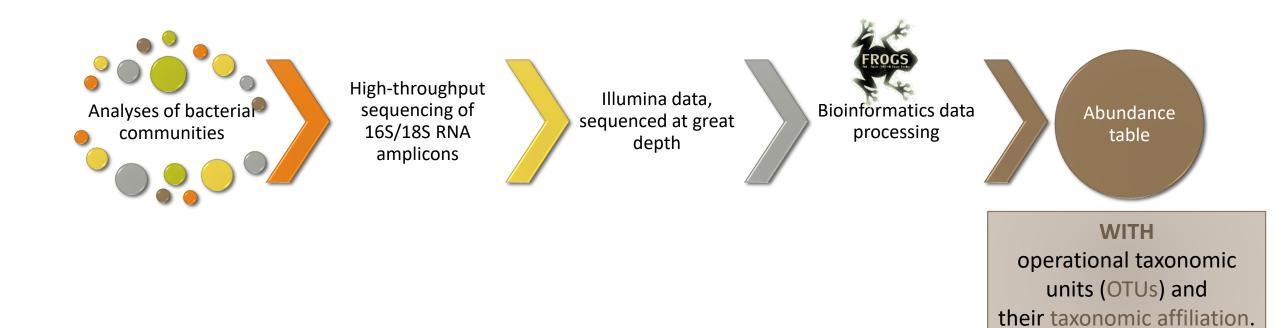

### Training on Galaxy: Metagenomics April 2017

## Find, Rapidly, OTUs with Galaxy Solution

FRÉDÉRIC Escudié<sup>\*</sup> and LUCAS Auer<sup>\*</sup>, MARIA Bernard, LAURENT Cauquil, SARAH MAMAN, MAHENDRA Mariadassou, SYLVIE Combes, GUILLERMINA Hernandez-Raquet, GÉRALDINE Pascal

\*THESE AUTHORS HAVE CONTRIBUTED EQUALLY TO THE PRESENT WORK.








- Objectives
- Material: data + FROGS
- Demultiplex tool
- Preprocessing
- Clustering + Cluster Statistics
- Chimera removal

- Filtering
- Affiliation + Affiliation Statistics
- Normalization
- Tool descriptions
- Format transformation
- Workflow creation
- Export your data
- Some figures

#### Objectives



4

### OTUs for ecology

#### **Operational Taxonomy Unit:**

a grouping of similar sequences that can be treated as a single « species »

#### Strengths:

- Conceptually simple
- Mask effect of poor quality data
  - Sequencing error
  - In vitro recombination (chimera)

#### Weaknesses:

- Limited resolution
- Logically inconsistent definition

### Objectives

|      | Affiliation | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
|------|-------------|----------|----------|----------|----------|----------|----------|
| OTU1 | Species A   | 0        | 100      | 0        | 45       | 75       | 18645    |
| OTU2 | Species B   | 741      | 0        | 456      | 4421     | 1255     | 23       |
| OTU3 | Species C   | 12786    | 45       | 3        | 0        | 0        | 0        |
| OTU4 | Species D   | 127      | 4534     | 80       | 456      | 756      | 108      |
| OTU5 | Species E   | 8766     | 7578     | 56       | 0        | 0        | 200      |

### Why FROGS was developed ?

The current processing pipelines struggle to run in a reasonable time.

The most effective solutions are often designed for specialists making access difficult for the whole community.

In this context we developed the pipeline FROGS: « Find Rapidly OTU with Galaxy Solution ».



### Who is in the FROGS group?





Frédéric Escudié Maria Bernard



Lucas AUER



Laurent Sylvie CAUQUIL COMBES

**Biology** experts



Guillermina Hernandez-Raquet



Sarah MAMAN

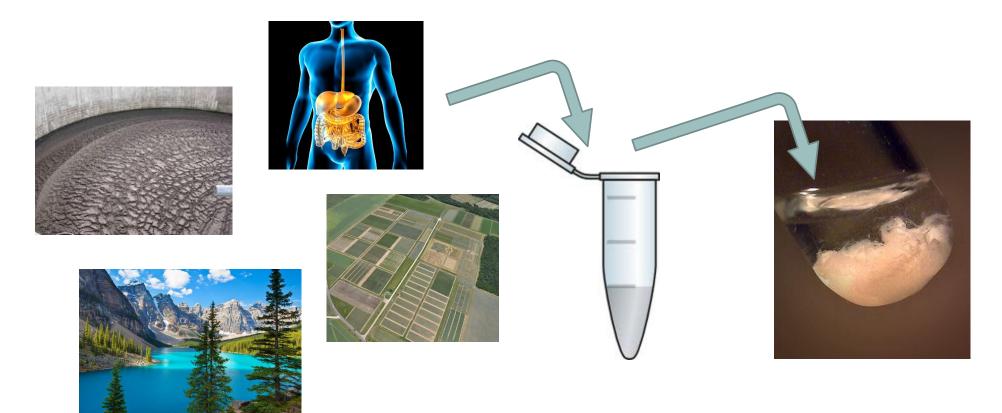
```
Galaxy
support
```

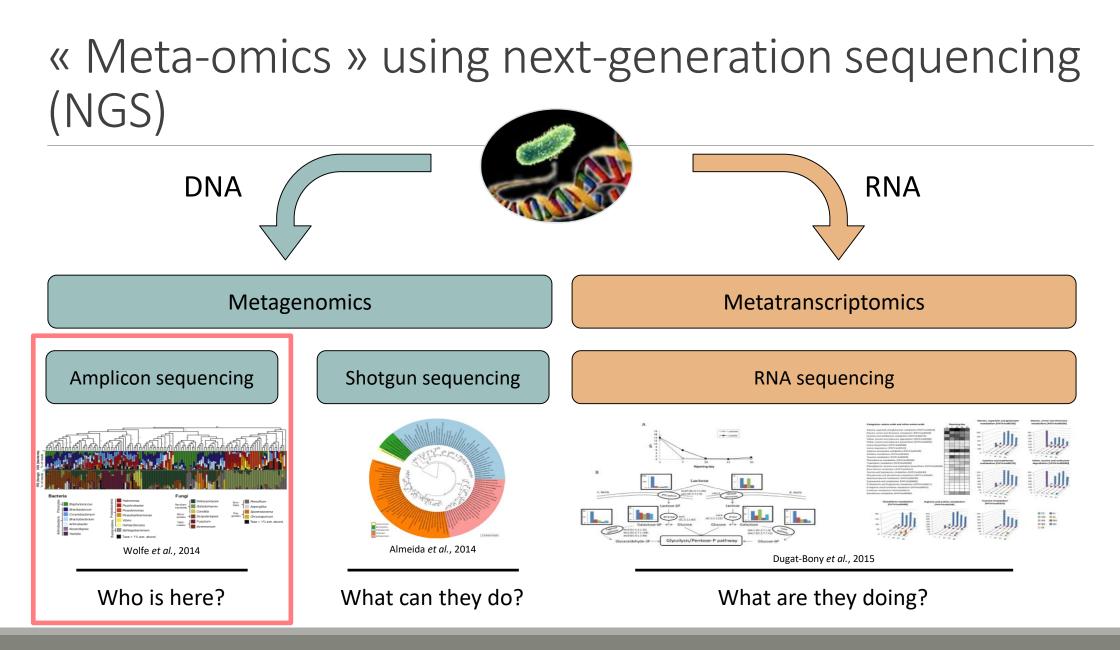
#### **Developers**



Mahendra Mariadassou







Géraldine Pascal



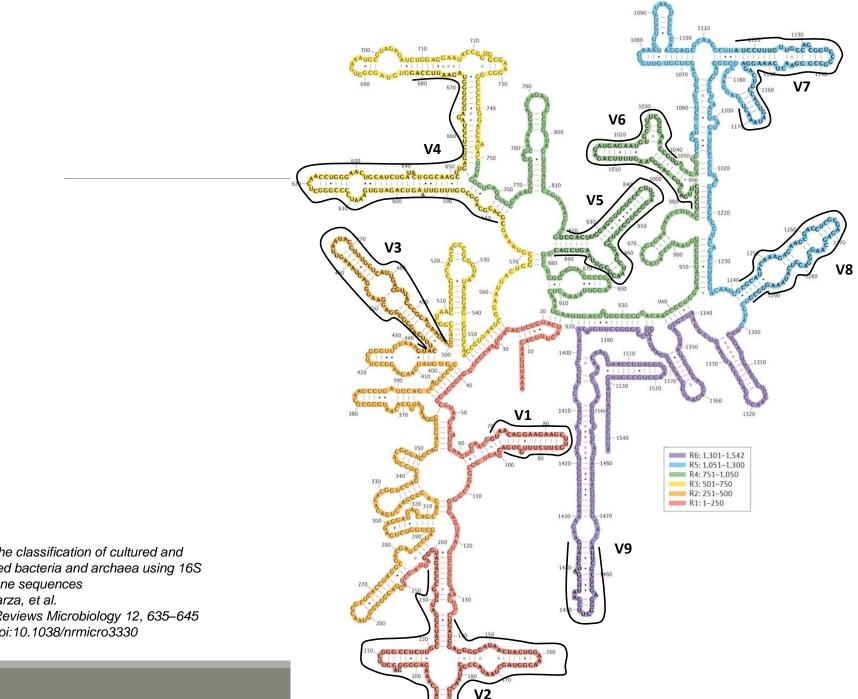
## Material

### Sample collection and DNA extraction





# The gene encoding the small subunit of the ribosomal RNA


The most widely used gene in **molecular phylogenetic** studies

Ubiquist gene : 16S rDNA in prokayotes ; 18S rDNA in eukaryotes

Gene encoding a ribosomal RNA : non-coding RNA (not translated), part of the small subunit of the ribosome which is responsible for the translation of mRNA in proteins

Not submitted to lateral gene transfer

Availability of databases facilitating comparison (Silva 2015: >22000 type strains)



#### Secondary structure of the 16S rRNA of

#### Escherichia coli

In red, fragment R1 including regions V1 and V2; in orange, fragment R2 including region V3; in yellow, fragment R3 including region V4; in green, fragment R4 including regions V5 and V6; in blue, fragment R5 including regions V7 and

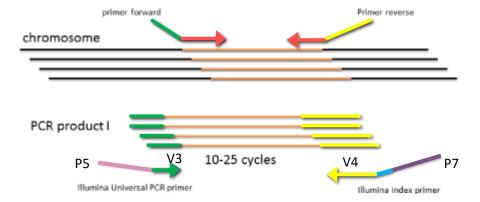
V8;

and in purple, fragment R6 including region V9.

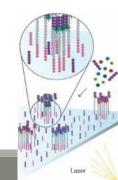
Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences Pablo Yarza, et al. Nature Reviews Microbiology 12, 635-645 (2014) doi:10.1038/nrmicro3330

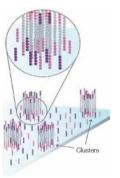
# The gene encoding the small subunit of the ribosomal RNA

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 bp




**CONSERVED REGIONS:** unspecific applications


VARIABLE REGIONS: group or species-specific applications


### Steps for Illumina sequencing

- 1<sup>st</sup> step : one PCR
- 2<sup>nd</sup> step: one PCR



- 3<sup>rd</sup> step: on flow cell, the cluster generations
- 4<sup>th</sup> step: sequencing





#### Amplification and sequencing

« Universal » primer sets are used for PCR amplification of the phylogenetic biomarker

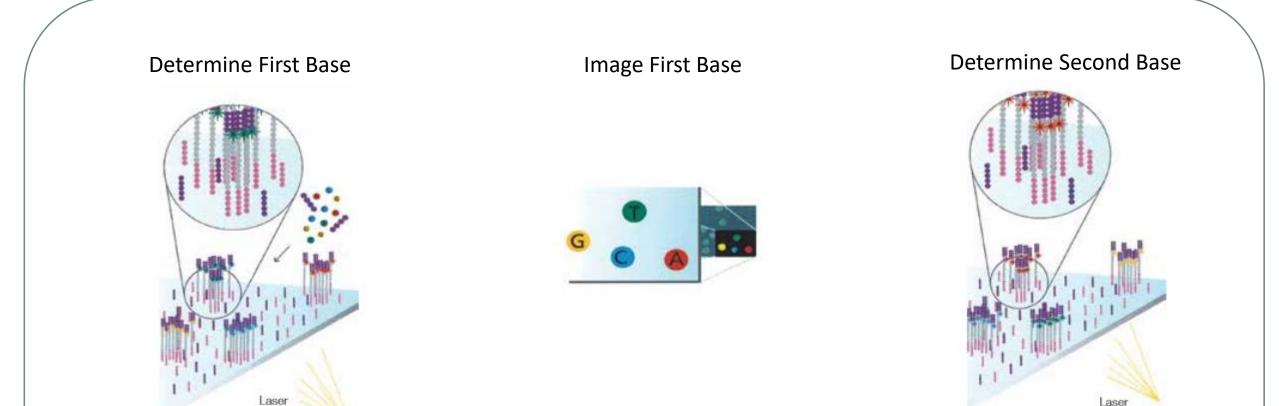
The primers contain adapters used for the sequencing step and barcodes (= tags = MIDs) to distinguish the samples (multiplexing = sequencing several samples on the same run)



#### Cluster generation

Bridge Amplification Prepare Genomic DNA Sample Attach DNA to Surface Adapter ---DNA fragment DNA Dense lawn of primers Adapter Adapters Randomly fragment genomic DNA and ligate adapters to both ends of the Bind single-stranded fragments randomly to the inside surface of the flow Add unlabeled nucleotides and enzyme to initiate solid-phase bridge fragments. amplification. cell channels.

Attach DNA to surface


17

Bridge amplification

### Cluster generation

#### Fragments Become Double Stranded Denature the Double-Stranded Molecules Complete Amplification Attached Attached terminus Attached Free Attached terminus terminus Clusters The enzyme incorporates nucleotides to build double-stranded bridges on Denaturation leaves single-stranded templates anchored to the substrate. Several million dense clusters of double-stranded DNA are generated in the solid-phase substrate. each channel of the flow cell. Fragments become double stranded Cycle of new strand synthesis and denaturation to make Denature the double-stranded molecule multiple copies of the same sequence (amplification) Reverse strands are washed

### Sequencing by synthesis

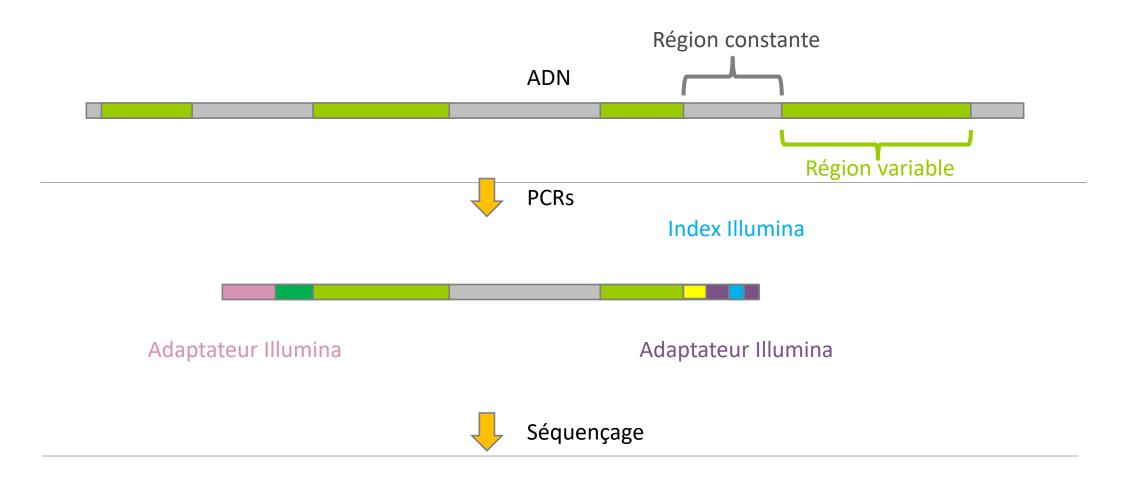


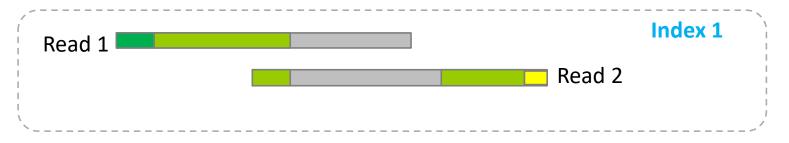
The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

Light signal is more strong in cluster

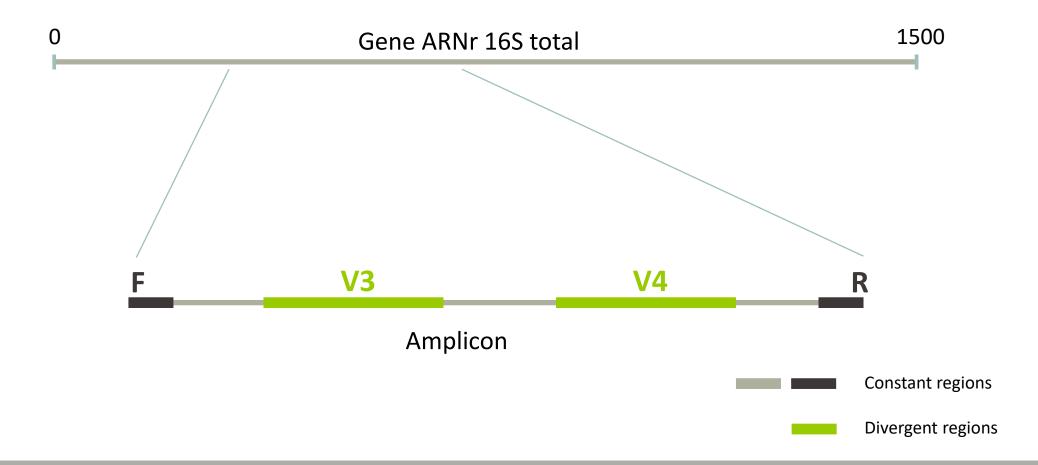
After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified. The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

### Sequencing by synthesis


# Image Second Chemistry Cycle Sequencing Over Multiple Chemistry Cycles → GCTGA...


After laser excitation, the image is captured as before, and the identity of the second base is recorded.

