Training on Galaxy: Metagenomics Find Rapidly OTU with Galaxy Solution

FRECES References Refe

FRÉDÉRIC Escudié* and LUCAS Auer*, MARIA Bernard, LAURENT Cauquil, KATIA Vidal, SARAH MAMAN, MAHENDRA Mariadassou, GUILLERMINA Hernandez-Raquet, GÉRALDINE Pascal

*THESE AUTHORS HAVE CONTRIBUTED EQUALLY TO THE PRESENT WORK.

Feedback:

What are your needs in "metagenomics"?

Your background ?

Overview

First day 2.00 pm to 5.00 pm

- Objectives
- Material: data + FROGS
- Data upload into galaxy environment
- Demultiplex tool
- Preprocess

1 short coffee breaks ~3.30 pm

Overview

Second Day: 9.00 am to 5.00 pm

- Clustering + Cluster Statistics
- Removing chimeras
- Filtering
- Affiliation
- Normalization
- Tool Description
- Workflow creation
- Some figures
- Download data

2 short coffee breaks morning and afternoon

Lunch 12.00 to 1.30 pm

Objectives

The goal:

	Affiliation	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
OTU1	Species A	0	100	0	45	75	18645
OTU2	Species B	741	0	456	4421	1255	23
OTU3	Species C	12786	45	3	0	0	0
OTU4	Species D	127	4534	80	456	756	108
OTU5	Species E	8766	7578	56	0	0	200

Objectives

The current processing pipelines struggle to run in a reasonable time.

The most effective solutions are often designed for specialists making access difficult for the whole community.

In this context we developed the pipeline FROGS: « Find Rapidly OTU with Galaxy Solution ».

Material

Sample collection and DNA extraction

Identification of bacterial populations

Gene encoding the 16S subunit of ribosomal RNA (~ 1500 bp) 11... 111. 111 Synachococcus sp. 6301

10

Identification of bacterial populations

Which bioinformatics solutions ?

	Disadvantages
QIIME	Installation problem Command lines
USEARCH	Global clustering command lines
MOTHUR	Not MiSeq data without normalization Global hierarchical clustering Command lines
MG-RAST	No modularity No transparence

FROGS ?

Use platform Galaxy

Set of modules = Tools to analyze your "big" data

Independent modules

Run on Illumina/454 data 16S and 18S

New clustering method

Many graphics for interpretation

User friendly , hiding bioinformatics infrastructure/complexity

Galaxy Sigenae -	Welcome gpascal Analyze Data Workflow Shared Data * Visualization * Help * User *	Using 16.9 GB
Fools	FROGS Pre-process Illumina (version 1.0.0)	🔺 History 🛛 🗘 🗘
FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION F ROGS pipeline	Taput type: Files by samples → Compute Single and Dial in single problem as with two Sing (D), by any D), by any Dial	Unnamed history 5.0 GB
Upload archive from your computer	Reads already contiged ?:	③19: FROGS Filters: ● Ø ⋈ abundance_table.biom
Demultiplex reads Split by samples the reads in function of inner barcode.	The inputs contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair. Samples	③18: FROGS Filters: ● Ø ⋈ summary.html
FROGS Pre-process Illumina Step 1 in metagenomics	Samples 1	③17: FROGS Filters: ● Ø ⋈ seed.fasta
analysis from Illumina (16S/18S) : denoising and dereplication.	The sample name.	③ <u>16: FROGS Filters:</u> ● Ø ⋈ summary.txt
FROGS Clustering swarm Step 2 in metagenomics analysis : clustering.	Reads 1:	③15: FROGS Filters: ● Ø ⋈ abundance table.tsv
FROGS Remove chimera Remove PCR chimera in each	R1 FASTQ file of paired-end reads. reads 2:	14: FROGS Clusters ● ℓ ⊠ stat: summary.html
FROGS Affiliation otu 165 Step 3 in metagenomics	R2 FASTQ file of paired-end reads.	13: FROGS Clusters ● Ø ⋈ stat: summary.html
analysis : Taxonomic affiliation of each OTU's seed by RDPtools and BLAST	Add new Samples Reads 1 size:	<u>\$2: FROGS Affiliation</u> ● Ø ≈ <u>otu 16S:</u> excluded_data_report.html
FROGS abundance normalisation Step 4 in metagenomics analysis	The read1 size.	ti: FROGS Affiliation @ 0 %
(optional) : Abundance normalisation	Reads 2 size:	<u>10: FROGS Remove</u>
FROGS Filters Step in metagenomics analysis from Illumina (165/185) : Filters	Expected amplicon size:	excluded data report.html
on Clusters/OTUs. FROGS Clusters stat Process	The expected size for the majority of the amplicons (with primers).	chimera: non chimera abundance.biom
some metrics on clusters. FROGS BIOM to TSV Converts		8: FROGS Remove ● Ø ⋈ chimera: non_chimera.fasta
a BIOM file in TSV file.	Maximum amplicon size:	7: FROGS Clustering

FROGS pipeline

Upload File 🗙	FROGS Pre-process Illumina 🗙		FROGS Clustering swarm		FROGS Remove chimera		FROGS Affiliation otu 165
out1 (bam, txt, fastqsanger,	Archive file	Ħ	Sequences file	6	C Sequences file	6	OTU abondance in biom format
csfasta, qual, bed, gff, gtf, vcf, sama (fasta, pdf, xsq, tar.gz, bw, png)	dereplicated_file (fasta)	꽃	Count file	Æ	Abundance file	Ţ	OTU seed sequence in fasta
	count_file (tabular)	2	abundance_biom (txt) 🛛 🔾		non_chimera_fasta (fasta) 🛛 🔅		format
Data acquisition	summary_file (html)		seed_file (fasta) 🛛 🔅 🤇	-	out_abundance_biom (txt)	2	biom_affiliation (txt)
	Dre-process		swarms_composition (tabular) 🗋 🤇		out_abundance_count (tabular) 🗇	2	summary_file (html)
	rie-piocess				summary_file (html)	2	Affiliation
			Clustering		Chimera		
					Cimilera		

Demultip	olex rea	ds 🗙						
Barcode Reads 1 reads 2 demultip summary	file blexed_a y_file (ta	archive (data)	ng					
Upload File 🗙		FROGS Pre-process Illumina 🗙	FROGS Clustering swarm		FROGS Remove chimera		FROGS Affiliation otu 16S	×
out1 (bam, txt, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png)	Ĵ	Archive file dereplicated_file (fasta)	Sequences file Count file abundance, biom (txt)	R	Sequences file Abundance file	G	OTU abondance in biom format OTU seed sequence in fasta format	it
Data acquisition		summary_file (html)	seed_file (fasta)		out_abundance_biom (txt) out_abundance_count (tabular) summary_file (html)	\mathbb{P}	biom_affiliation (txt) summary_file (html)	0 0
			Clustering		Chimera	T		

		FROGS abundant Abundance in b output_biom (ta summary_file (ta)	nce normalisation × piom format xt) O html) O Normalisatio	on
Upload File out1 (bam, txt, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png) Data acquisition	FROGS Pre-process Illumina Archive file dereplicated_file (fasta) count_file (tabular) summary_file (html)	FROGS Clustering swarm X Sequences file Count file abundance_biom (txt) Image: Count file seed_file (fasta) Image: Count file	FROGS Remove chimera X Sequences file Abundance file non_chimera_fasta (fasta) Image: Comparison of the comparison of th	FROGS Affiliation otu 16S X OTU abondance in biom format OTU seed sequence in fasta format biom_affiliation (txt) Image: Compare the sequence in fasta format
	Pre-process	swarms_composition (tabular)	out_abundance_count (tabular)	summary_file (html)

