP Regular
global constraint. We show that the dual encoding gives the best CPU performances.

A comparison of our encodings on various Maximum
Probability Explanation problems on Bayes Nets of various
sizes from http://www.bnlearn.com/bnrepository.

6 - Parallel Hybrid Best First Search1

We implement a parallel Branch-and-Bound method in toulbar2. Our Hybrid Best-First Search (HBFS)
method is based on a Master-Worker protocol using MPI. It combines depth-first search, for the workers,
and best-first search, for the master. We observed important speed-ups compared to the sequential version
in some difficult benchmarks. Parallel HBFS compares also favorably with parallel cplex in terms of
normalized lower and upper bounds on a larger set of instances.

HBFS # of cores
instance n d 10 20 180 1800

maxclique/brock200 1 200 2 8.3 18.3 154.5 70.3
maxclique/p hat700-1 700 2 3.4 7.2 20.2 13.1
maxclique/sanr200 0.9 200 2 10.7 16.8 147.0 689.2

cpd/1BRS 38 178 5.1 10.2 13.5 33.5
cpd/1CDL 38 170 3.9 6.1 20.1 24.7
cpd/1GVP 52 170 6.4 14.3 45.47 32.0

Speed-ups: ratio of solving times between
parallel HBFS (using n cores) and sequential
HBFS obtained on a server (10&20 cores) and
the CALMIP cluster (from 180 to 1,800 cores)
on difficult DIMACS Max-Clique and
Computational Protein Design instances.

Normalized lower and upper bounds as time
passes on 134 instances of CPD, Max-Clique,
Linkage, and Warehouse benchmarks. A unit of
’1’ on the X-axis corresponds to 3, 600 seconds
x-axis and to the optimum or best known cost
on the Y -axis.
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