The sequencing cycles are repeated to determine the sequence of bases in a fragment, one base at a time.


Barcode is read, so cluster is identified.

After first sequencing (250 or 300 nt of Reverse strand), fragment form bridges again and Forward strand can be sequenced also.





# Identification of bacterial populations may be not discriminating



#### Amplification and sequencing

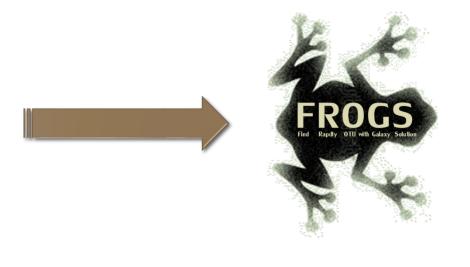
Sequencing is generally perform on Roche-454 or Illumina MiSeq platforms.

Roche-454 generally produce ~ 10 000 reads per sample

MiSeq ~ 30 000 reads per sample

Sequence length is >650 bp for pyrosequencing technology (Roche-454) and 2 x 300 bp for the MiSeq technology in paired-end mode.






# Methods



### Which bioinformatics solutions ?

|         | Disadvantages                                                                           |  |  |
|---------|-----------------------------------------------------------------------------------------|--|--|
| QIIME   | Installation problem<br>Command lines                                                   |  |  |
| UPARSE  | Global clustering<br>command lines                                                      |  |  |
| MOTHUR  | Not MiSeq data without normalization<br>Global hierarchical clustering<br>Command lines |  |  |
| MG-RAST | No modularity<br>No transparence                                                        |  |  |



QIIME allows analysis of high-throughput community sequencing data J Gregory Caporaso et al, Nature Methods, 2010; doi:10.1038/nmeth.f.303 Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Schloss, P.D., et al., Appl Environ Microbiol, 2009, doi: 10.1128/AEM.01541-09 UPARSE: Highly accurate OTU sequences from microbial amplicon reads Edgar, R.C. et al, *Nature Methods*, 2013, dx.doi.org/10.1038/nmeth.2604 The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes F Meyer et al, BMC Bioinformatics, 2008, doi:10.1186/1471-2105-9-386

### FROGS ?

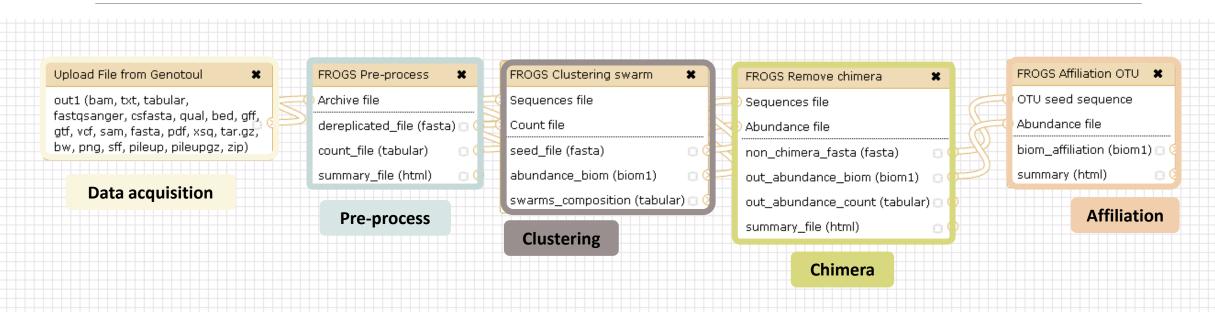
Use platform Galaxy

Set of modules = Tools to analyze your "big" data

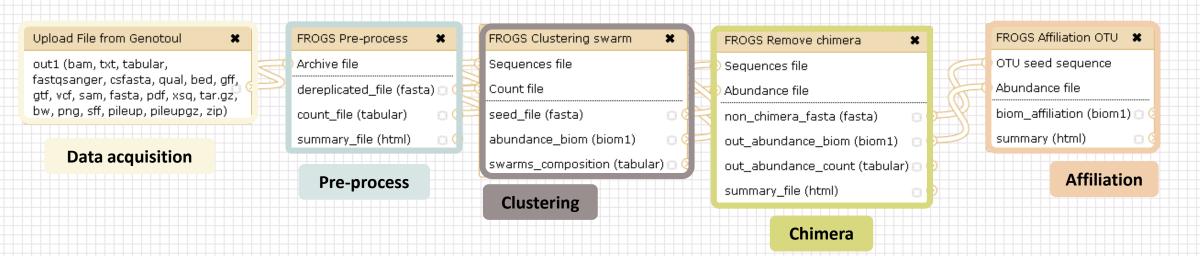
Independent modules

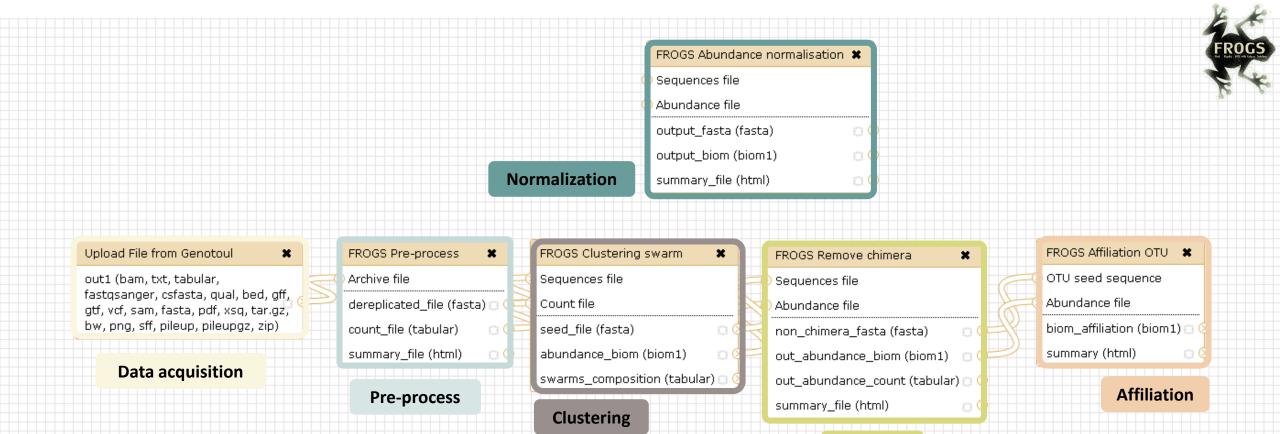
Run on Illumina/454 data 16S, 18S, and 23S

New clustering method


Many graphics for interpretation

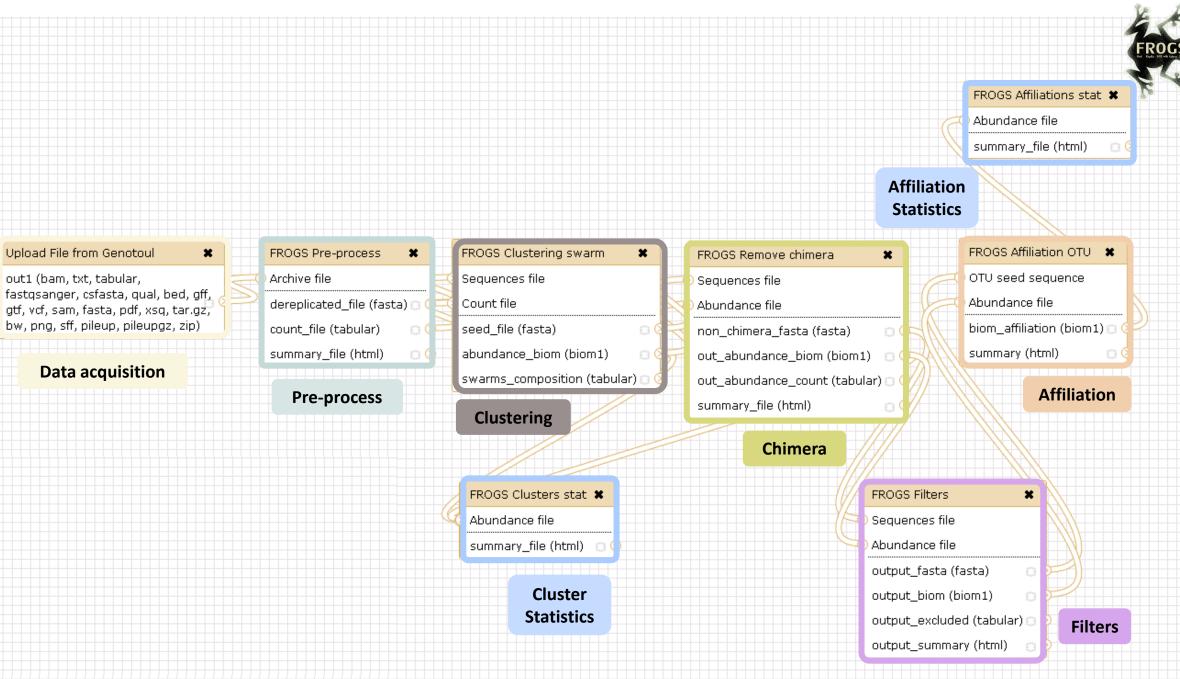
User friendly, hiding bioinformatics infrastructure/complexity

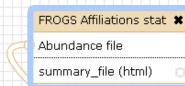

| - Galaxy Sigenae - \                                                                                       | Velcome gpascal Analyze Data Workflow Shared Data + Visualization + Help + User +                                                                                     |   | Using 16.9 GB                                                           |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------|
| Tools                                                                                                      | FROGS Pre-process Illumina (version 1.0.0)                                                                                                                            | - | History 20                                                              |
| FROGS - FIND RAPIDLY OTU<br>WITH GALAXY SOLUTION<br>FROGS pipeline<br>Upload archive from your<br>computer | Input type:<br>Files by samples  Files by samples  Samples files can be provided in single archive or with two files (R1 and R2) by sample. Reads already contiged 7: |   | Unnamed history<br>5.0 GB                                               |
| Demultiplex reads Split by<br>samples the reads in function<br>of inner barcode.                           | No  The inputs contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair. Samples                                                                  |   | ©18: FROGS Filters: ● ℓ X<br>summary.html                               |
| FROGS Pre-process Illumina<br>Step 1 in metagenomics<br>analysis from Illumina                             | Samples 1<br>Name:                                                                                                                                                    |   | ©17: FROGS Filters: ● ℓ ×<br>seed.fasta                                 |
| (165/185) : denoising and<br>dereplication.                                                                | The sample name.                                                                                                                                                      |   | ©16: FROGS Filters: ● ℓ ≍<br>summary.txt                                |
| FROGS Clustering swarm<br>Step 2 in metagenomics<br>analysis : clustering.                                 | Reads 1:                                                                                                                                                              |   | ©15: FROGS Filters:<br>abundance_table.tsv                              |
| FROGS Remove chimera<br>Remove PCR chimera in each<br>sample.                                              | R i PASIQ ile di pared-end reads.<br>reads 2:                                                                                                                         | ш | 14: FROGS Clusters<br>stat: summary.html                                |
| FROGS Affiliation otu 165<br>Step 3 in metagenomics                                                        | R2 FASTQ file of paired-end reads.                                                                                                                                    |   | 13: FROGS Clusters ● ℓ ×<br>stat: summary.html                          |
| analysis : Taxonomic<br>affiliation of each OTU's seed<br>by RDPtools and BLAST                            | Add new Samples Reads 1 size:                                                                                                                                         |   | 12: FROGS Affiliation ● Ø ×     otu 16S:     excluded data report.html  |
| FROGS abundance<br>normalisation Step 4 in<br>metagenomics analysis                                        | The read1 size.                                                                                                                                                       |   | <u>\$11: FROGS Affiliation</u> ● Ø ≥ otu 16S: tax_affiliation.biom      |
| (optional) : Abundance<br>normalisation<br>FROGS Filters Step in                                           | The read2 size.                                                                                                                                                       |   | 10: FROGS Remove                                                        |
| metagenomics analysis from<br>Illumina (165/185) : Filters<br>on Clusters/OTUs.                            | Expected amplicon size:                                                                                                                                               |   | excluded data report.html<br>9: FROGS Remove                            |
| FROGS Clusters stat Process some metrics on clusters.                                                      | me expected size for the majority of the amplicons (with primers). Minimum amplicon size:                                                                             |   | non_chimera_abundance.biom<br>8: FROGS Remove ● ℓ 🕱                     |
| FROGS BIOM to TSV Converts<br>a BIOM file in TSV file.                                                     | The minimum size for the amplicons (with primers). Maximum amplicon size:                                                                                             |   | <u>chimera: non_chimera.fasta</u><br><u>7: FROGS Clustering</u> ●  ℓ  🕱 |




### **FROGS** Pipeline








Chimera

2





#### Affiliation Statistics

#### Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

×

#### **Data acquisition**

 FROGS BIOM to TSV

 Abundance file

 Sequences file

 tsv\_file (tabular)

 multi\_affi\_file (tabular)

Convert to TSV

| FROGS Pre-process |  |  |  |
|-------------------|--|--|--|
| <br>Archive file  |  |  |  |

dereplicated\_file (fasta) () ( count\_file (tabular) () ( summary\_file (html) () ()

Pre-process

FROGS BIOM to std BIOM 🗱

output\_metadata (tabular) 🗇

**Convert to** 

standard Biom

Abundance file

output biom (biom1)

Clustering

Abundance file

FROGS Clustering swarm

abundance\_biom (biom1)

swarms\_composition (tabular) |

Sequences file

seed file (fasta)

Count file

×

00

Cluster Statistics 

 FROGS Remove chimera
 \*

 Sequences file
 \*

 Abundance file
 \*

 non\_chimera\_fasta (fasta)
 •

 out\_abundance\_biom (biom1)
 •

 out\_abundance\_count (tabular)
 •

 summary\_file (html)
 •

#### Chimera

FROGS TSV to BIOM X Abundance TSV File Multi\_hits TSV File biom\_file (biom1) sequence\_file (fasta) Convert TSV to Biom

#### FROGS Affiliation OTU X

Abundance file

biom\_affiliation (biom1) 🗆

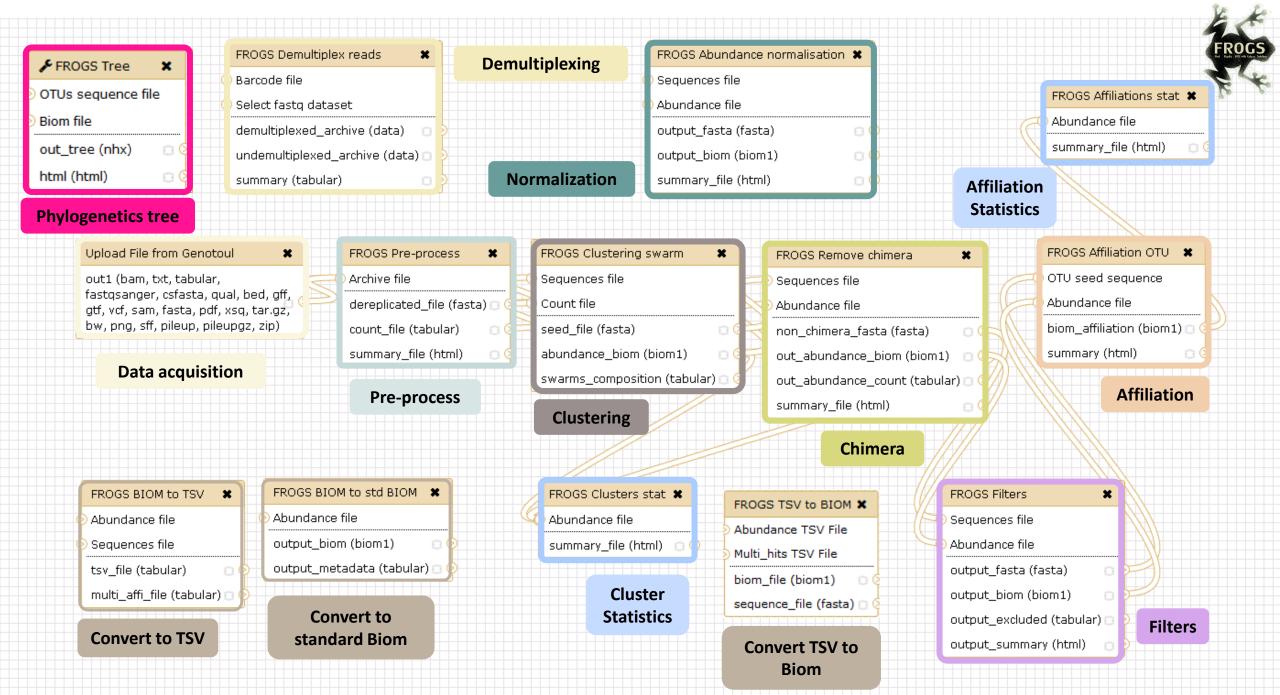
summary (html)