FROGS Clustering swarm FROGS Pre-process Illumina 🗶 Upload File × × FROGS Remove chimera × FROGS Affiliation otu 16S × Sequences file out1 (bam, txt, fastqsanger, Archive file Sequences file OTU abondance in biom format csfasta, qual, bed, gff, gtf, vcf, sam, Count file dereplicated_file (fasta) Abundance file OTU seed sequence in fasta fasta, pdf, xsq, tar.gz, bw, png) format abundance_biom (txt) count_file (tabular) 00 non_chimera_fasta (fasta) biom_affiliation (txt) **Data acquisition** seed_file (fasta) summary_file (html) 00 out_abundance_biom (txt) summary_file (html) swarms_composition (tabular) 🖂 🔇 out_abundance_count (tabular) **Pre-process** summary_file (html) Affiliation Clustering Chimera FROGS Filters × FROGS Clusters stat 🗙 Biom File FROGS BIOM to TSV X Cluster file Fasta File Abundance file summary_file (html) excluded (txt) Sequences file **Statistics** tsv_file (tabular) fasta_output (fasta) 🗇 web (html) **Convert to TSV** biom_output (txt)

17

Filters

krona (html)

Together go to visit FROGS

In your internet browser (Firefox, chrome, Internet explorer) :

Sigenae - Welcome gpascal Analyze Data Workflow SMAINIMENU alization - Help - User -Using 26.6 GB 2 0 History Tools Unnamed history WELCOME TO GALAXY WORKBENCH Θ search tools 0 bytes Seno D toul D YOUR DATA 1 Your history is empty. Click 'Get Upload Data **AVAILABLE** Data' on the left pane to start Download Data TOOLS FILES MANIPULATION Galaxy is a workbench available for biologists from Sigenae Platform. Galaxy objectives are: Text Manipulation (e-learning) DATASETS HISTORY Make bioinfo Linux tools accessible to biogists. Filter and Sort Hide the complexity of the infrastructure. Join, Subtract and Group Allow creation, execution and sharing of workflows. **Convert Formats TOOL CONFIGURATION** warnings : BED Tools Graph/Display Data AND EXECUTION SEQUENCES MANIPULATION When you access or reload to your Galaxy webpage, please find all your histories saved in the following menu : "User" / "Saved histories". **FASTA** manipulation **FASTO** manipulation Your data are stored in work/ directory. Consequently, BioInfo Genotoul platform reserves the right to (e-learning) purge all files not accessed since 120 days on work/ disk space. SAM/BAM manipulation : Picard (beta) Sigenae support : sigenae-support@listes.inra.fr SAM/BAM manipulation: If you have some question about Galaxy, please consult your FAQ SAMtools (e-learning) How to cite Galaxy workbench ? Fetch Sequences Sequences Queries Depending on the help provided you can cite us in acknowledgements, references or both. VCF Tools Examples : SGS MAPPING Research teams can thank the Toulouse Midi-Pyrenees bioinformatics platform and Sigenae group, using BWA - Bowtie (e-learning) in their publications the following sentence : "We are grateful to the genotoul bioinformatics platform BLAT Toulouse Midi-Pyrenees and Sigenae group for providing help and/or computing and/or storage ressources thanks to Galaxy instance http://sigenae-workbench.toulouse.inra.fr". 41

	💳 Galaxy Sigenae -	Welcome gpascal Analyze Data Workflow Shared Data - Visualization - Help - User -		Using 16.9 G	В
	Tools	FROGS Pre-process Illumina (version 1.0.0)	History	C (
	FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION FROGS pipeline	▲ Input type: Files by samples ▼	Unnamed hist 5.0 GB	tory 🖉 🖻	
Data acquisit	ion Upload archive from your computer	Reads already contiged ?:	19: FROGS <u>abundance</u> ta	<u>Filters:</u> ● Ø X able.biom	
Demultiplex	Demultiplex reads Split by samples the reads in function of inner barcode.	The inputs contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair. Samples	©18: FROGS summary.htm	<u>Filters:</u> ● Ø X <u>I</u>	-
Due avec	FROGS Pre-process Illumina Step 1 in metagenomics	Samples 1 Name:	17: FROGS seed.fasta	Filters:	Waiting to run
Pre-proc	(16S/18S) : denoising and dereplication.	The sample name.	Summary.txt	<u>Filters:</u> ● Ø X	
Cluster	ing FROGS Clustering swarm Step 2 in metagenomics analysis : clustering.	Reads 1:	15: FROGS abundance ta	Filters: ● Ø X able.tsv	
Chim	FROGS Remove chimera Remove PCR chimera in each	R1 FASTQ file of paired-end reads. reads 2:	14: FROGS C stat: summar	l <u>usters</u> ●ℓ× y.html	
Chilli	FROGS Affiliation otu 16S Step 3 in metagenomics	R2 FASTQ file of paired-end reads.	<u>13: FROGS C</u> stat: summar	l <u>usters</u> ● Ø X y.html	
Affiliat	analysis : Taxonomic affiliation of each OTU's seed by RDPtools and BLAST	Add new Samples Reads 1 size:	tu 165:	Affiliation Affiliation Affiliation 	Currently
	FROGS abundance				running
Normalisat	ion <u>normalisation</u> Step 4 in metagenomics analysis	The read1 size. Reads 2 size:	otu 16S: tax	affiliation.biom	
	normalisation	The read2 size.	10: FROGS R chimera:	emove @0%	
Filt	metagenomics analysis from Illumina (16S/18S) : Filters	Expected amplicon size:			Result files
	on Clusters/OTUs.	The expected size for the majority of the amplicons (with primers).	<u>chimera:</u> non chimera	abundance.biom	
Statis	some metrics on clusters.	Minimum amplicon size:	8: FROGS Re	move 👁 🖉 🕱	
	FROGS BIOM to TSV Converts a BIOM file in TSV file.	The minimum size for the amplicons (with primers).	chimera: non	chimera.fasta	
Т:	SV	Maximum amplicon size:	7: FROGS Clu	stering 💿 🖉 🛛	

Upload data

What kind of data ?

4 Upload \rightarrow 4 Histories

Multiplexed data

Pathobiomes rodents and ticks

multiplex.fastq

barcode.tabular

454 data

Freshwater sediment metagenome

454.fastq.gz

SRA number SRR443364

MiSeq R1 fastq + R2 fastq

Farm animal feces metagenome

sampleA_R1.fasta

sampleA_R2.fasta

MiSeq contiged fastq in archive tar.gz

Farm animal feces metagenome

100spec_90000seq_9s amples.tar.gz

1ST CONNEXION

RENAME HISTORY

click on Unnamed history, Write your new name, Tap on Enter. 3 0 History Historique renommé 47 🖻 0 bytes 1 Your history is empty. Click 'Get Data' on the left pane to start

A vous de jouer ! - 1

SEE EXERCISE 1

History gestion

- Keep all steps of your analysis.
- Share your analyzes.
- At each run of a tool, a new dataset is created. The data are not overwritten.
- Repeat, as many times as necessary, an analysis.
- All your logs are automatically saved.
- Your published histories are accessible to all users connected to Galaxy (Shared Data / Published Histories).
- Shared histories are accessible only to a specific user (History / Option / Histories Shared With Me).
- To share or publish a history: User / Saved histories / Click the history name / Share or Publish