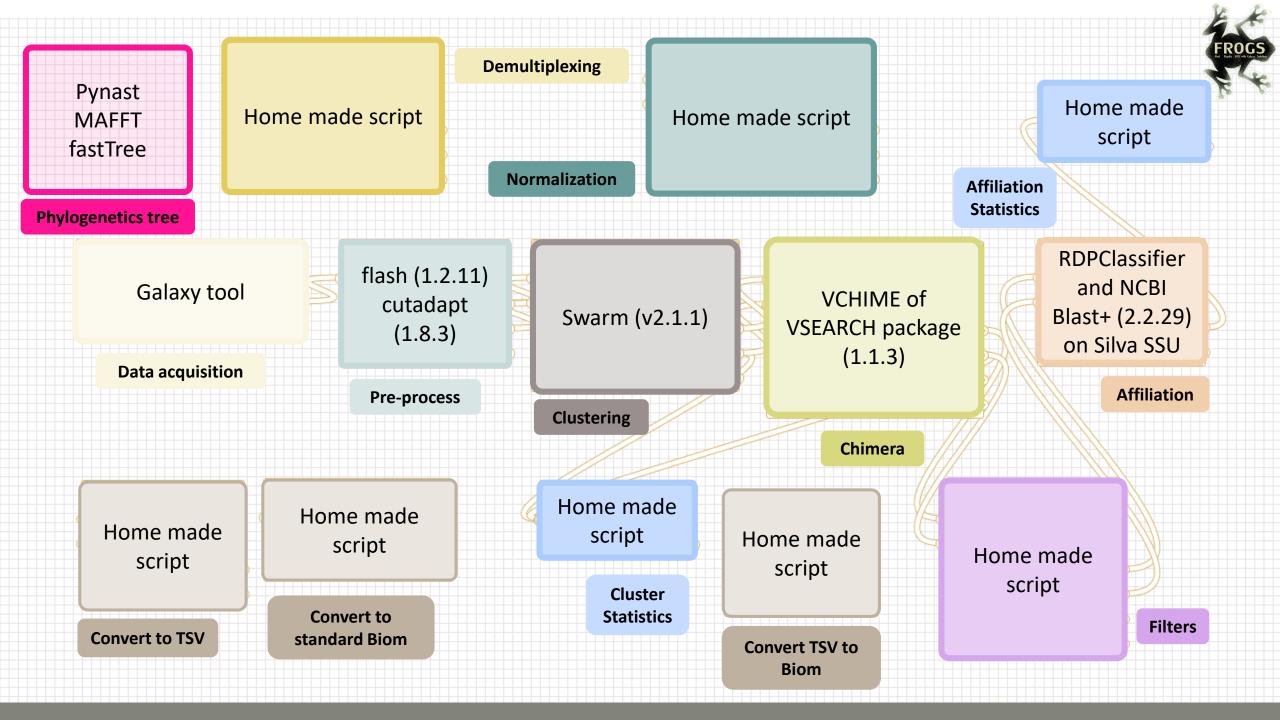
#### Affiliation

 FROGS Filters
 \*

 Sequences file

 Abundance file


 output\_fasta (fasta)


 output\_biom (biom1)

 output\_excluded (tabular)

 output\_summary (html)

#### Filters





|                         | <b>=</b> Galaxy                                                                           | Analyze Data Workflow Shared Data + Visualization + Help + User +                                                  | Using 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
|-------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                         | Tools                                                                                     | FROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication. (Galaxy Version 1.5.0)    Options  | ▲ History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
|                         | METAGENOMICS                                                                              | Sequencer                                                                                                          | FROGS analysis<br>444.7 MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
|                         | OTUS RECONSTRUCTION                                                                       | Illumina 🗸                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Demultiplexing          | <u>FROGS Demultiplex reads</u><br>Attribute reads to samples in                           | Select the sequencer family used to produce the sequences. Input type                                              | <u>Signal State State Summary.html</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
|                         | function of inner barcode.                                                                | Files by samples -                                                                                                 | ©24: FROGS BIOM to ● Ø 🕱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Pre-process             | FROGS Pre-process Step 1 in<br>metagenomics analysis:                                     | Samples files can be provided in single archive or with two files (R1 and R2) by sample.  Reads already contiged ? | std BIOM: blast metadata.tsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                         | denoising and dereplication.                                                              | No v                                                                                                               | std BIOM: abundance.biom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Clustering              | FROGS Clustering swarm<br>Step 2 in metagenomics<br>analysis : clustering.                | The inputs contain 1 file by sample : Reads 1 and Reads 2 are already contiged by pair. Samples                    | <u>③22: FROGS BIOM to</u> ● Ø X<br><u>TSV: multi_hits.tsv</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Waiting to run |
| Chimera                 | FROGS Remove chimera Step<br>3 in metagenomics analysis :                                 | 1: Samples<br>Name                                                                                                 | Solution State |                |
|                         | Remove PCR chimera in each<br>sample.<br><u>FROGS Filters</u> Filters OTUs on             | The sample name.                                                                                                   | Solution Stat: Summary.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Filters                 | several criteria.<br>FROGS Affiliation OTU Step 4                                         | Reads 1                                                                                                            | Stat: summary.html Stat: summary.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Affiliation             | in metagenomics analysis :<br>Taxonomic affiliation of each<br>OTU's seed by RDPtools and | R1 FASTQ file of paired-end reads. reads 2                                                                         | <mark>- 18: FROGS Affiliation</mark> ● ℓ X<br>OTU: report.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Currently      |
| Cluster Stat            | BLAST<br>FROGS Clusters stat Process                                                      | C       No fastq dataset available.         R2 FASTQ file of paired-end reads.                                     | In the second              | running        |
|                         | some metrics on clusters.                                                                 | + Insert Samples                                                                                                   | 16: FROGS Clusters @ 🖉 🕱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| <b>Affiliation Stat</b> | FROGS Affiliations stat<br>Process some metrics on<br>taxonomies.                         | Reads 1 size                                                                                                       | stat: summary.html 15: FROGS Filters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                         | FROGS BIOM to std BIOM                                                                    | The read1 size.                                                                                                    | report.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| Biom to std Biom        | Converts a FROGS BIOM in fully compatible BIOM.                                           | Reads 2 size                                                                                                       | <u>14: FROGS Filters:</u> ④ Ø 💥<br>excluded.tsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Biom to TSV             | FROGS BIOM to TSV Converts                                                                |                                                                                                                    | 13: FROGS Filters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result files   |
|                         | a BIOM file in TSV file.                                                                  | The read2 size.                                                                                                    | abundance.biom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| TSV to Biom             | FROGS TSV to BIOM<br>Converts a TSV file in a BIOM<br>file.                               | Expected amplicon size                                                                                             | <u>12: FROGS Filters:</u> ● Ø X<br>sequences.fasta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| Normalization           | FROGS Abundance<br>normalisation                                                          |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Phylogenetics Tree      | FROGS Tree Reconstruction<br>of phylogenetic tree                                         |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |

#### What kind of data ?

#### 4 Upload $\rightarrow$ 4 Histories

| Mu | ltip | lexed | data |
|----|------|-------|------|
|    |      |       |      |

Pathobiomes rodents and ticks

multiplex.fastq

barcode\_forward.ta bular 454 data

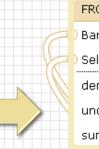
Freshwater sediment metagenome

454.fastq.gz

SRA number • SRR443364 MiSeq R1 fastq + R2 fastq

Farm animal feces metagenome

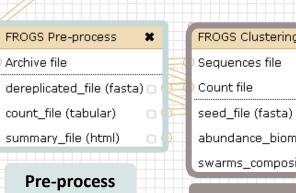
sampleA\_R1.fastq


sampleA\_R2.fastq

MiSeq merged fastq in archive tar.gz

Farm animal feces metagenome

100spec\_90000seq\_9s amples.tar.gz


# Demultiplexing tool



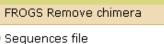
FROGS Demultiplex reads × Barcode file Select fastq dataset demultiplexed\_archive (data) undemultiplexed\_archive (data) 🖂 🤇 summary (tabular)

#### Upload File from Genotoul × out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

#### **Data acquisition**



Demultiplexing


#### FROGS Clustering swarm × Sequences file Count file

abundance\_biom (biom1)

swarms\_composition (tabular) 🗇 🤇

0(

#### Clustering



x

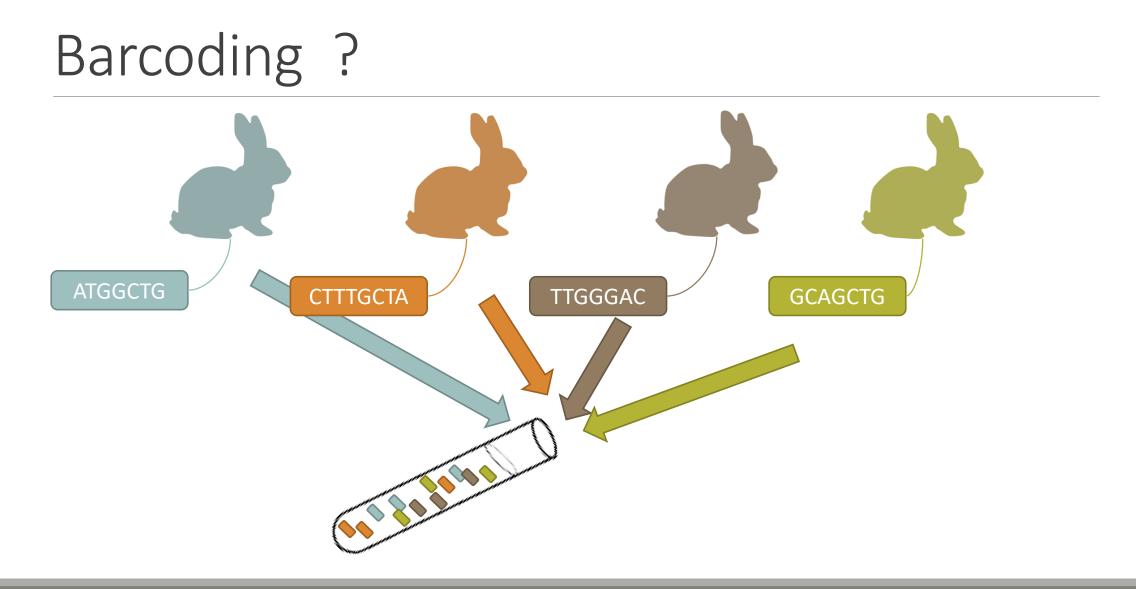
### Abundance file

non\_chimera\_fasta (fasta)

out\_abundance\_biom (biom1) 🛛 🖸 🤇 out\_abundance\_count (tabular) 🗇 🤅

Chimera

summary\_file (html)

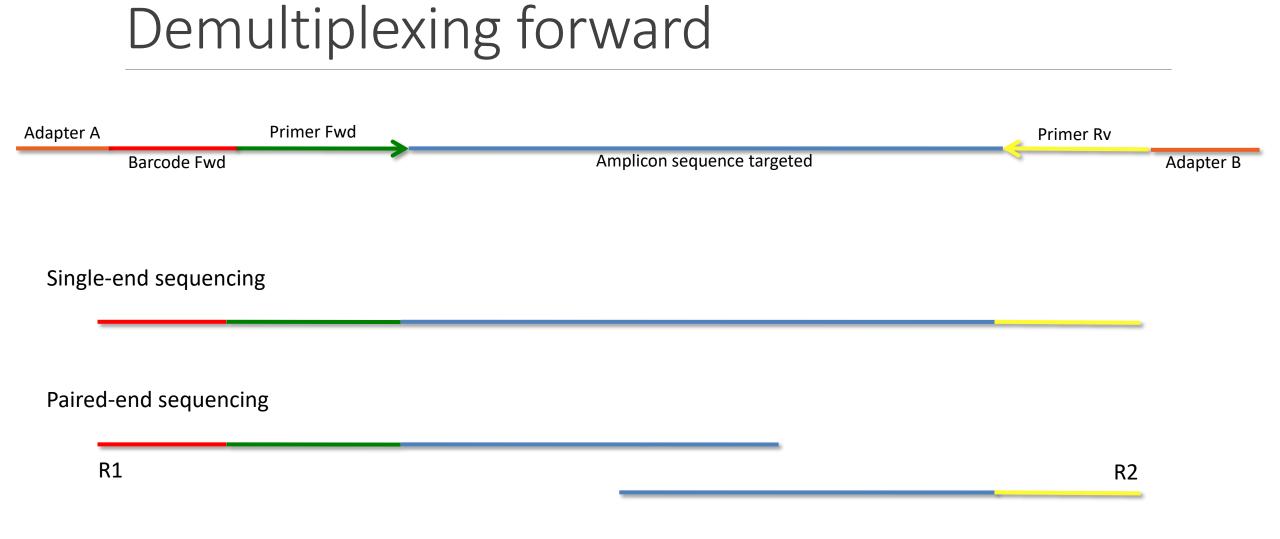

#### FROGS Affiliation OTU OTU seed sequence

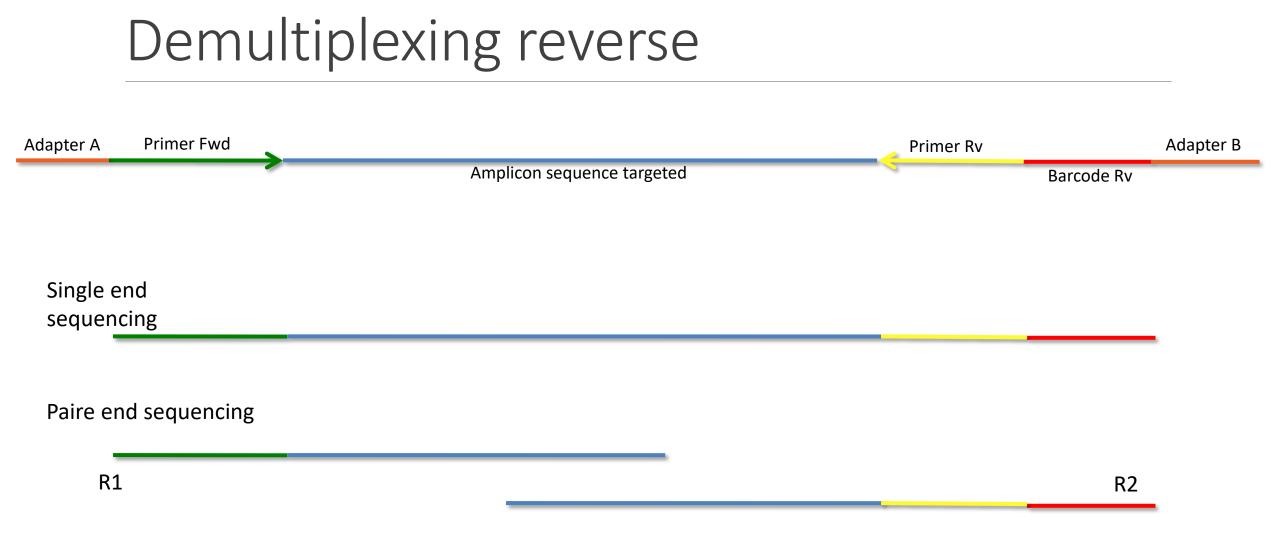
Abundance file

biom\_affiliation (biom1) 🖸

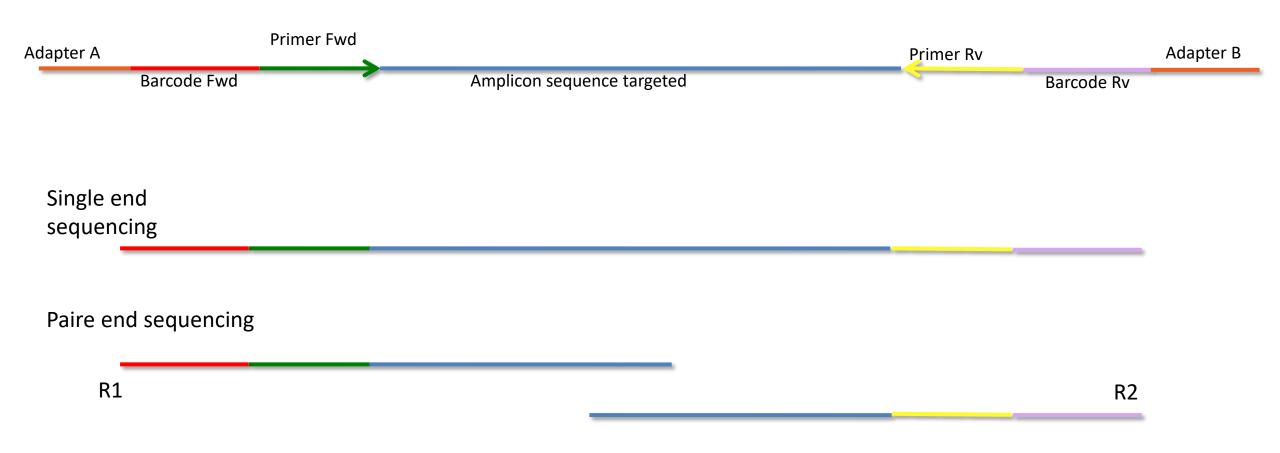
summary (html)

#### Affiliation





# Demultiplexing

Sequence demultiplexing in function of barcode sequences :


- In forward
- In reverse
- In forward and reverse

Remove unbarcoded or ambiguous sequences





# Demultiplexing forward and reverse



# Your turn! - 1

LAUNCH DEMULTIPLEX READS TOOL

| FROGS Demultiplex reads (version 1.1.0)                                                                                      | FROGS Demultiplex reads (version 1.1.0)                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Barcode file:                                                                                                                | Barcode file:                                                                                                                |
| 1: barcode.tabular 💌                                                                                                         | 1: barcode.tabular 🔻                                                                                                         |
| This file describes barcodes and samples (one line by sample tabulated separated from barcode sequence(s)). See Help section | This file describes barcodes and samples (one line by sample tabulated separated from barcode sequence(s)). See Help section |
| Single or Paired-end reads:                                                                                                  | Single or Paired-end reads:                                                                                                  |
| Single 💌                                                                                                                     | Paired -                                                                                                                     |
| Select between paired and single end data                                                                                    | Select between paired and single end data                                                                                    |
| Select fastq dataset:                                                                                                        | Select first set of reads:                                                                                                   |
|                                                                                                                              |                                                                                                                              |
| Specify dataset of your single end reads                                                                                     | Specify dataset of your forward reads                                                                                        |
| barcode mismatches:                                                                                                          | Select second set of reads:                                                                                                  |
| 0                                                                                                                            |                                                                                                                              |
| Number of mismatches allowed in barcode                                                                                      | Specify dataset of your reverse reads                                                                                        |
| barcode on which end ?:                                                                                                      | barcode mismatches:                                                                                                          |
| Forward 🔻                                                                                                                    | 0                                                                                                                            |
| Forward at the begining of the forward end or of the reverse end or both?                                                    | Number of mismatches allowed in barcode                                                                                      |
| Reverse<br>Both ends                                                                                                         | barcode on which end ?:                                                                                                      |
| Execute                                                                                                                      | Forward -                                                                                                                    |
|                                                                                                                              | Forward at the begining of the forward end or of the reverse end or both?                                                    |
|                                                                                                                              | Reverse Both ends                                                                                                            |
| FROGS Demultiplex reads                                                                                                      | Execute                                                                                                                      |
| Barcode file                                                                                                                 |                                                                                                                              |
| Select fastq dataset                                                                                                         |                                                                                                                              |
| demultiplexed_archive (data)                                                                                                 |                                                                                                                              |

undemultiplexed\_archive (data) 🖂 🤇

summary (tabular)

Exercise 2

In **multiplexed** history launch the demultiplex tool:

« The Patho-ID project, rodent and tick's pathobioms study, financed by the metaprogram INRA-MEM, studies zoonoses on rats and ticks from multiple places in the world, the co-infection systems and the interactions between pathogens. In this aim, thay have extracted hundreads of or rats and ticks samples from which they have extracted 16S DNA and sequenced them first time on Roche 454 plateform and in a second time on Illumina Miseq plateform. For this courses, they authorized us to publicly shared some parts of these samples. »

Parasites & Vectors (2015) 8:172 DOI 10.1186/s13071-015-0784-7. Detection of Orientia sp. DNA in rodents from Asia, West Africa and Europe. Jean François Cosson, Maxime Galan, Emilie Bard, Maria Razzauti, Maria Bernard, Serge Morand, Carine Brouat, Ambroise Dalecky, Khalilou Bâ, Nathalie Charbonnel and Muriel Vayssier-Taussat

### Exercise 2

In **multiplexed** history launch the demultiplex tool:

Data are single end reads  $\rightarrow$  only 1 fastq file

Samples are characterized by one barcode in forward strands → multiplexing « forward »

> Inputs : 2: /work/frogs /multiplex.fastq 1: /work/frogs /barcode\_forward.tabular

### Exercise 2

Demultiplex tool asks for 2 files: one « fastq » and one « tabular »

- 🖯 🕑

- 1. Play with pictograms
- 2. Observe how is built a fastq file.



O

| FROGS Demultiplex reads Attribute reads to samples in fu               |                                                                    | <ul> <li>Options</li> </ul> |
|------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|
| Barcode file                                                           |                                                                    |                             |
| 24: barcode_forward.tabular                                            |                                                                    | •                           |
| This file describes barcodes and samples (one line by samp             | le tabulated separated from barcode sequence(s)). See Help section |                             |
| Single or Paired-end reads                                             |                                                                    |                             |
| Single                                                                 |                                                                    | -                           |
| Select between paired and single-end data                              |                                                                    |                             |
| Select fastq dataset                                                   |                                                                    |                             |
| 6: multiplex.fastq                                                     |                                                                    | •                           |
| Specify dataset of your single end reads                               |                                                                    |                             |
| Barcode mismatches                                                     |                                                                    |                             |
| 0                                                                      |                                                                    |                             |
| Number of mismatches allowed in barcode                                |                                                                    |                             |
| Barcode on which end ?                                                 |                                                                    |                             |
| Forward                                                                |                                                                    | _                           |
| Forward<br>The harcode is placed either at the beginning of the forwar |                                                                    | •                           |



### For your own data

- Do not forget to indicate barcode sequence as they are in the fastq sequence file, especially if you have data multiplexed via the reverse strand.
- For the mismatch threshold, we advised you to let the threshold to 0, and if you are not satisfied by the result, try with 1. The number of mismatch depends on the length of the barcode, but often those sequences are very short so 1 mismatch is already more than the sequencing error rate.
- If you have different barcode lengths, you must demultiplex your data in different times beginning by the longest barcode set and used the "unmatched" or "ambiguous" sequence with smaller barcode and so on.
- If you have Roche 454 sequences in sff format, you must convert them with some program like sff2fastq

Multiplex

### Results

reads: undemultiplexed.tar.gz

> A tar archive is created by grouping one (or a pair of) fastq file per sample with the names indicated in the first column of the barcode tabular file

|               | 1         | 2     |
|---------------|-----------|-------|
|               | #sample   | count |
| $\Rightarrow$ | ambiguous | 0     |
|               | MgArd0009 | 91    |
|               | MgArd0017 | 166   |
|               | MgArd0038 | 1208  |
|               | MgArd0029 | 193   |
|               | unmatched | 245   |
| ·             | MgArd0001 | 119   |
|               | MgArd0081 | 246   |
|               | MgArd0046 | 401   |
|               | MgArd0054 | 243   |
|               | MgArd0073 | 474   |
|               | MgArd0062 | 1127  |
|               |           |       |

With barcode mismatches >1 sequence can corresponding to several samples. Sequence that match at only one sample are affected to this sample but the others (ambiguous) are not re-affected to a sample.

> Sequences without known barcode. So these sequences are non-affected to a sample.

### Format: Barcode

BARCODE FILE is expected to be tabulated:

- first column corresponds to the sample name (unique, without space)
- second to the forward sequence barcode used (None if only reverse barcode)
- optional third is the reverse sequence barcode (optional)

Take care to indicate sequence barcode in the strand of the read, so you may need to reverse complement the reverse barcode sequence. Barcode sequence must have the same length.

Example of barcode file.

The last column is optional, like this, it describes sample multiplexed by both fragment ends.

MgArd00001 ACAGCGT ACGTACA

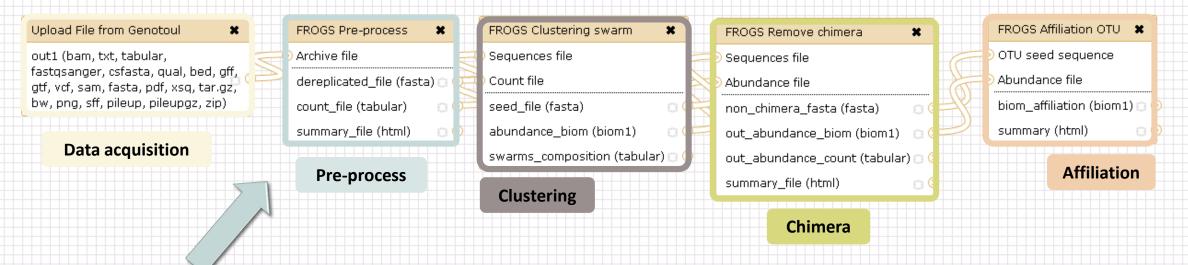
## Format : FastQ

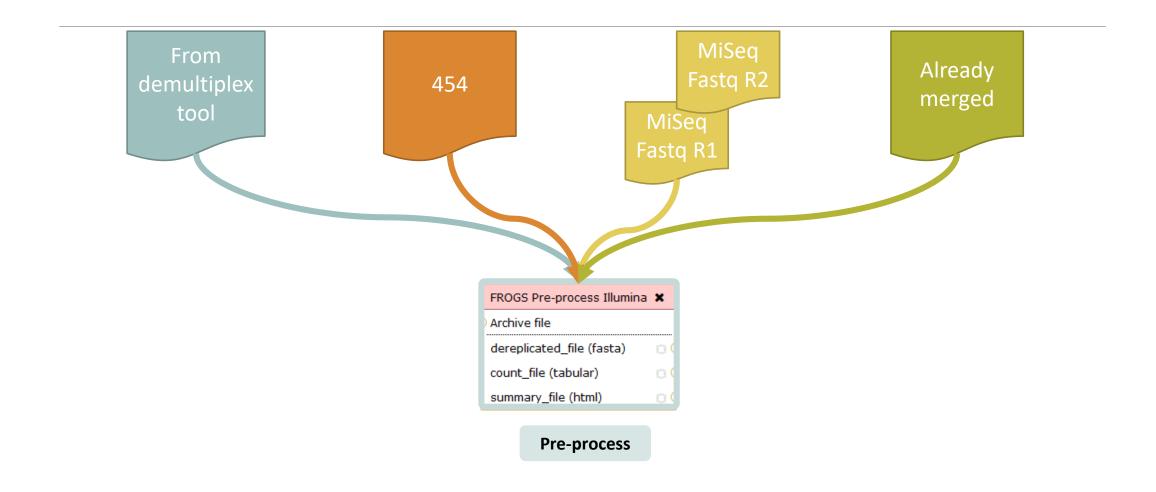
FASTQ : Text file describing biological sequence in 4 lines format:

- first line start by "@" correspond to the sequence identifier and optionally the sequence description. "@Sequence\_1 description1"
- second line is the sequence itself. "ACAGC"
- third line is a "+" following by the sequence identifier or not depending on the version
- fourth line is the quality sequence, one code per base. The code depends on the version and the sequencer

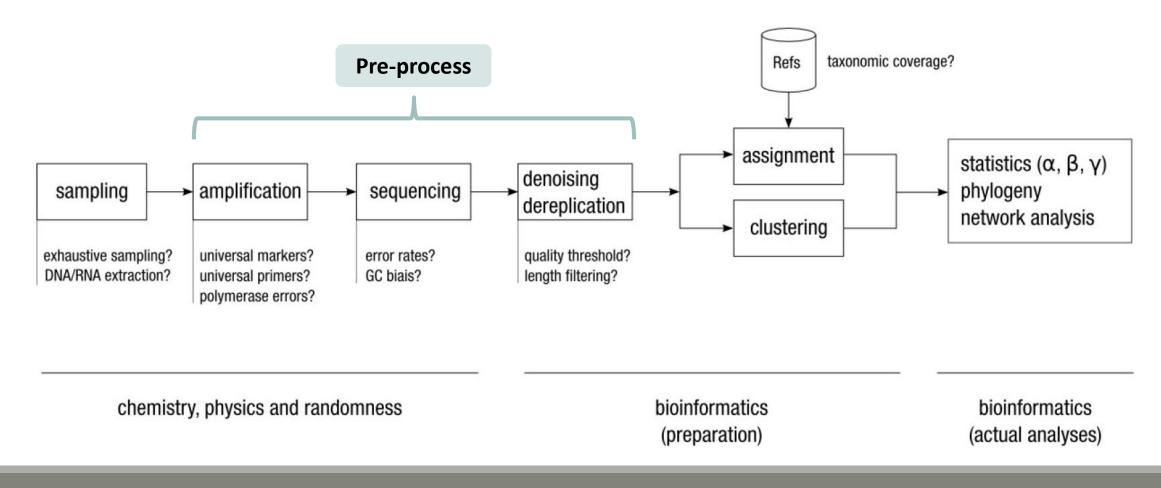
@HNHOSKD01ALD0H ACAGCGTCAGAGGGGGTACCAGTCAGCCATGACGTAGCACGTACA + CCCFFFFFFHHHHHJJIJJJHHFF@DEDDDDDDD@CDDDDACDD

# How it works ?


For each sequence or sequence pair the sequence fragment at the beginning (forward multiplexing) of the (first) read or at the end (reverse multiplexing) of the (second) read will be compare to all barcode sequence.


If this fragment is equal (with less or equal mismatch than the threshold) to one (and only one) barcode, the fragment is trimmed and the sequence will be attributed to the corresponding sample.

Finally fastq files (or pair of fastq files) for each sample are included in an archive, and a summary describes how many sequence are attributed for each sample.


# Pre-process tool







### Amplicon-based studies general pipeline



## Pre-process

- Delete sequence with not expected lengths
- Delete sequences with ambiguous bases (N)
- Delete sequences do not contain good primers
- Dereplication

- + removing homopolymers (size = 8) for 454 data
- + quality filter for 454 data

### Example for:

- Illumina MiSeq data
- 1 sample
- Non joined

| Dro- | nro | 2201        | exam  | ماد | 1 |
|------|-----|-------------|-------|-----|---|
| FIC- | μιυ | <b>LE33</b> | слани | JIE |   |

| OGS Pre-process Step 1 in metagenomics analy    | sis: denoising and dereplication. (Galaxy V | ersion 2.0.0) |
|-------------------------------------------------|---------------------------------------------|---------------|
| quencer                                         |                                             |               |
| mina                                            |                                             | •             |
| ct the sequencing technology used to produce    | the sequences.                              |               |
| put type                                        |                                             |               |
| les by samples                                  |                                             | •             |
| mples mes can be provided in single archive or  | with two files (R1 and R2) by sample.       |               |
| Reads already contiged ?                        |                                             |               |
| No                                              |                                             |               |
| The inputs contain 1 file by sample : R1 and R2 | are already merged by pair.                 |               |
| Samples                                         |                                             |               |
| 1: Samples                                      |                                             |               |
| Name                                            |                                             |               |
| sampleA                                         |                                             |               |
| The sample name.                                |                                             |               |
| Reads 1                                         |                                             |               |
| 60: /work/formation/FRO                         | 5/sampleA_R2.fastq                          |               |
| R1 FASTQ file of paired-end reads.              |                                             |               |
| reads 2                                         |                                             |               |
| R2 FASTQ file of paired-end reads.              | G /sampleA_R2.fastq                         |               |
|                                                 |                                             |               |
| + Insert Samples                                |                                             |               |
| Reads 1 size                                    |                                             |               |
| 250                                             |                                             |               |
| The read1 size.                                 |                                             |               |
| Reads 2 size                                    |                                             |               |
| 250                                             | Parameters for the                          |               |
| The read2 size.                                 | merging                                     |               |
| Expected amplicon size                          |                                             |               |
| 410                                             |                                             |               |
| Maximum amplicon length expected in approx      | kim                                         | 7             |
| mismatch rate.                                  |                                             |               |
| 0.1                                             |                                             |               |
| The maximum rate of mismatches in the over      | lap region                                  |               |

| 0                                                |                                         |                     |  |  |  |
|--------------------------------------------------|-----------------------------------------|---------------------|--|--|--|
| e minimum size for the amplicons.                |                                         |                     |  |  |  |
| ximum amplicon size                              | [V5] 16S variability                    |                     |  |  |  |
| 0                                                |                                         |                     |  |  |  |
| e maximum size for the amplicons.                |                                         |                     |  |  |  |
| quencing protocol                                |                                         |                     |  |  |  |
| umina standard                                   |                                         |                     |  |  |  |
| e protocol used for sequencing step: standard or | custom with PCR primers as sequence     | ing primers.        |  |  |  |
| ' primer                                         |                                         |                     |  |  |  |
| CCGTCAATTC                                       |                                         |                     |  |  |  |
| ne 5 primer sequence (wildcards are accepted).   | The orienta                             | ameters'.           |  |  |  |
| ' primer                                         | Primer sequen                           | ices                |  |  |  |
| CCGCNGCTGCT                                      |                                         |                     |  |  |  |
|                                                  | The orientation is detailed below in 'F | Primers parameters' |  |  |  |

### Example for:

- Sanger 454 data
- 1 sample
- Only one read (454 process)

| Pre-process example 2 | Pre- | process | examp | le 2 |
|-----------------------|------|---------|-------|------|
|-----------------------|------|---------|-------|------|

| ROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication. (Galaxy Version 1.)   | 5.0)    Options |
|------------------------------------------------------------------------------------------------------|-----------------|
| equencer                                                                                             |                 |
| 154                                                                                                  | •               |
| elect the sequencer family used to produce the sequences.                                            |                 |
| Input type                                                                                           |                 |
| One file by sample                                                                                   | •               |
| Samples files can be provided in single archive or with one file by sample.                          |                 |
| Samples                                                                                              |                 |
| 1: Samples                                                                                           |                 |
| Name                                                                                                 |                 |
| my_sample                                                                                            |                 |
| The sample name.                                                                                     |                 |
| Sequence file                                                                                        |                 |
| C 1: /work/formation/FROGS/454.fastq.gz                                                              | •               |
| FASTQ file of sample.                                                                                |                 |
| + Insert Samples                                                                                     |                 |
| Minimum amplicon size                                                                                |                 |
| 380                                                                                                  |                 |
| The minimum size for the amplicons (with primers).                                                   |                 |
|                                                                                                      |                 |
|                                                                                                      |                 |
| 500                                                                                                  |                 |
| The maximum size for the amplicons (with primers).                                                   |                 |
| 5' primer                                                                                            |                 |
| ACGGGAGGCAGCAG                                                                                       |                 |
| The 5' primer sequence (wildcards are accepted). The orient                                          | ters'.          |
| 3' primer Primer sequences                                                                           |                 |
| AGGATTAGATACCCTGGTA                                                                                  |                 |
| The 3' primer sequence (wildcards are accepted). The orientation is detailed below in Primers parame | ters'.          |

|                                            | FROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication. (Galaxy Version 1.5.0) <ul> <li>Options</li> <!--</th--></ul> |  |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                            | Sequencer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                            | Illumina     Sequencing technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                            | Select the sequencer family used to produce the sequences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Example for:                               | Input type         Archive         One file per sample and all files are contained in a archive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Illumina MiSeq data                        | Samples files can be provided in single archive or with two files (R1 and R2) by sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                            | Archive file          Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Image: Archive file         Imag                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <ul> <li>9 samples in 1 archive</li> </ul> | The tar file containing the sequences file(s) for each sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| <ul> <li>Joined</li> </ul>                 | Reads already contiged ?         Yes         Paire-end sequencing all ready joined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| <ul> <li>Without sequenced PCR</li> </ul>  | The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| primers (Kozich protocol)                  | Minimum amplicon size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                            | The minimum size for the amplicons. [V3 – V4] 16S variability<br>Maximum amplicon size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                            | The maximum size for the amplicons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                            | Sequencing protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                            | Custom protocol (Kozich et al. 2013) No more primers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                                            | The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                            | ✓ Execute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |

# Your turn! - 2

GO TO EXERCISES 3



## Exercise 3.1

Go to « 454 » history

Launch the pre-process tool on that data set

 $\rightarrow$  objective : understand the parameters

1- Test different parameters for « minimum and maximum amplicon size »

2- Enter these primers: Forward: ACGGGAGGCAGCAG Reverse: AGGATTAGATACCCTGGTA

#### FROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication. (Galaxy Version 2.0.0)

#### Sequencer

#### 454

Select the sequencing technology used to produce the sequences.