Saved Histories

Demultiplexing tool

Demultiplex r	eads 🗙	FROGS abund	dance normalisation 🗙			
Barcode file Barcode file Reads 1 reads 2 demultiplexed	d_archive (data)	Abundance in output_biom summary_file	t biom format (txt) a (html) a	Normalisa	ation	
Ipload File	(tabular)	FROGS Clustering swarm	FROGS Remove chi	mera 🗙	FROGS Affiliation otu 16S	
ut1 (bam, txt, fastqsanger, sfasta, qual, bed, gff, gtf, vcf, sam, asta, pdf, xsg, tar, gz, bw, ppg)	Archive file dereplicated_file (fasta)	Sequences file	Sequences file	C	OTU abondance in biom for	mat
Data acquisition	count_file (tabular)	abundance_biom (txt) seed_file (fasta)	non_chimera_fasta	a (fasta)	biom_affiliation (txt) summary_file (html)	.a
Data acquisition	count_file (tabular)	abundance_biom (txt) seed_file (fasta) swarms_composition (tabular)	non_chimera_fasta out_abundance_bi out_abundance_co summary_file (html	a (fasta)	format biom_affiliation (txt) summary_file (html)	atio
Data acquisition	count_file (tabular) count_file (html) count_fil	abundance_biom (txt) seed_file (fasta) swarms_composition (tabular)	non_chimera_fasta out_abundance_bi out_abundance_co summary_file (html	a (fasta)	format biom_affiliation (txt) summary_file (html)	atio
Data acquisition	count_file (tabular) summary_file (html) Pre-process FROGS Clusters stat × Cluster file	abundance_biom (txt) seed_file (fasta) swarms_composition (tabular) Clustering FROGS File Biom File	non_chimera_fasta out_abundance_bi out_abundance_co summary_file (html	a (fasta)	FROGS BIOM to TSV X	atio
Data acquisition	count_file (tabular) summary_file (html) Pre-process FROGS Clusters stat × Cluster file summary_file (html)	abundance_biom (txt) seed_file (fasta) swarms_composition (tabular) Clustering FROGS Fil Biom File Fasta File excluded	non_chimera_fasta out_abundance_bi out_abundance_co summary_file (html	a (fasta) om (txt) ount (tabular)) Chimera	FROGS BIOM to TSV X Abundance file Sequences file	atio
Data acquisition	count_file (tabular) summary_file (html) Pre-process FROGS Clusters stat × Cluster file summary_file (html)	abundance_biom (txt) seed_file (fasta) swarms_composition (tabular) Clustering FROGS File Biom File Fasta File excluded fasta_out web (htm	<pre>non_chimera_fasta out_abundance_bi out_abundance_bi out_abundance_co summary_file (html lters × e (txt) tput (fasta) 0 0 a)</pre>	a (fasta)	FROGS BIOM to TSV × Abundance file Sequences file tsv_file (tabular)	

Ex

31

Demultiplexing

Sequence demultiplexing in function of barcode sequences :

- In forward
- In reverse
- In forward and reverse

Remove unbarcoded or ambiguous sequences

A vous de jouer ! - 2

GO TO EXERCISE 2

multiplexed

Format: Barcode

BARCODE FILE is expected to be tabulated:

- first column corresponds to the sample name
- second to the sequence barcode used
- optional third is the reverse sequence barcode

Take care to indicate sequence barcode in the strand of the read, so you may need to reverse complement the reverse barcode sequence Barcode sequence must have the same length.

Example of barcode file.

The last column is optional, like this, it describes sample multiplexed by both fragment ends.

MgArd00001 ACAGCGT ACGTACA

Format : FastQ

FASTQ : Text file describing biological sequence in 4 lines format:

- first line start by "@" correspond to the sequence identifier and optionally the sequence description. "@Sequence_1 description1"
- second line is the sequence itself. "ACAGC"
- third line is a "+" following by the sequence identifier or not depending on the version
- fourth line is the quality sequence, one code per base. The code depends on the version and the sequencer

@HNHOSKD01ALD0H ACAGCGTCAGAGGGGGTACCAGTCAGCCATGACGTAGCACGTACA + CCCFFFFFFHHHHHJJIJJJJHHFF@DEDDDDDDD@CDDDDACDD
multiplexed

How it works ?

For each sequence or sequence pair the sequence fragment at the beginning (forward multiplexing) of the (first) read or at the end (reverse multiplexing) of the (second) read will be compare to all barcode sequence.

If this fragment is equal (with less or equal mismatch than the threshold) to one (and only one) barcode, the fragment is trimmed and the sequence will be attributed to the corresponding sample.

Finally fastq files (or pair of fastq files) for each sample are included in an archive, and a summary describes how many sequence are attributed for each sample.

Advice

- Do not forget to indicate barcode sequence as they actually are in the fastq sequence file, especially if you have data multiplexed via the reverse strand.
- For the mismatch threshold, we advised you to let the threshold to 0, and if you are not satisfied by the result try with 1. The number of mismatch depends on the length of the barcode, but oftenly those sequence are very short so 1 mismatch is already more than the sequencing error rate.
- If you have different barcode length, you must demultiplex your data in different times beginning by the longest barcode set and used the "unmatched" or "ambiguous" sequence with smaller barcode and so on.
- If you have Roche 454 sequences, in sff format, you must convert it with some program like <u>sff2fastq</u>

multiplexed

Results

<u>17: Demultiplex reads:</u> ● Ø × <u>summary</u>

<u>16: Demultiplex reads:</u> ● Ø ≈ <u>undemultiplexed.tar.gz</u>

<u>15: Demultiplex reads:</u> [●] \emptyset × <u>demultiplexed.tar.gz</u>

Create a tar archive by grouping one (pair) fastq file per sample whith names indicate in the first column of the barcode.tsv tabular file

#sample	count
ambiguous	0
MgArd0009	65
MgArd0017	152
MgArd0038	1185
MgArd0029	172
unmatched	492
MgArd0001	85
MgArd0081	209
MgArd0046	373
MgArd0054	217
MgArd0073	454
MgArd0062	1109

With barcode mismatches >1 sequence can corresponding to several samples. So these sequences are non-affected to a sample.

Sequences without known barcode. So these sequences are non-affected to a sample.

Pre-process tool

FROGS pipeline

		Clustering	Chimera	Armation
	Pre-process		summary_file (html)	Affiliation
		swarms_composition (tabular) 🗅 🗘	out_abundance_count (tabular) 🔿	summary_file (html)
Data acquisition	summary_file (html) 💿 🛈	seed_file (fasta) 🛛 🔅 🤇 🚍	out_abundance_biom (txt)	biom_affiliation (txt)
	count_file (tabular)	abundance_biom (txt) 🛛 💿 🤇 🚔	undance_biom (txt) 🛛 🗯 🖓 non_chimera_fasta (fasta) 🔅 🔊	
csfasta, qual, bed, gff, gtf, vcf, sam, () fasta, pdf, xsg, tar.gz, bw, png)	dereplicated_file (fasta)	Count file	O Abundance file	OTU seed sequence in fasta
out1 (bam, txt, fastqsanger,	Archive file	Sequences file	🗢 Sequences file	OTU abondance in biom format
Upload File 🗙	FROGS Pre-process Illumina 🗙	FROGS Clustering swarm	FROGS Remove chimera	FROGS Affiliation otu 165

Amplicon-based studies general pipeline

Pre-process

- Delete sequence with not expected lengths
- Delete sequences with ambiguous bases (N)
- Delete sequences do not contain good primers
- Dereplication

- + removing homopolymers (size = 8) for 454 data
- + quality filter for 454 data

Bioinformatics (2011) 27 (21):2957-2963. doi:10.1093/bioinformatics/btr507 FLASH: fast length adjustment of short reads to improve genome assemblies TanjaMagoc, Steven L. Salzberg

Sequencer: 454 ŧ

Select the sequencer family

Samples

Samples 1

Name:

The sample name.