#### Input type

One file by sample

Samples files can be provided in single archive or with one file by sample.

#### Samples

| L: Samples          | Sample name is required               |
|---------------------|---------------------------------------|
| Name                |                                       |
| my_sample           |                                       |
| The sample name.    |                                       |
| Sequence file       |                                       |
| C 4 C 7             | 0: /work/formation/FROGS/454.fastq.gz |
| FASTQ file of sampl | e.                                    |
| Incest Complete     |                                       |
| Insert Samples      |                                       |
| imum amplicon siz   | e                                     |

Size range of 16S V3-V4: [ 380 – 500 ]

#### 380

The minimum size for the amplicons (with primers).

#### Maximum amplicon size

500

The maximum size for the amplicons (with primers).

#### 5' primer

ACGGGAGGCAGCAG

The 5' primer sequence (wildcards are accepted). The orientation is detailed

#### 3' primer

AGGATTAGATACCCTGGTA

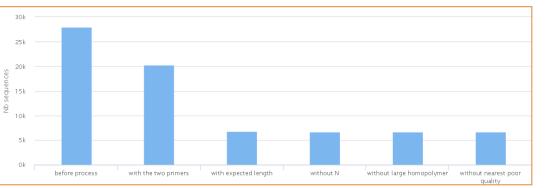
The 3' primer sequence (wildcards are accepted). The orientation is detaile

Primers used for sequencing V3-V4: Forward: ACGGGAGGCAGCAG Reverse: AGGATTAGATACCCTGGTA

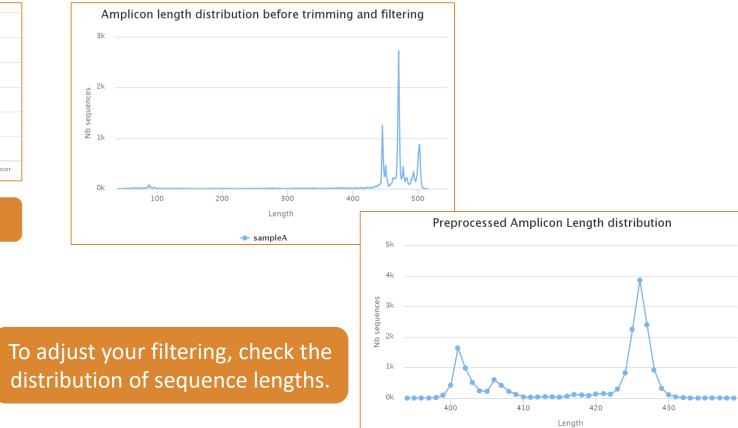
#### 🗸 Execute

Options

-


.

## Exercise 2.1


What do you understand about amplicon size, which file can help you ?
What is the length of your reads before preprocessing ?
Do you understand how enter your primers ?
What is the « FROGS Pre-process: dereplicated.fasta » file ?
What is the « FROGS Pre-process: count.tsv » file ?
Explore the file « FROGS Pre-process: report.html »

Who loose a lot of sequences ?

|  | Samples    | before<br>process ∲ | with the two<br>primers | with expected<br>length | without<br>N | without large<br>homopolymer | without nearest poor<br>quality |
|--|------------|---------------------|-------------------------|-------------------------|--------------|------------------------------|---------------------------------|
|  | sample_454 | 28,009              | 20,227                  | 6,806                   | 6,677        | 6,675                        | 6,672                           |



To be kept, sequences must have the 2 primers



🔶 sampleA

67

# Cleaning, how it work ?

Filter contig sequence on its length which must be between min-amplicon-size and maxamplicon-size

use cutadapt to search and trim primers sequences with less than 10% differences

#### Minimum amplicon size:

380

The minimum size for the amplicons.

### Maximum amplicon size:

500

The maximum size for the amplicons.

### Cleaning, how it work?

dereplicate sequences and return one uniq fasta file for all sample and a count table to indicate sequence abundances among sample.

In the HTML report file, you will find for each filter the number of sequences passing it, and a table that details these filters for each sample.

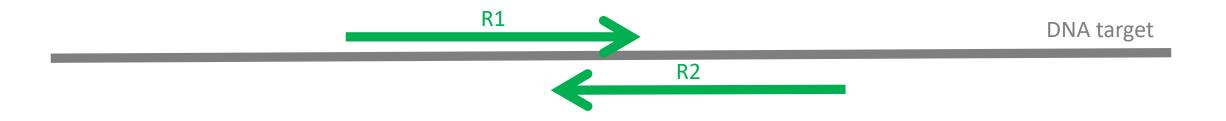
## Exercise 2.2

Go to « MiSeq R1 R2 » history

Launch the pre-process tool on that data set

 $\rightarrow$  objective: understand flash software

# The aim of Flash is to merge R1 with R2


1st case: Impossible to merge





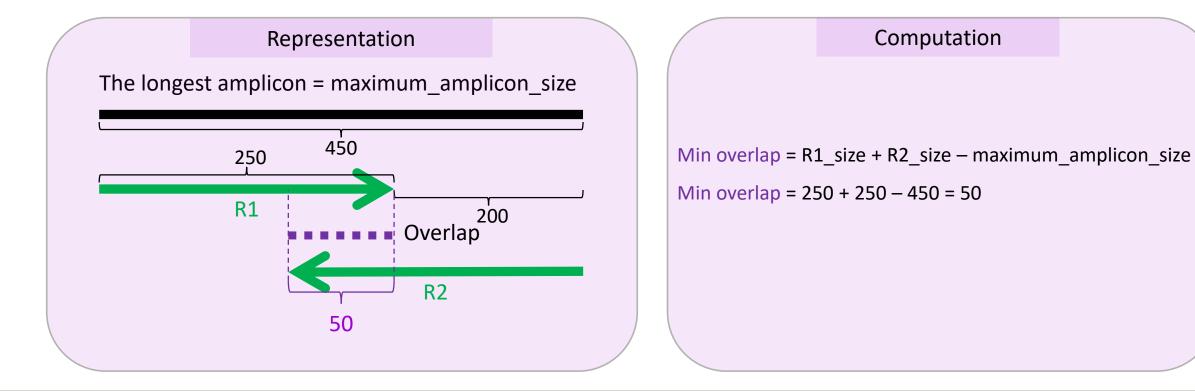
# The aim of Flash is to merge R1 with R2

2<sup>nd</sup> case: flash have to find overlapping region between R1 and R2



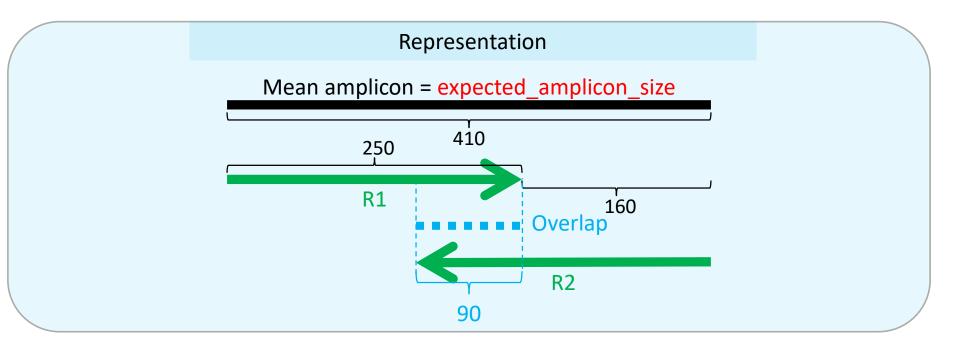
### The aim of Flash is to merge R1 with R2

### 3rd case: R1 and R2 cover entirely the target region






### Flash, have to determine the overlap size


### 1 - The Minimum overlap

R2



### 2 - The Maximum overlap:





### Computation

Expected\_overlap = R1\_size + R2\_size - expected\_amplicon\_size = 250 + 250 - 410 = 90 Maximum\_overlap = Expected\_overlap + min(20, (expected\_amplicon\_size - minimum\_amplicon\_size)/2) Maximum\_overlap = 90 + min(20, 410 - 340) Maximum\_overlap = 90 + min(20, 35) = 110

The flash maximum\_overlap is not the maximum overlap but the overlap for an amplicon size greater than 90% of the set of sizes. This is why we take the expected size (medium amplicon) and add a small correction factor. Anyway flash is not sensitive to the ten nucleotides.

### Waited data

| • | Reads 1 size           | $\rightarrow$ OK           | → 250                     |
|---|------------------------|----------------------------|---------------------------|
| • | Reads 2 size           | $\rightarrow$ OK           | $\rightarrow$ 250         |
| • | Expected amplicon size | More complex to understand | → 410                     |
| • | Minimum amplicon size  | $\rightarrow$ OK           | → 340                     |
| • | Maximum amplicon size  | $\rightarrow$ OK           | → 450                     |
| • | Sequencing protocol    | $\rightarrow$ OK           | ightarrow standard        |
| • | 5' primer              | $\rightarrow$ OK           | ightarrow CCGTCAATTC      |
| • | 3' primer              | $\rightarrow$ OK           | $\rightarrow$ CCGCNGCTGCT |

#### FROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication. (Galaxy Ver

#### Sequencer

#### Illumina

Select the sequencing technology used to produce the sequences.

#### Input type

#### Files by samples

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

#### Reads already contiged ?

| NO              |                                          |                   |
|-----------------|------------------------------------------|-------------------|
| The inputs cont | ain 1 file bu complex D1 and D2 are alre | ged by pair.      |
| Samples         | Sample name is requi                     | ired              |
| 1: Samples      |                                          |                   |
| Name            |                                          | Size with primers |
| sampleA         |                                          | Size with primers |
| The sample      | name.                                    |                   |

#### Reads 1

🕒 🖆 🗀 59: /work/formation/FROGS/sampleA\_R1.fastq

R1 FASTQ file of paired-end reads.

#### reads 2

🕒 🔁 🗅 60: /work/formation/FROGS/sampleA\_R2.fastq

R2 FASTQ file of paired-end reads.

#### + Insert Samples

#### Reads 1 size

#### 250

The read1 size.

#### Reads 2 size

250

The read2 size.

### >ERR619083.M00704

CCGTCAATTCATTGAGTTTCAACCTTGCGGCCGTACTTCCCAGGCGGTACGTT TATCGCGTTAGCTTCGCCAAGCACAGCATCCTGCGCCTTAGCCAACGTACATCG TTTAGGGTGTGGACTACCCGGGTATCTAATCCTGTTCGCTACCCACGCTTTCG AGCCTCAGCGTCAGTGACAGACCAGAGAGCCGCTTTCGCCACTGGTGTTCCTC CATATATCTACGCATTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGC ACTCAAGTCAGACAGTTTCCAGAGCACTCTATGGTTGAGCCATAGCCTTTTAC TCCAGACTTTCCTGACCGACTGCACTCGCTTTACGCCCAATAAATCCGGACAA

#### CGCTTGCCACCTACGTATTACCGCNGCTGCT

### Real 16S sequenced fragment

Miseq R1

**R**2

### Expected amplicon size

Maximum amplicon length expected in approximately 90% of the amplicons.

#### mismatch rate.

410

0.1

The maximum rate of mismatches in the overlap region

#### Minimum amplicon size

The minimum size for the amplicons.

#### Maximum amplicon size

450

340

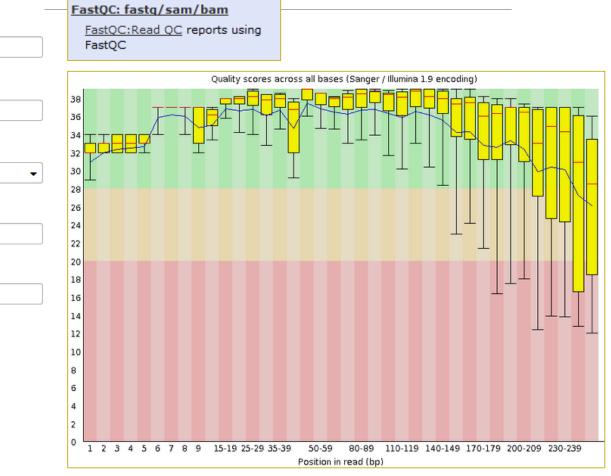
The maximum size for the amplicons.

#### Sequencing protocol

| Illumina standard                                                                                 |
|---------------------------------------------------------------------------------------------------|
| The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers. |

| 5' primer                 | Primers used for sequencing V5 region: |  |
|---------------------------|----------------------------------------|--|
| CCGTCAATTC                |                                        |  |
| The 5' primer sequence (w | Forward: CCGTCAATTC                    |  |
| 3' primer                 | Reverse: CCGCNGCTGCT                   |  |
| CCGCNGCTGCT               | Lecture $\Gamma' \ge 2'$               |  |
| The 3' primer sequence (w | Lecture $5' \rightarrow 3'$            |  |

#### 🗸 Execute


### Exercise 2.2

What do you understand about amplicon size, which file can help you ?
What is the length of your reads before preprocessing ?
Do you understand how enter your primers ?
What is the « FROGS Pre-process: dereplicated.fasta » file ?
What is the « FROGS Pre-process: count.tsv » file ?
What is the « FROGS Pre-process: report.tml »
Who loose a lot of sequences ?

#### Maximum amplicon length expected in approximately 90% of the amplicons. mismatch rate. 0.1 The maximum f mismatches in the overlap region Minimum amplicon size To increase, if your sequences 340 FastQC have low qualities The minimum size for the amplicons. Maximum amplicon size Use FASTQC to know it! 38 450 36 The maximum size for the amplicons. Sequencing protocol Illumina standard 30 • The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers. 28 26 5' primer 24 CCGTCAATTC 22 The 5' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'. 20 3' primer 18 CCGCNGCTGCT 16 The 3' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'. 14 12 Execute 10

Expected amplicon size

410



### Exercise 2.3

Go to« MiSeq merged » history

Launch the pre-process tool on that data set

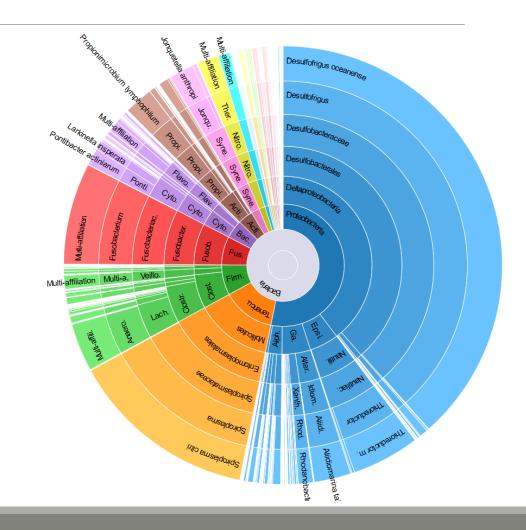
 $\rightarrow$  objective: understand output files

### Exercise 2.3

3 samples are **technically replicated** 3 times : 9 samples of 10 000 sequences each.