Sequence file:

ŧ FASTQ file of sample.

Add new Samples

FROGS Pre-process (version 1.2.0)

Illumina 🛊 Select the sequencer family used to produce the sequences.

Input type:

Sequencer:

Files by samples 👙 Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Reads already contiged ?:

No 🛊 The inputs contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Samples

Samples 1 Name:

The sample name.

Reads 1:

+ R1 FASTQ file of paired-end reads.

reads 2: \$ R2 FASTQ file of paired-end reads.

Add new Samples

Reads 1 size:

The read1 size.

Reads 2 size:

The read2 size.

Expected amplicon size:

Maximum amplicon length expected in approximately 90% of the amplicons (with primers).

Minimum amplicon size:

The minimum size for the amplicons (with primers).

The maximum size for the amplicons (with primers).

The 5' primer sequence (wildcards are accepted).

The 3' primer sequence (wildcards are accepted).

Maximum amplicon size:

5' primer:

3' primer:

Pre-process

Input type: Archive Samples files can be provided in single archive or with two files (R1 and R2) by sample. Archive file: 1: /work/frogs/Donnees_simulees/500WEPL_setA.tar.gz The tar file containing the sequences file(s) for each sample. Reads already contiged ?: Yes 👻 The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair. Expected amplicon size: 440 🐼 An integer is required The expected size for the majority of the amplicons (with primers). Do not be Minimum amplicon size: 380 scared by δ An integer is required The minimum size for the amplicons (with primers). Maximum amplicon size: 500 😣 An integer is required The maximum size for the amplicons (with primers). 5' primer: JAGGCAGCAG The 5' primer sequence (wildcards are accepted). 3' primer: **TACCCTGGTA** The 3' primer sequence (wildcards are accepted).

Execute

OR

the red

A vous de jouer ! - 3

GO TO EXERCISE 3

Flash, how it work ?

To contig read1 and read2 with FLASh with :

a minimum overlap equal to

[(R1-size + R2-size) - expected-amplicon-size]

and a maximum overlap equal to

[expected-amplicon-size] with a maximum of 10% mismatch among this overlap

90% of the amplicon are smaller than [expected-amplicon-size]

ex: (250+250) - 450 = 50

Cleaning, how it work ?

Filter contig sequence on its length which must be between min-amplicon-size and maxamplicon-size

use cutadapt to search and trim primers sequences with less than 10% differences

dereplicate sequences and return one uniq fasta file for all sample and a count table to indicate sequence abundances among sample.

In the HTML summary file, you will find for each filter the number of sequences passing it, and a table that details these filters for each sample.

Minimum amplicon size:

340

δ An integer is required

The minimum size for the amplicons (with primers).

Maximum amplicon size:

450

🛞 An integer is required

The maximum size for the amplicons (with primers).

MiSeq contiged

FROGS Pre-process (version 1.2.0)

Sequencer:

Illumina 🝷

Select the sequencer family used to produce the sequences.

Input type:

Archive

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Archive file:

1: /work/frogs/Formation/100spec_90000seq_9samples.tar.gz 🔻

The tar file containing the sequences file(s) for each sample.

Reads already contiged ?:

Yes 👻

The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Minimum amplicon size:

380

The minimum size for the amplicons (with primers).

Maximum amplicon size:

500

The maximum size for the amplicons (with primers).

5' primer:

ACGGGAGGCAGCAG

The 5' primer sequence (wildcards are accepted).

3' primer:

AGGATTAGATACCCTGGTA

The 3' primer sequence (wildcards are accepted).

Clustering tool

FROGS pipeline

			1			
Upload File 🗙	FROGS Pre-process Illumina 🗙	FROGS Clustering swarm 🗙		FROGS Remove chimera		FROGS Affiliation otu 165
out1 (bam, txt, fastqsanger,) Archive file	Sequences file		Sequences file	\sim	OTU abondance in biom format
fasta, pdf, xsq, tar.gz, bw, png)	dereplicated_file (fasta)	Count file		Abundance file		OTU seed sequence in fasta
	count_file (tabular)	abundance_biom (txt) 🛛 🔅 🤇	=}?	non_chimera_fasta (fasta) 🔅 🔅	\geq	format
Data acquisition	summary_file (html) 💿 🗘	seed_file (fasta) 🛛 🔅 🤇		out_abundance_biom (txt) 🛛 🔅 🖓	rac	biom_affiliation (txt)
		swarms_composition (tabular) 🔿 🤇		out_abundance_count (tabular) 🔿 🕽		summary_file (html)
	Pre-process			summary_file (html)		Affiliation
		Clustering		Chimera		Annation

Why do we need clustering ?

Amplication and sequencing and are not perfect processes

How traditional clustering works ?

Input order dependent results

Fréderic Mahé communication

56

Single a priori clustering threshold

compromise threshold unadapted threshold natural limits of clusters

Fréderic Mahé communication

Swarm clustering method

Fréderic Mahé commanication

Comparison Swarm and 3% clusterings

Radius expressed as a percentage of identity with the central amplicon (97% is by far the most widely used clustering threshold)

Comparison Swarm and 3% clusterings

clusters produced with swarm using d = 1

Fréderic Mahé communication

A robust and fast clustering method for amplicon-based studies.

The purpose of **swarm** is to provide a novel clustering algorithm to handle large sets of amplicons.

swarm results are resilient to input-order changes and rely on a small **local** linking threshold *d*, the maximum number of differences between two amplicons.

swarm forms stable high-resolution clusters, with a high yield of biological information.

Swarm: robust and fast clustering method for amplicon-based studies. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. PeerJ. 2014 Sep 25;2:e593. doi: 10.7717/peerj.593. eCollection 2014. PMID:25276506

FROGS Clustering swarm	FROGS Clustering swarm (version 2.1.0)
Sequences file	Sequences file:
Count file	2: FROGS Pre-process Illumina: dereplicated.fasta 👻
abundance_biom (txt)	The sequences file.
seed_file (fasta)	Count file:
swarms_composition (tabular)	3: FROGS Pre-process Illumina: count.tsv 🔹
	It contains the count by sample for each sequence.
Clustering	Aggregation maximal distance:
5	3
	Maximum distance between sequences in each aggregation step.
	Performe denoising clustering step?:
	If checked, clustering will be perform in two steps, first with distance = 1 and then with your input distance
	Execute
	<u>1st run for denoising:</u>
	Swarm with d = 1 -> high OTUs definition
	linear complexity
	<u>2nd run for clustering:</u>
	Swarm with d = 3 on the seeds of first Swarm
	guadratic complexity
	Gain time !
	Remove false positives !

A vous de jouer ! - 4

EXERCISE 4

Cluster stat tool

SOME SLIDES TO KEEP EXPLANATIONS IN THE MEMORY

🗧 Sigenae - Welcome	gpascal		Analyze Data	Workflow Shared Data - Vi	sualization 👻 Help 👻	User •			==	Using 26.2 G
Tools	Clusters distribution	Sequences distribution	Samples distribution	Rarefaction				2 	History	0 0
(beta) Upload archive (beta) from your computer					M	ost of OTL	Js are singletons		100WEPL_setA 405.8 MB	12 🖻
(beta) Demultiplex reads (beta) Split by samples the reads in function of inner barcode.	Clusters	size summa	ry						21: (beta) FROGS Clusters stat (beta summary.html	● Ø X View data
(beta) FROGS Pre-process Illumina (beta) Step 1 in		CI	usters size distrib	ution	≡	Clusters size dist	ribution (decile)		20: (beta) FROGS	● Ø ※
metagenomics analysis from Illumina (165/185) :	70k					Decile	Value		excluded data re	port.html
denoising and dereplication.	60k					Min	1		<u>19: (beta) FROGS</u> Affiliation otu 16S	© Ø ⊗ (heta):
(beta) FROGS Clustering swarm (beta) Step 2 in					1	1		tax affiliation.bior	<u>n</u>	
metagenomics analysis : clustering.	50k					2	1		<u>18: (beta) FROGS</u> Clusters stat (beta	. ● / ×
<u>(beta) FROGS Remove</u> <u>chimera (beta)</u> Remove PCR						3	1		summary.html	
chimera in each sample.	2 40k					4	1	E	17: (beta) FROGS Filters (beta): kro	© / ⊠ <u>na.html</u>
Step in metagenomics	D 30k					Median	1		16: (beta) FROGS	• / ×
(16S/18S) : Filters on Clusters/OTUs.						6	1		<u>Filters (beta):</u> <u>abundance_table.</u>	biom
(beta) FROGS Affiliation otu	20k					7	1		15: (beta) FROGS	• / ×
<u>16S (beta)</u> Step 3 in metagenomics analysis :	10k					8	1		Filters (beta): sum	<u>imary.ntml</u>
OTU's seed by RDPtools and						9	2		Filters (beta): see	d.fasta
(beta) FROGS abundance	0k		AII			Max	58,938		<u>13: (beta) FROGS</u> <u>Filters (beta): sum</u>	● Ø X amary.txt

Clusters distribution Sequences distribution Samples distribution Rarefaction Clusters size summary After filtering little OTUs

	Clusters size distribution	≡	Clusters size distribution (decile)
70k			Decile	Value
60k			Min	49
			1	80
50k			2	911
4. 404			3	1,461
40k			4	2,233
30k			Median	3,007
			6	3,763
20k			7	5,649
10k			8	9,613
			9	16,365
0k	All		Мах	58,938

Show 10 - entries			Search:		
Clusters size					
Cluster size	Number of cluster	∲ % of a	Il clusters	Most of OTI	Js are singletons
1	46,154	84.72			
2	4,091	7.51			
3	1,449	2.66			
4	779	4.40			CSV
5	409	Show 10 - entries			Search:
6	292	Clusters size			
7	200	Cluster size	Number of cluster	% of all	clusters 🛓
8	138	1	8,769	82.75	
9	106	2	849	8.01	
10	85	3	295	2.78	After removing
Showing 1 to 10 of 187 entries		4	163	1.54	chimera
		5	101	0.95	
After		6	75	0.71	
clustering		7	34	0.32	
		8	37	0.35	
		9	21	0.20	
		10	15	0.14	
		Showing 1 to 10 of 156 er	tries	Previous 1 2	3 4 5 16 Next

C 10.0	otore		trubu	ITIOD.
U .IIII	SIEIS	s uns		
010				

492 OTUs of sample1 are common at least once with another sample

94 % of the specific OTUs of sample1represent less than 11% of sequencesCould be interesting to remove if individualvariability is not the concern of user

csv

Samples information

Show 10 - entries

Sample	Shared clusters	Own clusters	Shared sequences	Own sequences
D100_ACGATC_L001_R	492	7,661	70,743	7,829
D101_CGCTCT_L001_R	553	8,025	98,155	8,198
D102_GATAGA_L001_R	253	2,379	34,258	2,443
D103_TATCAT_L001_R	389	6,123	142,639	6,206
D104_CTAGTC_L001_R	678	6,179	138,564	6,343
D105_GGCTTG_L001_R	353	3,882	40,713	3,996
D106_CCTCCC_L001_R	224	1,594	35,201	1,665
D107_GCACGT_L001_R	319	3,027	56,596	3,133
D108_AGGGCA_L001_R	336	1,867	34,412	1,946
D109_TCCAGA_L001_R	497	9,496	99,120	9,860
Showing 1 to 10 of 270 entries			Previous 1 2	3 4 5 27 Next

Removing chimera tool

FROGS pipeline

Our advice: Removing Chimera after Swarm denoising + Swarm d=3

What is chimera ?

PCR-generated chimeras are typically created when an aborted amplicon acts as a primer for a heterologous template. Subsequent chimeras are about the same length as the non-chimeric amplicon and contain the forward (for.) and reverse (rev.) primer sequence at each end of the amplicon.

Fichot and Norman *Microbiome* 2013 **1**:10 doi:10.1186/2049-2618-1-10

A vous de jouer ! - 5

EXERCISE 5

Filters tool

Advise:

Apply filters between "Remove Chimera" and "Affiliation". Remove OTUs with weak abundance and non redundant before affiliation. You will gain time !

A vous de jouer ! - 6

EXERCISE 6

FROGS Filters	×
Biom File	
Fasta File	
excluded (txt)	0
fasta_output (fasta)	0
web (html)	0
biom_output (txt)	0
krona (html)	0

Filters

(beta) FROGS Filters (beta) (version 1.0.0)	
Biom File:	
9: (beta) FROGS Remove chimera (beta): non_chimera_abun 🔻	.+
Fasta File:	JL
8: (beta) FROGS Remove chimera (beta): non_chimera.fasta 🗸	
Remove phiX:	
Remove phiX sequences before affiliation.	
PhiX databank:	
phiX 💌	
The phiX databank.	
*** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE :	
Apply filters 👻	
Remove OTUs that are not present at least in XX samples; how many samples do you choose? :	
3	
Fill the field only if you want this treatment	
When sorted by abundance, how many OTU do you want to keep ?:	
500(
Fill the fields only if you want this treatment	
proportion/number of sequences threshold to remove an OTU:	
0.00005	
Fill the field only if you want this treatment. Use decimal to express proportion (0.01 for 1%) integer to express number	of sequence (1 for singleton
*** THE FILTERS ON RDP :	
Apply filters 👻	
If you want to filter on taxonomic RDP please select which one:	
Genus 👻	
Bootstrap percentage (between 0 and 1):	
0.8	
Fill the field only if you want this treatment.	
*** THE FILTERS ON BLAST :	
Apply filters 👻	
Minimum hlast length:	
400	
Fill the field only if you want this treatment	
Maximum e value (between 0 and 1):	4 E:IF
	4 TIIT
Fill the field only if you want this treatment	
Minimum identity percentage (between 0 and 1):	
0.95	
Fill the field only if you want this treatment	
Minimum coverage identity (between 0 and 1):	
· · · · · · · · · · · · · · · · · · ·	

0.95 Fill the field only if you want this treatment 4 filter sections

Input

Input

•

(beta) FROGS Filters (beta) (version 1.0.0)

Biom File:

9: (beta) FROGS Remove chimera (beta): non_chimera_abundance.bio...

Fasta File:

8: (beta) FROGS Remove chimera (beta): non_chimera.fasta

Remove phiX:

Remove phiX sequences before affiliation.

PhiX databank:

phiX 👻

The phiX databank.

*** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE :

Apply filters 👻

--Remove OTUs that are not present at least in XX samples; how many samples do you choose? :

Fill the field only if you want this treatment

--When sorted by abundance, how many OTU do you want to keep ?:

500

Fill the fields only if you want this treatment

--proportion/number of sequences threshold to remove an OTU:

0.00005

Fill the field only if you want this treatment. Use decimal to express proportion (0.01 for 1%) integer to express number of sequence (1 for singleton)

*** THE FILTERS ON RDP :

No filters 🚽 👻

*** THE FILTERS ON BLAST :

No filters 🚽 👻

Execute

Filter 2

Fill the field only if you want this treatment

--Minimum identity percentage (between 0 and 1):

0.95

Execute

Fill the field only if you want this treatment

--Minimum coverage identity (between 0 and 1):

0.95 Fill the field only if you want this treatment

filters 3 & 4

(beta) FROGS Filters (beta) (version 1.0.0)
Biom File:
9: (beta) FROGS Remove chimera (beta): non chimera abun
Input
8: (beta) FROGS Remove chimera (beta): non_chimera.fasta
Remove nhiX:
Remove phiX sequences before affiliation.
PhiX databank:
phiX 👻
The phiX databank.
*** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE :
Apply filters 👻
Remove OTUs that are not present at least in XX samples; how many samples do you choose? : 3 Fill the field only if you want this treatment
When sorted by abundance, how many OTU do you want to keep ?:
500 Fill the fields only if you want this treatment
proportion/number of sequences threshold to remove an OTU:
0.00005
Fill the field only if you want this treatment. Use decimal to express proportion (0.01 for 1%) integer to express number of sequence (1 for singleton)
*** THE FILTERS ON RDP :
Apply filters 👻
If you want to filter on taxonomic RDP please select which one:
Genus 👻
Bootstrap percentage (between 0 and 1):
Apply filters
minimum olast length:
Fill the field only if you want this treatment
Maximum e value (between 0 and 1):
Fill the field only if you want this treatment
Minimum identity percentage (between 0 and 1):
0.95 Fill the field only if you want this treatment
Minimum coverage identity (between 0 and 1):
0.95 Fill the field only if you want this treatment

J	生	k
	FRO Red Reguly OT	
	ľ.	La

<u>38: FROGS Filters:</u> <u>krona.html</u>	• / %
<u>37: FROGS Filters:</u> abundance table.biom	• / %
<u>36: FROGS Filters:</u> <u>summary.html</u>	• / %
<u>35: FROGS Filters:</u> <u>seed.fasta</u>	• (X

Output

OTUs kept/ OTUs discarded

RDP results Blast results

OTUs by samples

OTUs kept/ OTUs discarded

RDP results Blast results

OTUs by samples

					arrinar y		
OTUs kept/ OTUs di	iscarded RD	P results Blast results	OTUs by samples				
				OTUs kept	number		
	Show 10 - e	ntries				Search:	₿CSV
	Select all	Sample name		nb sample filter 🍦	nb/percentage sequence filter	🕴 rdp bootstrap fil	ter 🍦 OTUs number 🔶
		500taxas_With_Error_Powe	er_Law-01-reads	536	500	488	488
		500taxas_With_Error_Powe	er_Law-02-reads	565	500	487	487
		500taxas_With_Error_Powe	er_Law-03-reads	586	501	489	489
		500taxas_With_Error_Powe	er_Law-04-reads	539	498	486	486
		500taxas_With_Error_Powe	er_Law-05-reads	541	498	486	486
		500taxas_With_Error_Powe	er_Law-06-reads	598	502	490	490
		500taxas_With_Error_Powe	er_Law-07-reads	543	503	489	489
		500taxas_With_Error_Powe	er_Law-08-reads	559	504	492	492
		500taxas_With_Error_Powe	er_Law-09-reads	565	503	489	489
		500taxas_With_Error_Powe	er_Law-10-reads	572	497	484	484
	.lı Venn (M	aximum 6 samples)					
	Showing 1 to 10	of 10 entries					Previous 1 Next

		E 111 O		
		Venn	×	
Us discarded F	Presults Blast results	1969 2 500taxas_With_ <u>Error_Power_Law-01-reads</u>	500taxas_With_Error_Power_Law- 02-reads	Search:
🔳 Select all	Sample name	7 0 3 2275 6 3	500taxas_With_Erro 14 03-reads	p bootstrap filter 🔶 OTUs number 🔶
	500taxas_With_Error_P	0	2058	8 488
	500taxas_With_Error_P	4 482	7	7 487
	500taxas_With_Error_P	2 ³	2 1	9 489
	500taxas_With_Error_P	0 3 0	3	6 486
	500taxas_With_Error_P	3 ⁰ 3	off off off	6 486
	500taxas_With_Error_P	2088	2033	0 490
	500taxas_With_Error_P	500taxas_With_Error_Power_Law-05-read	s 500taxas_With_Error_Power_ 04-reads	Law- 489
	500taxas_With_Error_P			2 492
	500taxas_With_Error_P		Close	9 489

Normalisation

FROGS abundance normalisation	×
Abundance in biom format	
output_biom (txt)	8
summary_file (html)	8

Normalisation

(beta) FROGS abundance normalisation (beta) (version 0.1.0)	
number of reads:	
500	
The final number of reads per sample	
Abundance in biom format:	
11: (beta) FROGS Affiliation otu 16S (beta): tax_affiliation.biom	v
Select your biom abundance file you want to normalize	
seed fasta file:	
8: (beta) FROGS Remove chimera (beta): non_chimera.fasta 🔹 👻	
Select your seed fasta file you want to normalize	
Execute	

Affiliation tool

1 Cluster = 2 affiliations

2 methods used:

RDP classifier (Ribosomal Database Project)

NCBI Blast+ vs. SILVA 119 (16S or 18S)

RDP classifier: bootstrap on each taxonomic subdivision

Blast: identity %, coverage %, e-value, alignment length

A vous de jouer ! – 7

EXERCISE 7

1st column - RDP

85% of RDP iterations have affiliated the sequence to the species « Psychrobacter immobilis »

#rdp_tax_and_bootstrap

Bacteria;(1.0);Actinobacteria;(1.0);Actinobacteria;(1.0);Bifidobacteriales;(1.0);Bifidobacteriaceae;(1.0);Metascardovia;(1.0);Metascardovia criceti DSM 17774; Bacteria;(1.0);Fibrobacteres;(1.0);Fibrobacteria;(1.0);Fibrobacterales;(1.0);Fibrobacteraceae;(1.0);Fibrobacter;(1.0);Fibrobacter succinogenes subsp. succinc es S85;(1.0); Bacteria;(1.0);Firmicutes;(1.0);Bacilla;(1.0);Bacillales;(1.0);Staphylococcaceae;(1.0);Nosocomiicoccus;(1.0);unknown species;(0.92); Bacteria;(1.0);Proteobacteria;(1.0);Gammaproteobacteria;(1.0);Pseudomonadales;(1.0);Moraxellaceae;(1.0);Psychrobacter;(1.0);Psychrobacter;(1.0);Psychrobacter immobilis;(0.85); Bacteria;(1.0);Thermotogae;(1.0);Thermotogaes;(1.0);Thermotogaceae;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Petrotoga;(1.0);Cytophagia;(1.0);Cytophagales;(1.0);Petrotogaeee;(1.0);Petrotoga;(1.0);Petrotoga;(0.77); Bacteria;(1.0);Bacteroidetes;(1.0);Cytophagia;(1.0);Cytophagalees;(1.0);Petrotogaeee;(1.0);Petrotoga;(1.0);Petrotoga;(1.0); Bacteria;(1.0);Proteobacteria;(1.0);Cytophagia;(1.0);Cytophagalee;(1.0);Petrotogaeeee;(1.0);Petrotoga;(1.0);Petrotoga;(1.0); Bacteria;(1.0);Proteobacteria;(1.0);Cytophagia;(1.0);Cytophagaeeee;(1.0);Petrotogaeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeee;(1.0);Petrotogaeeee;(1.0);Petrotogaeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;(1.0);Petrotogaeeeee;