100\_10000seq\_sampleA1.fastq100\_10000seq\_sampleB1.fastq100\_10000seq\_sampleC1.fastq100\_10000seq\_sampleA2.fastq100\_10000seq\_sampleB2.fastq100\_10000seq\_sampleC2.fastq100\_10000seq\_sampleA3.fastq100\_10000seq\_sampleB3.fastq100\_10000seq\_sampleC3.fastq

Exercise 2.3


- 100 species, covering all bacterial phyla
- Power Law distribution of the species abundances
- Error rate calibrated with real sequencing runs
- 10% chimeras
- 9 samples of 10 000 sequences each (90 000 sequences)

Normal

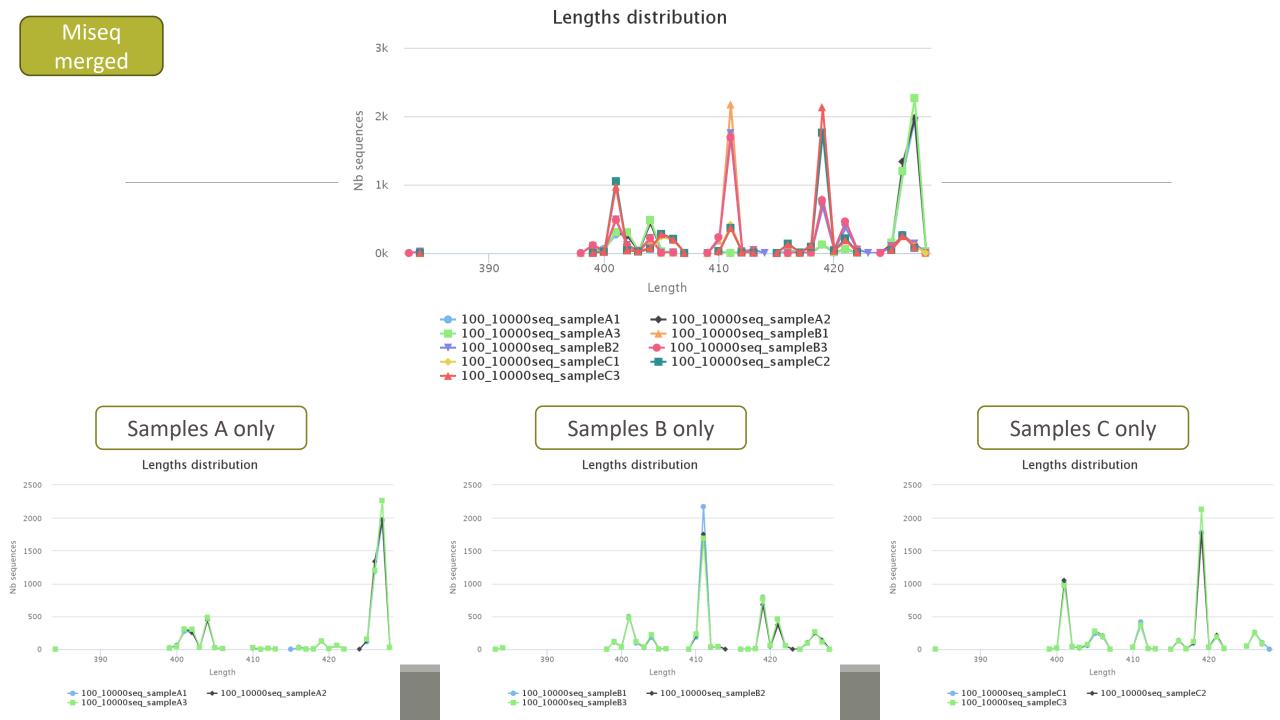
Distribution

Power Law

Distribution



Miseq merged


### Exercise 2.3

"Grinder (v 0.5.3) (Angly et al., 2012) was used to simulate the PCR amplification of full-length (V3-V4) sequences from reference databases. The reference database of size 100 were generated from the LTP SSU bank (version 115) (Yarza et al., 2008) by

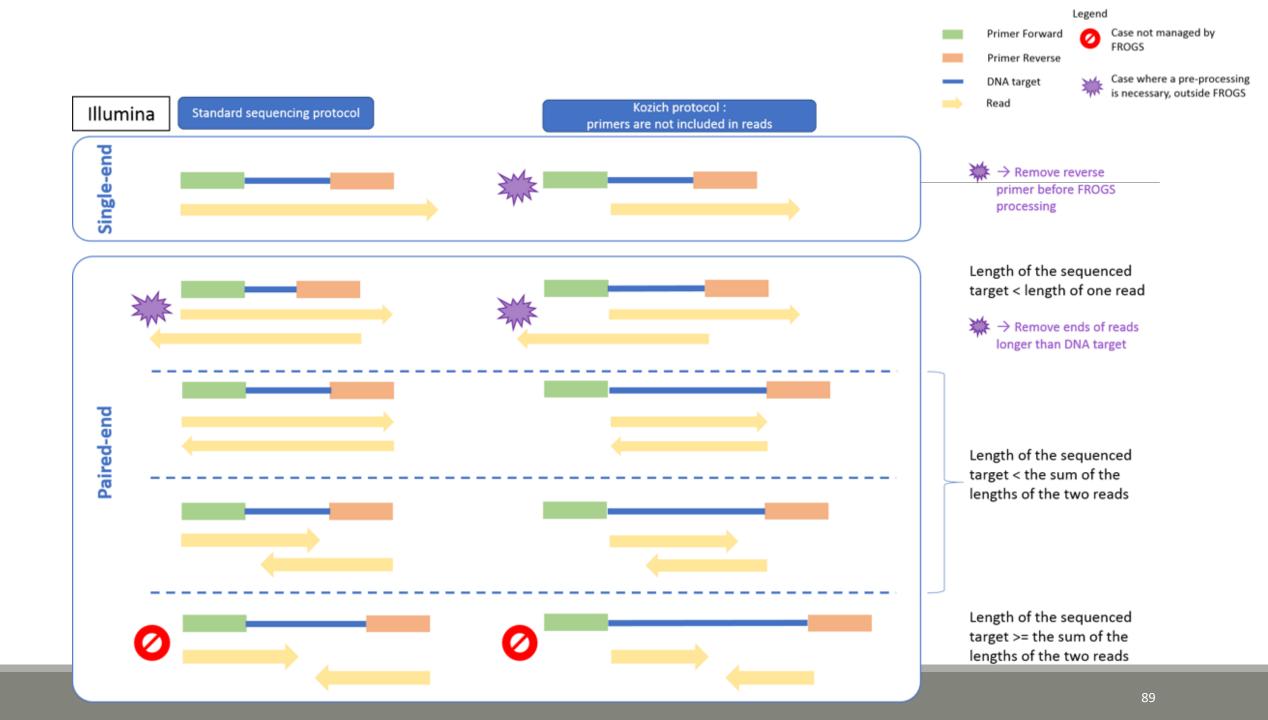
- (1) filtering out sequences with a N,
- (2) keeping only type species
- (3) with a match for the forward (ACGGRAGGCAGCAG) and reverse (TACCAGGGTATCTAATCCTA) primers in the V3-V4 region and
- (4) maximizing the phylogenetic diversity (PD) for a given database size. The PD was computed from the NJ tree distributed with the LTP."

### Miseq

| ROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication. (Galaxy Version 2.0.0) | - Options                                                                                       |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Sequencer                                                                                             |                                                                                                 |
| Illumina                                                                                              | •                                                                                               |
| Select the sequencing technology used to produce the sequences.                                       |                                                                                                 |
| Input type                                                                                            |                                                                                                 |
| Archive                                                                                               | ▼                                                                                               |
| Samples files can be provided in single archive or with two files (R1 and R2) by sample.              |                                                                                                 |
| Archive file                                                                                          | Amplicons lengths                                                                               |
| C     2: /work/formation/FROGS/100spec_90000seq_9samples.tar.gz                                       | ▼                                                                                               |
| The tar file containing the sequences file(s) for each sample.                                        | Lengths distribution                                                                            |
| Reads already contiged ?                                                                              | 3k                                                                                              |
| Yes                                                                                                   | •                                                                                               |
| The archive contains 1 file by sample : R1 and R2 are already merged by pair.                         | g 2k                                                                                            |
| Minimum amplicon size                                                                                 |                                                                                                 |
| 380                                                                                                   |                                                                                                 |
| The minimum size for the amplicons.                                                                   |                                                                                                 |
| Maximum amplicon size                                                                                 |                                                                                                 |
| 500                                                                                                   |                                                                                                 |
| The maximum size for the amplicons.                                                                   | → 100_10000seq_sampleA1 → 100_10000seq_sampleA2 → 100_10000seq_sampleA3 → 100_10000seq_sampleB1 |
| Sequencing protocol                                                                                   | → 100_10000seq_sampleB2                                                                         |
| Illumina standard                                                                                     |                                                                                                 |
| The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.     | Click on legend                                                                                 |
| 5' primer                                                                                             |                                                                                                 |
| ACGGGAGGCAGCAG                                                                                        |                                                                                                 |
| The 5' primer sequence (wildcards are accepted). The orientation is detai Primers used for            | or this sequencing :                                                                            |
| 3° primer                                                                                             |                                                                                                 |
| TAGGATTAGATACCCTGGTA 5' primer: AC                                                                    | GGGAGGCAGCAG                                                                                    |
| The 3' primer sequence (wildcards are accepted). The orientation is detai 3' primer: TAGG             | ATTAGATACCCTGGTA                                                                                |
|                                                                                                       |                                                                                                 |
| ✓ Execute Lectu                                                                                       | $re 5' \rightarrow 3'$                                                                          |

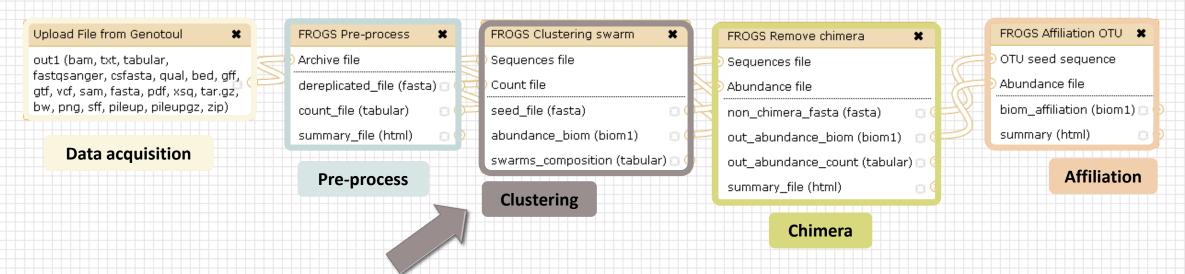


### Exercise 2.3 - Questions


- 1. How many sequences are there in the input file ?
- 2. How many sequences did not have the 5' primer?
- 3. How many sequences still are after pre-processing the data?
- 4. How much time did it take to pre-process the data ?
- 5. What can you tell about the sample based on sequence length distributions ?

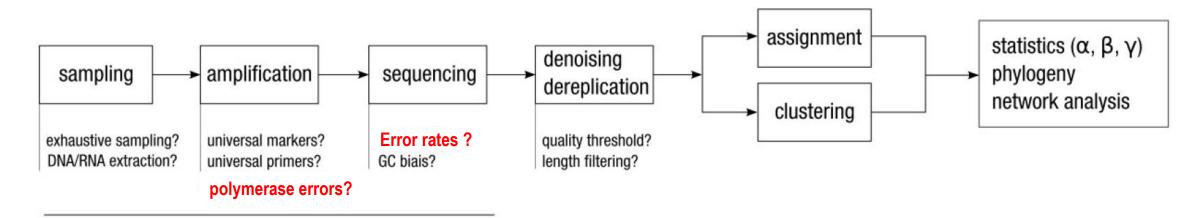
### Preprocess tool in bref

|                                    | Take in charge |
|------------------------------------|----------------|
| Illumina                           | $\checkmark$   |
| 454                                | $\checkmark$   |
| Merged data                        | $\checkmark$   |
| Not merged data                    | $\checkmark$   |
| Without primers                    | $\checkmark$   |
| Only R1 or only R2                 | $\bigotimes$   |
| Too distant R1 and R2 to be merged | soon           |
| On-overlapping R1 R2               | $\bigotimes$   |

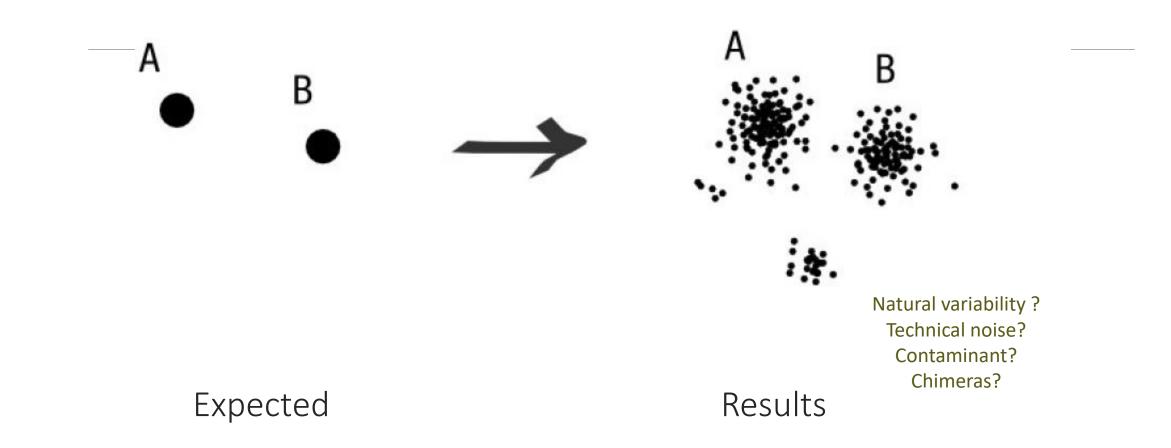

|                    | Take in charge |
|--------------------|----------------|
| Archive .tar.gz    | $\checkmark$   |
| Fastq              | $\checkmark$   |
| Fasta              | $\otimes$      |
| With only 1 primer | $\bigotimes$   |
| Multiplexed data   | $\otimes$      |
| Demultiplexed data | $\checkmark$   |
|                    |                |
|                    |                |
|                    |                |

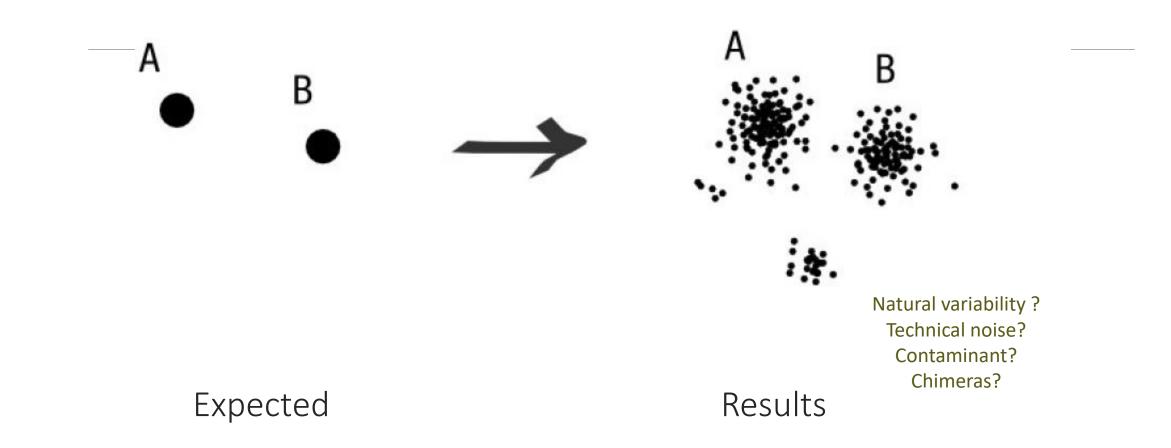


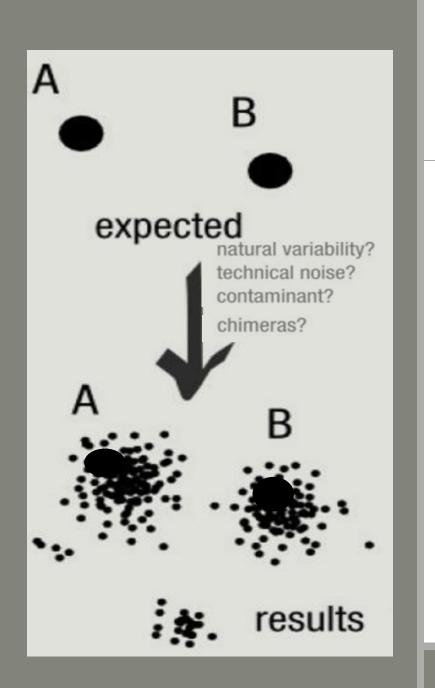



# Clustering tool







### Why do we need clustering ?


Amplication and sequencing and are not perfect processes

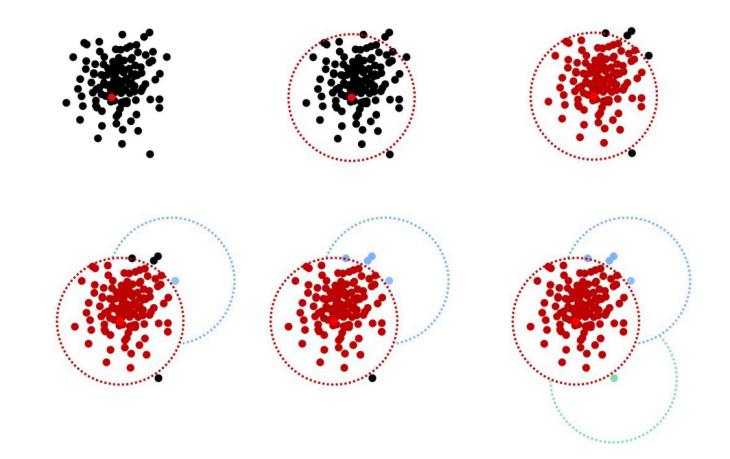


chemistry, physics and randomness



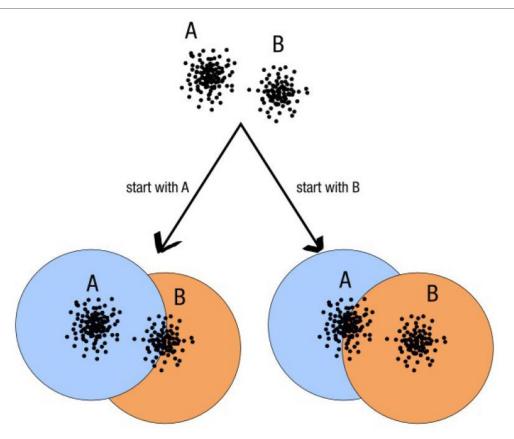





### To have the best accuracy:

### Method: All against all

- Very accurate
- Requires a lot of memory and/or time

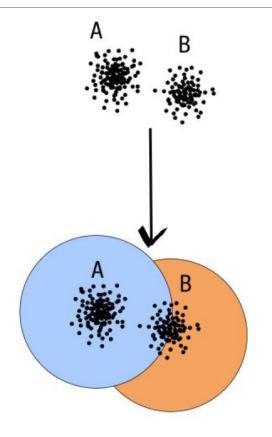

=> Impossible on very large datasets without strong filtering or sampling

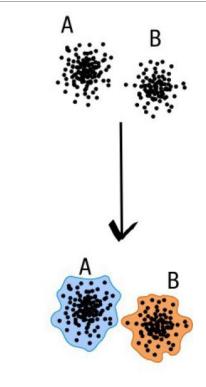
### How traditional clustering works ?