> 100% of RDP iterations have affiliated the sequence to the genus « Psychrobacter ». Bootstrap values are between 0 and 1

2nd to 7th columns – Blast

blast taxonomy

OTU_1 seed has a best BLAST hit with the reference sequence AQXR0100005.3811.5326

The reference sequence taxonomic affiliation is this one.

blast_subject	blast_evalue	blast_len	blast_perc_query_coverage	blast_perc_identity
AQXR01000005.3811.5326	0.0	411	100.0	100.0
AJ496032.1.1410	0.0	419	100.0	100.0
EU240886.1.1502	0.0	427	100.0	100.0
U39399.1.1477	0.0	426	100.0	100.0
FR733705.1.1499	0.0	419	100.0	100.0
GU575117.1.1441	0.0	401	100.0	100.0
AB682132.1.1437	0.0	421	100.0	100.0
CP002930.1837665.1839157	0.0	404	100.0	100.0
AY133080.1.1410	0.0	402	100.0	100.0
JN880417.1.1422	0.0	405	100.0	99.75
AQXT01000002.1569233.1570666	0.0	401	100.0	100.0

Root; Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Metascardovia; Metascardovia criceti DSM 17774
Root; Bacteria; Fibrobacteres; Fibrobacteria; Fibrobacterales; Fibrobacteraceae; Fibrobacter; Fibrobacter succinogenes subsp. succinogenes S83
Root; Bacteria; Firmicutes; Bacilli; Bacillales; Staphylococcaceae; Nosocomiicoccus; Nosocomiicoccus ampullae
Root; Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Psychrobacter; Psychrobacter immobilis
Root; Bacteria; Thermotogae; Thermotogae; Thermotogales; Thermotogaceae; Petrotoga; Petrotoga miotherma
Root; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae; Pseudahrensia; Pseudahrensia aquimaris
Root; Bacteria; Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Persicitalea; Persicitalea jodogahamensis
Root; Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus str. Tiberius
Root; Bacteria; Chloroflexi; Dehalococcoidia; Dehalococcoidales; Dehalococcoidaceae; Dehalococcoides; unknown species
Root; Bacteria; Planctomycetes; Planctomycetacia; Planctomycetales; Planctomycetaceae; Telmatocola; Telmatocola sphagniphila
Root; Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae; Henriciella; Henriciella marina DSM 19595

Evaluation variables of BLAST

Blast variables : e-value

The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance when searching a database of a particular size.

The lower the E-value, or the closer it is to zero, the more "significant" the match is.

Blast variables : blast_perc_identity

Identity percentage between the Query (OTU) and the subject in the alignment (length subject = 1455 bases)

Score 760 bi	ts(41	Ex 1) 0.0	opect	Identities 411/411(100%)	Gaps 0/411(0%)	Strand Plus/P	lus	
Query Sbjct	1 331	TGGGGAATAT TGGGGAATAT	TGCACAA TGCACAA	IGGGGGGGAACCCTGATGCA IGGGGGGGAACCCTGATGCA	GCGACGCCGCGTGCGGG GCGACGCCGCGTGCGGG	ATGACGG ATGACGG	60 390	
Query Sbjct	61 391	CCTTCGGGTT	GTAAACCO GTAAACCO	GCTTTTAATTGGGAGCAAG GCTTTTAATTGGGAGCAAG	CAGTTTTACTGTGAGTG CAGTTTTACTGTGAGTG	TACTTTT TACTTTT	120 450	Query length = 411 Alignment length =
Query Sbjct	121 451	TGAATAAGCA TGAATAAGCA	ACCGGCTA ACCGGCTA	ACTACGTGCCAGCAGCCGC	GGTAATACGTAGGGTGC; GGTAATACGTAGGGTGC;	AAGCGTT AAGCGTT	180 510	0 mismatch
Query Sbjct	181 511	GTCCGGAATT	ATTGGGCO ATTGGGCO	STAAAGAGCTCGTAGGCGG 	TTTGTCGCGTCTGGTGT(TTTGTCGCGTCTGGTGT(GAAAGTC GAAAGTC	240 570	-> 100% identity
Query Sbjct	241 571	CATCGCTTAA CATCGCTTAA	ACGGTGGAT ACGGTGGAT	TTGCGCTGGGTACGGGCA	GGCTAGAGTGTAGTAGG GGCTAGAGTGTAGTAGG	GGAGACT GGAGACT	300 630	
Query Sbjct	301 631	GGAATTCCCG	GTGTAACO GTGTAACO	GTGGAATGTGTAGATATC	GGGAAGAACACCAATGG GGGAAGAACACCAATGG	CGAAGGC CGAAGGC	360 690	
Query Sbjct	361 691	AGGTCTCTGG	GCTATGAC	CTGACGCTGAGGAGCGAAA CTGACGCTGAGGAGCGAAA	GCGTGGGGGAGCGAAC	411 741		

411

Blast variables : blast_perc_identity

Identity percentage between the Query (OTU) and the subject in the alignment (length subject = 1455 bases)

Score 614 bits(332)		Expect 5e-172	Identities 385/411(94%)	Gaps 5/411(1%)	Strand Plus/Plus	
Query	1	TGGGGAATATTGCAC	AATGGGGGGGAACCCTGATGC	AGCGACGCCGCGTGCG	GGATGACGG	60
Sbjct	140728	TGGGGAATATTGCAC.	AATGGGCGAAAGCCTGATGC	AGCGACGCCGCGTGCG	GGATGACGG	140787
Query	61	CCTTCGGGTTGTAAA	CCGCTTTTAATTGGGAGCAA	GCAGTTTTACTGTGAG	TGTACTTTT	120
Sbjct	140788	CCTTCGGGTTGTAAA	CCGCTTTTGATTGGGAGCAA	GC-GAGAGTGAG	TGTACCTTT	140842
Query	121	TGAATAAGCACCGGC	TAACTACGTGCCAGCAGCCG	CGGTAATACGTAGGGT	GCAAGCGTT	180
Sbjct	140843	CGAATAAGCACCGGC	TAACTACGTGCCAGCAGCCG	CGGTAATACGTAGGGT	GCAAGCGTT	140902
Query	181	GTCCGGAATTATTGG	GCGTAAAGAGCTCGTAGGCG	GTTTGTCGCGTCTGGT	GTGAAAGTC	240
Sbjct	140903	ATCCGGAATTATTGG	GCGTAAAGRGCTCGTAGGCG	GTTCGTCGCGTCTGGT	GTGAAAGTC	140962
Query	241	CATCGCTTAACGGTG	GATTIGCGCIGGGIACGGGC	AGGCTAGAGTGTAGTA	GGGGAGACT	300
Sbjct	140963	CATCGCTTAACGGTG	GATCTGCGCCGGGTACGGGC	GGRCTGGAGTGCGGTA	GGGGAGACT	141022
Query	301	GGAATTCCCGGTGTA	ACGGTGGAATGTGTAGATAT	CGGGAAGAACACCAAT	GGCGAAGGC	360
Sbjct	141023	GGAATTCCCGGTGTA	ACGGTGGAATGTGTAGATAT	CGGGAAGAACACCAAT	GGCGAAGGC	141082
Query	361	AGGTCTCTGGGCTAT	GACTGACGCTGAGGAGCGAA	AGCGTGGGGGAGCGAAC	411	
Sbjct	141083	AGGTCTCTGGGCCGT	TACTGACGCTGAGGAGCGAA	AGCGTGGGGGAGCGAAC	141133	

Query length = 411 Alignment length = 411 26 mismatches (gaps included) -> 94% identity

Blast variables : blast_perc_query_coverage

Coverage percentage of alignment on query (OTU)

Blast variables : blast-length

Length of alignment between the OUT = "Query" and "subject" sequence of database (SILVA 119)

	Coverage %	Identity %	Length alignment
OTU1	100	98	400
OTU2	100	98	500
Normalisation

Normalisation

Conserve a predefined number of sequence per sample:

- update Biom abundance file
- update seed fasta file

FROGS abundance normalisation	×	
Abundance in biom format		
output_biom (txt)	8	(
summary_file (html)	0	¢

Normalisation

FROGS Abundance normalisation (version 0.2.0)

number of reads:

500

The final number of reads per sample

Abundance in biom format:

9: FROGS Clustering swarm: abundanced1d3.biom

w.