Fréderic Mahé communication

### Input order dependent results



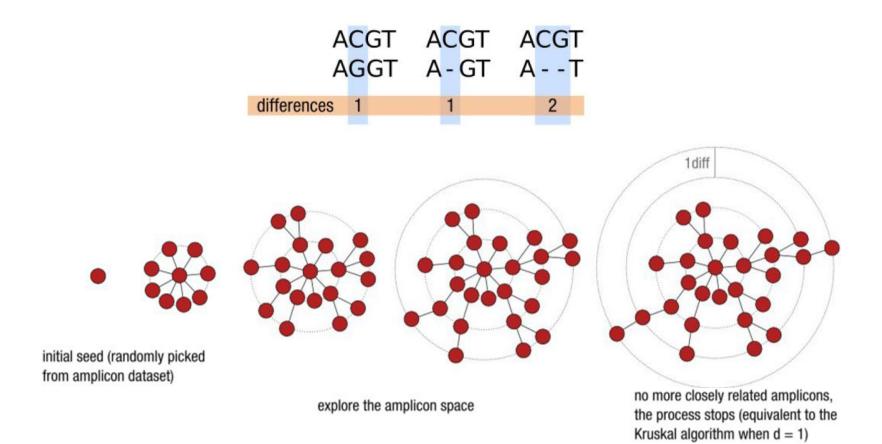


decreasing length, decreasing abundance, external references

### Fréderic Mahé communication

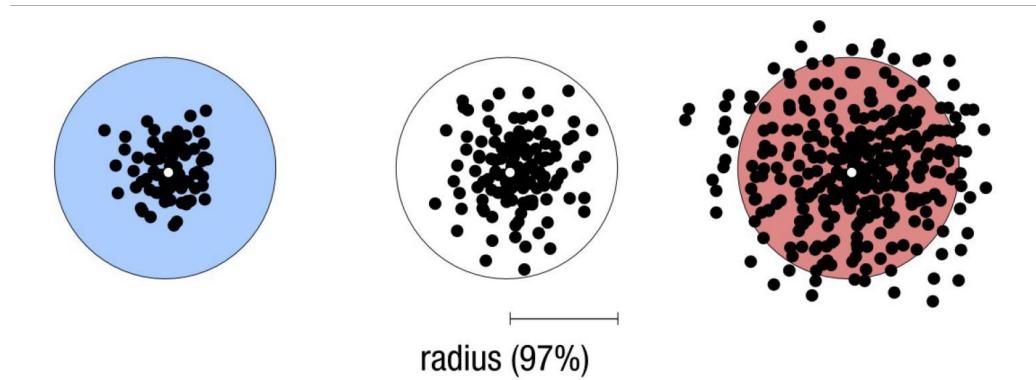
97

### Single a priori clustering threshold



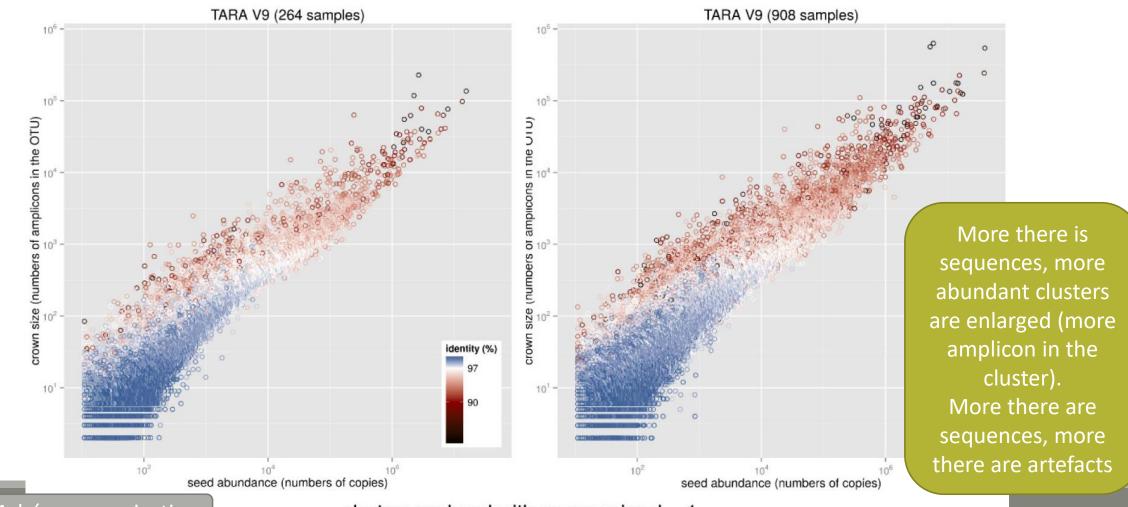



compromise threshold unadapted threshold


natural limits of clusters

Fréderic Mahé communication

### Swarm clustering method




### Comparison Swarm and 3% clusterings



Radius expressed as a percentage of identity with the central amplicon (97% is by far the most widely used clustering threshold)

### Comparison Swarm and 3% clusterings



clusters produced with swarm using d = 1

Fréderic Mahé communication



A robust and fast clustering method for amplicon-based studies.

The purpose of **swarm** is to provide a novel clustering algorithm to handle large sets of amplicons.

**swarm** results are resilient to input-order changes and rely on a small **local** linking threshold *d*, the maximum number of differences between two amplicons.

swarm forms stable high-resolution clusters, with a high yield of biological information.

Swarm: robust and fast clustering method for amplicon-based studies. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. PeerJ. 2014 Sep 25;2:e593. doi: 10.7717/peerj.593. eCollection 2014. PMID:25276506

| FROGS Clustering swarm         | FROGS Clustering swarm Step 2 in metagenomics analysis : clustering. (Galaxy Version 2.3.0) <ul> <li>Options</li> <li>Options<!--</th--></li></ul> |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sequences file                 | Sequences file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Count file                     | C 2: FROGS Pre-process: dereplicated.fasta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| abundance_biom (txt)           | The sequences file (format: fasta).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| seed_file (fasta)              | Count file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| swarms_composition (tabular) 🕤 | C       3: FROGS Pre-process: count.tsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                | It contains the count by sample for each sequence (format: TSV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Clustering                     | Aggregation distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                | Maximum number of differences between sequences in each aggregation step.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                | Performe denoising clustering step?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                | Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                | If checked, clustering will be perform in two steps, first with distance = 1 and then with your input distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                | ✓ Execute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                | 1st run for denoising:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                | Swarm with d = 1 -> high clusters definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                | linear complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                | intear complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                | 2 <sup>nd</sup> run for clustering:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                | Swarm with d = 3 on the seeds of first Swarm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                | quadratic complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                | quadratic complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                | Gain time !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                | Remove false positives !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |

## Cluster stat tool



### Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

×

### Data acquisition

| FROGS Pre-process 🗶           | FROGS Clustering swarm           | FROGS Remove chimera 🗱            | FROGS Affiliation OTU      |
|-------------------------------|----------------------------------|-----------------------------------|----------------------------|
| Archive file                  | Sequences file                   | Sequences file                    | OTU seed sequence          |
| dereplicated_file (fasta) 🗅 🗘 | Count file                       | Abundance file                    | > Abundance file           |
| count_file (tabular) 🛛 💿 🗘    | seed_file (fasta) 🛛 🔅 🕻          | non_chimera_fasta (fasta) 🛛 💿 🤇   | biom_affiliation (biom1) 🕞 |
| summary_file (html) 🛛 🔿 🔿     | abundance_biom (biom1) 🛛 🔾       | 😙 out_abundance_biom (biom1) 💿 긎  | summary (html) 🛛 💿         |
|                               | swarms_composition (tabular) 🗅 🤇 | out_abundance_count (tabular) 🗆 🤇 |                            |
| Pre-process                   | Clustering                       | summary_file (html)               | Affiliation                |
|                               |                                  | Chimera                           |                            |
|                               | FROGS Clusters stat 🗙            |                                   |                            |
|                               | Abundance file                   |                                   |                            |
|                               | summary_file (html)              |                                   |                            |
|                               |                                  |                                   |                            |
|                               | Cluster                          |                                   |                            |
|                               | Statistics                       |                                   |                            |

| FROGS Clusters stat Process some metrics on clusters. (Galaxy Version 1.4.0) |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|
| Abundance file                                                               |  |  |  |  |
| C C Sclustering swarm: abundance.biom                                        |  |  |  |  |
| Clusters abundance (format: BIOM).                                           |  |  |  |  |
| ✓ Execute                                                                    |  |  |  |  |
| • Excluse                                                                    |  |  |  |  |

# Your Turn! - 3

LAUNCH CLUSTERING AND CLUSTERSTAT TOOLS

### Exercise 3

Go to « MiSeq merged » history

Launch the Clustering SWARM tool on that data set with aggregation distance = 3 and the denoising

- $\rightarrow$  objectives :
  - understand the denoising efficiency
  - understand the ClusterStat utility

- 1. How much time does it take to finish?
- 2. How many clusters do you get ?



3. Edit the biom and fasta output dataset by adding d1d3

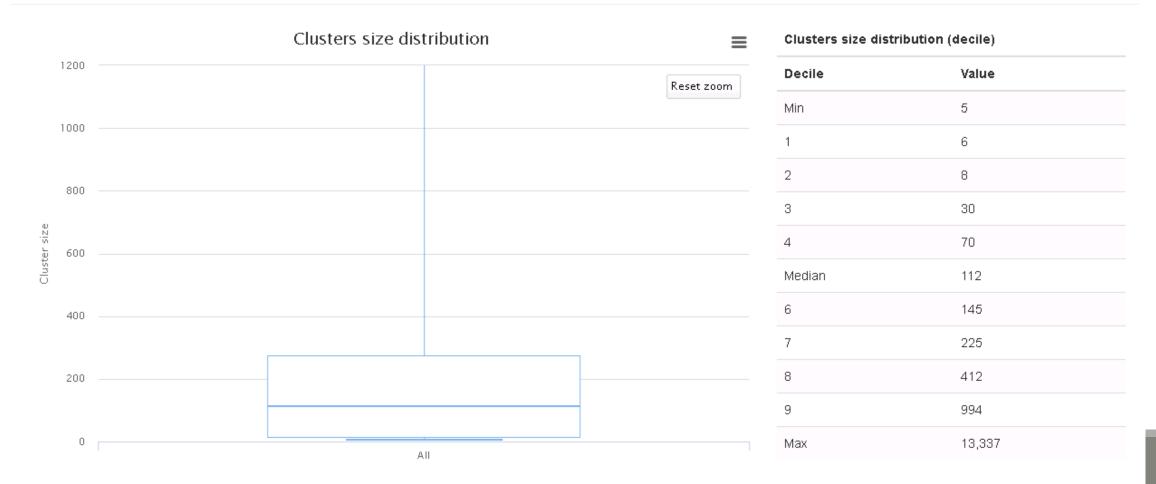
| <u>Attributes</u>            | Convert Format                      | <u>Datatype</u> | Permissions |
|------------------------------|-------------------------------------|-----------------|-------------|
| Edit Attribut                | tes                                 |                 |             |
| Name:<br>warm: seed<br>Info: | d_sequencesd1d3.f                   | asta            |             |
| /src/galaxy                  | /usr/local/bioinfo<br>-test/galaxy- | •               |             |
| Annotation                   | / Notes:                            |                 |             |

FROGS Clusters stat Process some metrics on clusters.

Ø

4. Launch FROGS Cluster Stat tools on the previous abundance biom file

- 5. Interpret the boxplot: Clusters size summary
- 6. Interpret the table: **Clusters size details**
- 7. What can we say by observing the **sequence distribution**?
- 8. How many clusters share "sampleB3" with at least one other sample?
- 9. How many clusters could we expect to be shared ?
- **10**. How many sequences represent the 550 specific clusters of "sampleC2"?
- **11**. This represents what proportion of "sampleC2"?
- **12**. What do you think about it?
- **13**. How do you interpret the « Hierarchical clustering » ?


The « Hierachical clustering » is established with a Bray Curtis distance particularly well adapted to abundance table of very heterogenous values (very big and very small figures).

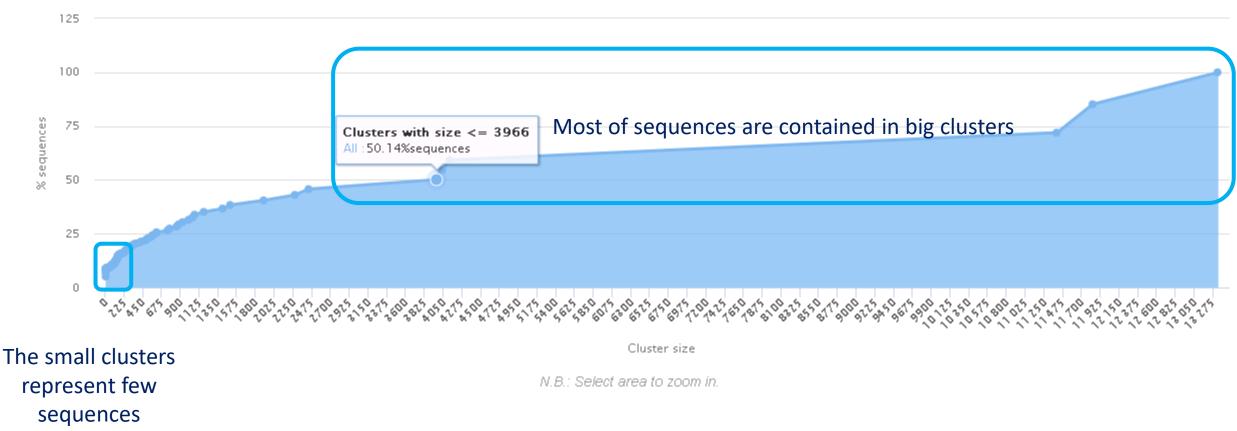
| - Sigenae - Welcome                                                   | mbernard               | Analyze Data Workflow Shared Data▼          | Visualization 🗸 Admin V | Help+ User+        |                     | Using                                                                    | 5%         |
|-----------------------------------------------------------------------|------------------------|---------------------------------------------|-------------------------|--------------------|---------------------|--------------------------------------------------------------------------|------------|
| Tools                                                                 | Clusters distribution  | Sequences distribution Samples distribution |                         |                    |                     |                                                                          |            |
| deepTools                                                             |                        |                                             |                         |                    |                     | sequences.fasta                                                          | ~ -        |
| FROGS - FIND RAPIDLY OTU<br>WITH GALAXY SOLUTION                      | 1                      |                                             |                         |                    |                     |                                                                          | 0 🛚        |
| FROGS pipeline                                                        | 1                      | Clusters                                    |                         | quences            |                     | <u>chimera: report.html</u>                                              |            |
| FROGS Upload archive from<br>your computer                            | 1                      | 5,945                                       | 05                      | 9,721              |                     | <u>13: FROGS Remove</u>                                                  | 0 🛛        |
| FROGS Demultiplex reads Split                                         |                        |                                             |                         |                    |                     | non chimera abundance.bio                                                | <u>sm</u>  |
| by samples the reads in function of inner barcode.                    | 1                      |                                             |                         | t of almost        |                     |                                                                          | 0 🛚        |
| FROGS Pre-process Step 1 in                                           | Clusters               | size summary                                |                         | st of cluste       | ers are singletons  | <u>chimera: non_chimera.fasta</u>                                        |            |
| metagenomics analysis:<br>denoising and dereplication.                |                        | Size carrinary                              |                         |                    |                     | 11: FROGS Clusters       Ø                                               | 0 %        |
| ROGS Clustering swarm Step                                            | 1                      | Clusters size distribution                  | _                       | Clusters size dist | etribution (decile) | summary swarm d1d3.html                                                  |            |
| 2 in metagenomics analysis :                                          | 15k                    |                                             | ≡                       |                    |                     | format: html, database: <u>?</u>                                         |            |
| clustering.<br>FROGS Remove chimera Step 3                            | ,                      |                                             |                         | Decile             | Value               | ## Application Software<br>:/usr/local/bioinfo/src/galaxy-               |            |
| in metagenomics analysis :                                            |                        |                                             |                         | Min                | 1                   | dev/galaxy-dist/tools/FROGS/to                                           | tools      |
| Remove PCR chimera in each<br>sample.                                 | 12.5k ———              |                                             |                         | 1                  | 1                   | /clusters_stat.py (version : 1.1<br>Command : /usr/local/bioinfo         | , í        |
| FROGS Filters Filters OTUs on                                         |                        |                                             |                         | 2                  | 1                   | <pre>/src/galaxy-dev/galaxy-dist/too /FROGS/tools/clusters_stat.py</pre> |            |
| several criteria.                                                     | 10k                    |                                             |                         |                    |                     | input-biom /galaxydata<br>/database/file                                 |            |
| <u>FROGS Affiliation OTU</u> Step 4<br>in metagenomics analysis :     | . a                    |                                             |                         | 3                  | 1                   |                                                                          | 2 🖻        |
| Taxonomic affiliation of each<br>OTU's seed by RDPtools and           | 20<br>15<br>19<br>7.5k |                                             |                         | 4                  | 1                   | HTML file                                                                |            |
| BLAST                                                                 | Unatsun<br>D           |                                             |                         | Median             | 1                   |                                                                          |            |
| FROGS BIOM to TSV Converts<br>a BIOM file in TSV file.                |                        |                                             |                         | 6                  | 1                   | <u>10: FROGS Clustering</u>                                              | 0 %        |
| FROGS Clusters stat Process                                           | 5k                     |                                             |                         |                    |                     | swarms composition d1d3.t                                                | <u>.sv</u> |
| some metrics on clusters.                                             | 4                      |                                             |                         | 7                  | 1                   |                                                                          | 0 %        |
| <u>FROGS Affiliations stat</u> Process<br>some metrics on taxonomies. | 2.5k                   |                                             |                         | 8                  | 2                   | swarm: abundance_d1d3.bio                                                |            |
| FROGS BIOM to std BIOM                                                | 4                      |                                             |                         | 9                  | 2                   | 8: FROGS Clustering @ 0<br>swarm:                                        | 0 %        |
| Converts a FROGS BIOM in<br>fully compatible BIOM.                    | 0k                     |                                             |                         | Max                | 13,337              | seed sequences d1d3.fasta                                                |            |
| FROGS Abundance                                                       |                        | All                                         |                         | 111023             | 10,001              | 7: FROGS Pre-process:                                                    | 1 🛚        |
| normalisation                                                         | 4                      |                                             |                         |                    |                     | report.html                                                              |            |
|                                                                       |                        |                                             |                         |                    |                     |                                                                          | n \infty   |
|                                                                       |                        |                                             |                         |                    |                     | 110                                                                      |            |