Select your biom abundance file you want to normalize

seed fasta file:

10: FROGS Clustering swarm: seed_sequencesd1d3.fasta 💌

Select your seed fasta file you want to normalize

Execute

A vous de jouer ! – 8

EXERCISE 8

Tool descriptions

What it does

FROGS Pre-process filters and dereplicates amplicons for use in diversity analysis.

¹ Inputs/Outputs

Inputs

By sample your sequences and their qualities.

Illumina inputs

Usage: The amplicons have been sequenced in paired-end. The amplicon expected length is inferior than the R1 and R2 length. R1 and R2 can be merge by the common region.
 Files: One R1 and R2 by sample (format <u>FASTQ</u>)
 Example: splA_R1.fastq.gz, splA_R2.fastq.gz, splB_R1.fastq.gz, splB_R2.fastq.gz

OR

 Usage:
 The single end sequencing cover all the amplicons or the R1 and R2 have already been overlaped.

 Files:
 One sequence file by sample (format FASTQ).

Example: splA.fastq.gz, splB.fastq.gz

454 inputs

Files: One sequence file by sample (format <u>FASTQ</u>) Example: splA.fastq.gz, splB.fastq.gz

These files must be added sample by sample or provide in an archive file (tar.gz). Remark: In an archive if you use R1 and R2 files they names must end with _R1 and _R2.

Outputs

Sequence file (dereplicated.fasta):

Only one file with all samples sequences (format <u>FASTA</u>). These sequences are dereplicated: strictly identical sequence are represented only one and the initial count is kept in count file.

Count file (count.tsv):

This file contains the count of all uniq sequences in each sample (format TSV).

Summary file (excluded_data.html):

This file presents the ordered filters and the number of sequences passing these (format HTML).

¹ How it works

Steps	Illumina	454
1	For uncontiged data: contig read1 and read2 with a maximum of 10% mismatch in the overlaped region (<u>FLASh</u>)	/
2	Filter contig sequence on its length which must be between Minimum amplicon size" and "Maximum amplicon size"	1
3	Remove sequences where the two primers are not persent and remove primers sequence (<u>cutadapt</u>). The primer search accept 10% of differences	Remove sequence where the two primers are not persent, remove primers sequence and reverse complement the sequences with strand - (<u>cutadapt</u>). The primer search accept 10% of differences
4	Filter sequences on its length and with ambiguous nucleotids	filter sequences on its length, with ambiguous nucleotids, with at least one homopolymer with size >7nt and with distance between two poor qualities ()< 10) of <= 10 nt
5	Dereplicate sequences	Dereplicate sequences

¹ Advices/details on parameters

Primers parameters

The primers must provided in 5' to 3' orientation.

Example:

5' ATGCCC GTCGTCGTAAAATGC ATTTCAG 3'

Value for parameter 5' primer: ATGCC

Value for parameter 3' primer: ATTTCAG

Amplicons sizes parameters

The two following images shown two examples of perfect values fors sizes parameters.

Amplicons size

Workflow creation

Workflow Canvas | frogs v1.0

Details

					Tool: (beta) FROGS Filters (beta)
					Version: 1.0.0
(beta) FROGS P	(beta) FROGS Pre-process (beta) FROGS Clustering swarm (beta)	ers stat 🗙	None: V		
Upload File 🗶 Illumina (beta)	(Deta)		Cluster file		Data input 'biom' (txt)
out1 (bam, txt, fastqsanger, Archive file	Sequences file	,	summary_file (html)	•••••••••••••••••••••••••••••••••••••••	Fasta File
csfasta, qual, bed, gff, gtf, vcf, sam, dereplicated file	, vcf, sam, Count file				Data input 'fasta' (fasta)
fasta, pdf, xsq, tar.gz, bw, png)	ar) abundance_bi	om (txt) 🛛 🔹 📈			Remove phiX: V
	ml) seed_file (fast	.a) 🛛 🖓	(beta) FROGS Remov	ve chimera 🗙	
	swarms_comp	osition (tabular) 🛛 💿 🥢	(beca)		PhiX databank:
			 Sequences file 		phiX -
			Abundance file		
			non_chimera_fasta	(fasta)	IN SAMPLES, OTUS SIZE a
			out_abundance_bio	m (txt)	SEQUENCE PERCENTAGE :
	(beta) FROGS Filters (beta) 🗙		out_abundance_cou	nt (tabular) 🛛 🖓	Apply filters 👻
	Piom File		summary_file (html)		Remove OTUs that are no
					samples; how many sample
					do you choose? : 🔻
	summary (txt)	(beta) FROGS	Affiliation otu 165 🗙		
	fasta_output (fasta) 🛛 🖸 📀	(beta)		(beta) FROGS Clusters stat	When sorted by abundan
	web (html)	OTU abondanc	e in biom format	(beta)	how many OTU do you wan
	biom_output (txt)	OTU seed sequ	uence in fasta format	Cluster file	
	krona (html) 💿 🎸	biom_affiliatior	n (txt) 🛛 💿 🔗	summary_file (html)	
		summary_file ((html) 🛛 🔿		proportion/number of sequences threshold to
	(heta) FROCE Chistory				remove an OTU: V
	(beta) (beta)				0.00005
	Cluster file				*** THE FILTERS ON RDP
	summary file (html)	~ 2			No filters 👻
	Samuely_ne (nem)				*** THE FILTERS ON BLAS
					No filters 👻

A vous de jouer ! – 9

EXERCISE 9

Download your data

You have to download one per one your files

55: FROGS Affiliation • 1 X OTU: excluded data report.html 11.4 KB format: html, database: ? ## Application Software: affiliation_OTU.py (version: 0.4.0) Command: /usr/local/bioinfo /src/galaxy-test/galaxy-dist/tools /FROGS/affiliation_OTU.py --reference /save/galaxytest/bank/FROGS/silva_119-1 /prokaryotes /silva_119-1_prokaryotes.fasta --abundance - 🛈 边 🥢 📄 HTML file

OR

This tool will save your datasets in your work on genotoul (/work/username/dataset-archive-XXX.tar.gz). Then, you could work on these files in your work on Genotoul.

Conclusions

Why Use FROGS ?

User-friendly

Fast

454 data and Illumina data → sequencing methods change but same tool

 \rightarrow easier for comparisons

Clustering without global threshold and independent of sequence order

Filters tool

Cluster Stat tool

How to cite FROGS

In waiting for the publication:

Pipeline FROGS on http://sigenae-workbench.toulouse.inra.fr/

To contact

FROGS:

geraldine.pascal@toulouse.inra.fr

Or

maria.bernard@jouy.inra.fr

Galaxy:

sigenae-support@listes.inra.fr

Next training sessions

December 2, 3 and 4th 2015 (with a Galaxy day)

Galaxy e-learning (user account) And soon FROGS e-learning