### Clusters size summary

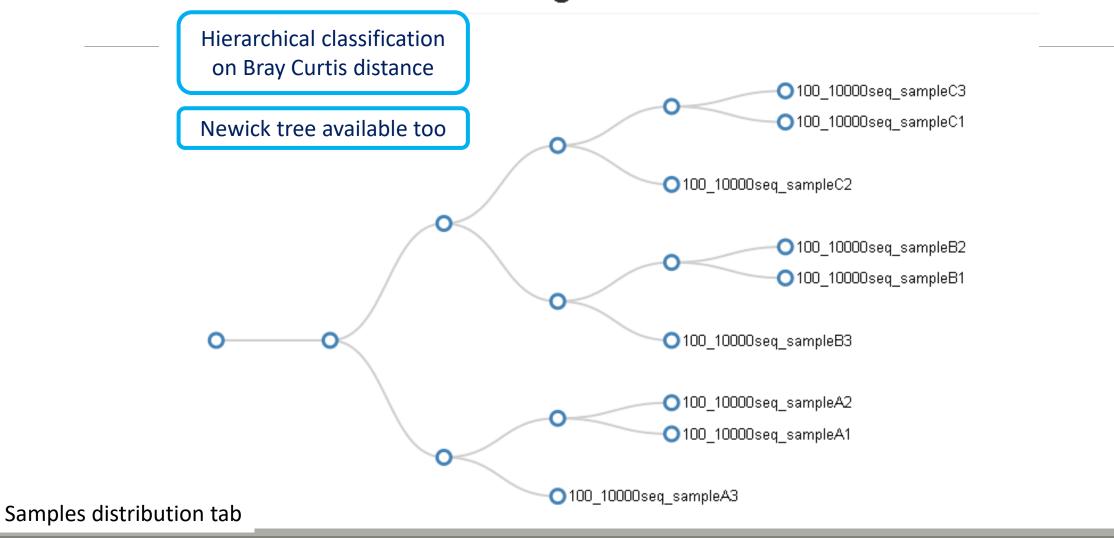



### **Clusters size details**

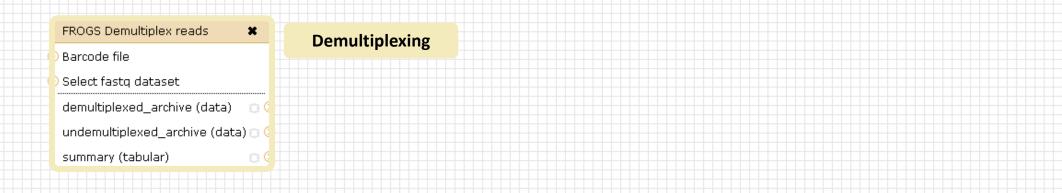
|                   | Most of clusters are singletons |         | kcsv |
|-------------------|---------------------------------|---------|------|
| Show 10 - entries |                                 | Search: |      |

**Clusters size** 

| Cluster size | Number of cluster | % of all clusters |
|--------------|-------------------|-------------------|
| 1            | 4,595             | 77.36             |
| 2            | 866               | 14.58             |
| 3            | 155               | 2.61              |
| 4 After      | 83                | 1.40              |
| 5 clustering | 42                | 0.71              |
| 6            | 29                | 0.49              |
| 7            | 22                | 0.37              |
| 8            | 13                | 0.22              |
| 9            | 6                 | 0.10              |
| 10           | 6                 | 0.10              |







 $\equiv$ 

| Sequences<br>Show 10 • entries<br>Samples information | 367 clusters of sampleA1<br>are common at least<br>once with another<br>sample | 58 % of the specific clusters of sampleA1<br>represent around 5% of sequences<br>Could be interesting to remove if individual<br>variability is not the concern of user |                  |               | <b>₿</b> csv |
|-------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--------------|
| Sample                                                | Shared clusters                                                                | Own clusters                                                                                                                                                            | Shared sequences | Own sequences | ÷            |
| 100_10000seq_sampleA1                                 | 367                                                                            | 513                                                                                                                                                                     | 9,447            | 528           |              |
| 100_10000seq_sampleA2                                 | 365                                                                            | 490                                                                                                                                                                     | 9,476            | 503           |              |
| 100_10000seq_sampleA3                                 | 384                                                                            | 483                                                                                                                                                                     | 9,478            | 494           |              |
| 100_10000seq_sampleB1                                 | 395                                                                            | 548                                                                                                                                                                     | 9,397            | 572           |              |
| 100_10000seq_sampleB2                                 | 375                                                                            | 508                                                                                                                                                                     | 9,455            | 515           |              |
| 100_10000seq_sampleB3                                 | 376                                                                            | 562                                                                                                                                                                     | 9,388            | 579           |              |
| 100_10000seq_sampleC1                                 | 372                                                                            | 539                                                                                                                                                                     | 9,413            | 552           |              |
| 100_10000seq_sampleC2                                 | 389                                                                            | 550                                                                                                                                                                     | 9,408            | 567           |              |
| 100_10000seq_sampleC3                                 | 361                                                                            | 516                                                                                                                                                                     | 9,442            | 525           |              |
| Showing 1 to 9 of 9 entries                           |                                                                                |                                                                                                                                                                         |                  | Previous 1    | Next         |

### Hierachical clustering



# Chimera removal tool



#### Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

×

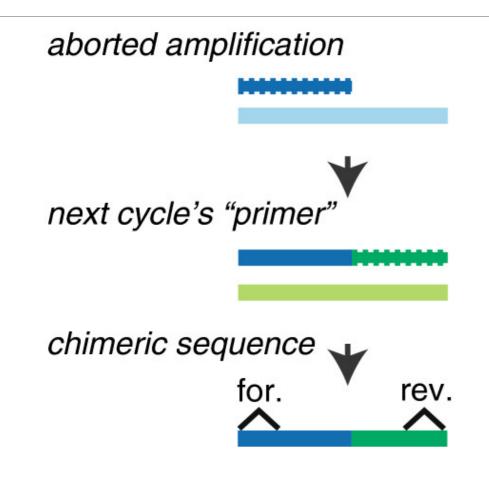
#### Data acquisition

| FROGS Pre-process X             | FROGS Clustering swarm           |
|---------------------------------|----------------------------------|
| Archive file                    | Sequences file                   |
| dereplicated_file (fasta) 🛛 🤇 🛃 | Count file                       |
| count_file (tabular) 🛛 💿 ( 🍹    | seed_file (fasta) 🛛 🛛 🕞          |
| summary_file (html) 🛛 🔿 🔿       | abundance_biom (biom1) 💿 🖙       |
|                                 | swarms_composition (tabular) 🗅 🗲 |
| Pre-process                     | Clustering                       |
|                                 |                                  |
|                                 | FROGS Clusters stat 🗙            |
|                                 | Abundance file                   |
|                                 | summary_file (html) 🖂 🗘          |

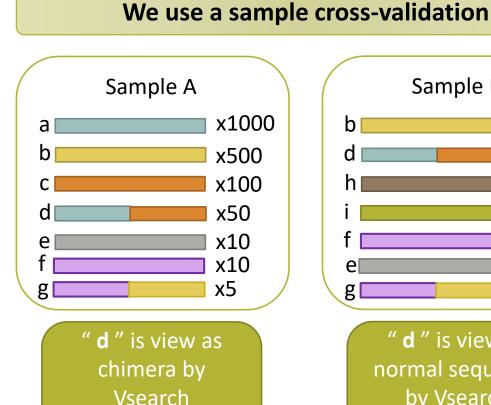
#### Cluster **Statistics**

#### FROGS Remove chimera × Sequences file Abundance file non\_chimera\_fasta (fasta) out\_abundance\_biom (biom1) out\_abundance\_count (tabular) 🗇 🤇 summary\_file (html)

Chimera

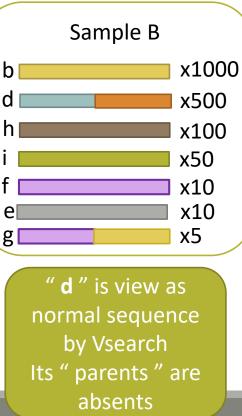

### FROGS Affiliation OTU OTU seed sequence Abundance file biom\_affiliation (biom1) summary (html) Affiliation

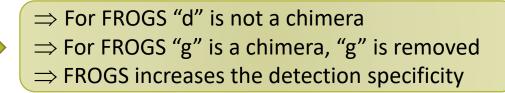
Our advice: Removing Chimera after Swarm denoising + Swarm d=3, for saving time without sensitivity loss


# What is chimera ?

PCR-generated chimeras are typically created when an aborted amplicon acts as a primer for a heterologous template. Subsequent chimeras are about the same length as the non-chimeric amplicon and contain the forward (for.) and reverse (rev.) primer sequence at each end of the amplicon.

Chimera: from 5 to 45% of reads (Schloss 2011)





# A smart removal chimera to be accurate



Its " parents " are

presents





# Your Turn! - 4

LAUNCH THE REMOVE CHIMERA TOOL

Go to « MiSeq merged » history

Launch the « FROGS Remove Chimera » tool

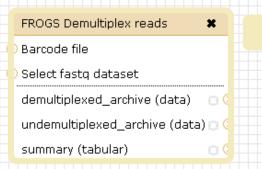
Follow by the « FROGS ClusterStat » tool on the swarm d1d3 non chimera abundance biom

 $\rightarrow$  objectives :

- understand the efficiency of the chimera removal
- make links between small abundant OTUs and chimeras

|                                                                   | FROGS Remove chimera Step 3 in metagenomics analysis : Remove PCR chimera in each sample. (Galaxy Version 1.3.0)                                                                     | <ul> <li>Options</li> </ul> |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| FROGS Remove chimera 🗶                                            | Sequences file<br>5: FROGS Clustering swarm: seed_sequences.fasta<br>The sequences file (format: fasta).                                                                             | •                           |
| ) Abundance file                                                  | Abundance type                                                                                                                                                                       |                             |
| non_chimera_fasta (fasta) 🛛 🖸 🤆<br>out_abundance_biom (biom1) 🔄 🕼 | BIOM file                                                                                                                                                                            | -                           |
| out_abundance_count (tabular) 🖸 🤇                                 | Select the type of file where the abundance of each sequence by sample is stored. Abundance file                                                                                     |                             |
| summary_file (html)                                               | Image: Contains the count by sample for each sequence.         Image: Contains the count by sample for each sequence.         Image: Contains the count by sample for each sequence. |                             |

Miseq merged


### Exercise 4

- 1. Understand the « FROGS remove chimera : report.html»
  - a. How many clusters are kept after chimera removal?
  - b. How many sequences that represent ? So what abundance?
  - c. What do you conclude ?

- 2. Launch « FROGS ClusterStat » tool on non\_chimera\_abundanced1d3.biom
- 3. Rename output in summary\_nonchimera\_d1d3.html
- 4. Compare the HTML files
  - a. Of what are mainly composed singleton ? (compare with precedent summary.html)
  - b. What are their abundance?
  - c. What do you conclude ?

The weakly abundant Clusters are mainly false positives, our data would be much more exact if we remove them

# Filters tool



#### Upload File from Genotoul × out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff,

gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

#### Data acquisition

| FROGS Pre-process 🗶           | FROGS Clu    |
|-------------------------------|--------------|
| Archive file                  | ) Sequences  |
| dereplicated_file (fasta) 💿 🧮 | ) Count file |
| count_file (tabular) 🛛 💿 🖙    | seed_file (  |
| summary_file (html) 🛛 💿 🖓 🗔   | abundance    |
|                               | swarms_c     |
| Pre-process                   | Cluster      |
|                               |              |
|                               |              |

Demultiplexing

### ustering swarm × s file (fasta) 0 ce\_biom (biom1) 0( composition (tabular) | ring FROGS Clusters stat X Abundance file summary\_file (html) 🔅 Cluster


**Statistics** 

#### FROGS Affiliation OTU FROGS Remove chimera × OTU seed sequence Sequences file Abundance file Abundance file biom\_affiliation (biom1) 🖂 non\_chimera\_fasta (fasta) 00 summary (html) out\_abundance\_biom (biom1) 🛛 🔅 🔅 out\_abundance\_count (tabular) 🗇 🤇 Affiliation summary\_file (html) Chimera FROGS Filters × Sequences file Abundance file output\_fasta (fasta) 0 output\_biom (biom1) output\_excluded (tabular) 🗇

output\_summary (html)

**Filters** 





### Apply filters between "Chimera Removal " and "Affiliation". Remove OTUs with weak abundance and non redundant before affiliation.

You will gain time !

# Filters

Filters allows to filter the result thanks to different criteria et may be used after different steps of pipeline :

- On the abundance
- On RDP affiliationOn Blast affiliation
- On phix contaminant

| FROGS Filters             | • |
|---------------------------|---|
| Sequences file            |   |
| Abundance file            |   |
| output_fasta (fasta)      | Э |
| output_biom (biom1)       | Э |
| output_excluded (tabular) | Э |
| output_summary (html)     | Э |

#### Filters

### 4 filter sections

| 9: FROGS Remove chimera: non_chimera.fasta                                                                                       |                           |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| The sequence file to filter (format: fasta).                                                                                     |                           |
| Abundance file                                                                                                                   |                           |
|                                                                                                                                  | •                         |
| 10: FROGS Remove chimera: non_chimera_abundance.biom                                                                             |                           |
| The abundance file to filter (format: BIOM).                                                                                     |                           |
| *** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE                                                            |                           |
| Apply filters                                                                                                                    | Abundance filters         |
| If you want to filter OTUs on their abundance and occurrence.                                                                    |                           |
| Minimum number of samples                                                                                                        |                           |
|                                                                                                                                  |                           |
| Fill the field only if you want this treatment. Keep OTU present in at least this number of samples.                             |                           |
| Minimum proportion/number of sequences to keep OTU                                                                               |                           |
|                                                                                                                                  |                           |
| Fill the field only if you want this treatment. Use decimal notation for proportion (example: 0.01 for keep OTU with at least 1% | % of all sequences) ;     |
| Use integer notation for number of sequence (example: 2 for keep OTU with at least 2 sequences, so remove single singleton)      | n).                       |
| N biggest OTU                                                                                                                    |                           |
|                                                                                                                                  |                           |
| Fill the fields only if you want this treatment. Keep the N biggest OTU.                                                         |                           |
| *** THE FILTERS ON RDP                                                                                                           |                           |
| Apply filters                                                                                                                    | RDP affiliation filters   |
| If you want to filter OTUs on their taxonomic affiliation produced by RDP.                                                       | NDF anniation miters      |
| Rank with the bootstrap filter                                                                                                   |                           |
| Nothing selected                                                                                                                 | <b></b>                   |
|                                                                                                                                  | •                         |
| Minimum bootstrap % (between 0 and 1)                                                                                            |                           |
|                                                                                                                                  |                           |
| *** THE FILTERS ON BLAST                                                                                                         |                           |
| Apply filters                                                                                                                    | BLAST affiliation filters |
| Apply liners<br>If you want to filter OTUs on their taxonomic affiliation produced by Blast.                                     | DLAST diffidulut fillers  |
| Maximum e-value (between 0 and 1)                                                                                                |                           |
|                                                                                                                                  |                           |
| Fill the field only if you want this treatment                                                                                   |                           |
| Minimum identity % (between 0 and 1)                                                                                             |                           |
|                                                                                                                                  |                           |
|                                                                                                                                  |                           |
| Fill the field only if you want this treatment                                                                                   |                           |
| Minimum coverage % (between 0 and 1)                                                                                             |                           |
|                                                                                                                                  |                           |
| Fill the field only if you want this treatment                                                                                   |                           |
| Minimum alignment length                                                                                                         |                           |
|                                                                                                                                  |                           |
| Fill the field only if you want this treatment                                                                                   |                           |
| *** THE FILTERS ON CONTAMINATIONS                                                                                                |                           |
| Apply filters                                                                                                                    | Contamination filter      |
| If you want to filter OTUs on classical contaminations.                                                                          | Containination miter      |
| Cotaminant databank                                                                                                              |                           |
| phiX                                                                                                                             | ▼                         |
| pmix<br>The phiX databank (the phiX is a control added in Illumina sequencing technologies).                                     |                           |
|                                                                                                                                  |                           |
| ✓ Execute                                                                                                                        |                           |

▼ Options

.

131

FROGS Filters Filters OTUs on several criteria. (Galaxy Version 1.2.0)

Sequences file



| Sequences file                               |                                    |
|----------------------------------------------|------------------------------------|
| C & C                                        | •                                  |
| 9: FROGS Remove chimera: non_chimera.fasta   |                                    |
| The sequence file to filter (format: fasta). | Fasta sequences and its            |
| Abundance file                               | corresponding abundance biom files |
| C & C                                        | corresponding abundance bioin mes  |
| 10: FROGS Remove chimera: non_chimera_abun   | idance, biom                       |

### Filter 1 : abundance

| *** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apply filters                                                                                                                                                                                                                                                                        |
| If you want to filter OTUs on their abundance and occurrence.                                                                                                                                                                                                                        |
| Minimum number of samples                                                                                                                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                    |
| Fill the field only if you want this treatment. Keep OTU present in at least this number of samples.                                                                                                                                                                                 |
| Minimum proportion/number of sequences to keep OTU                                                                                                                                                                                                                                   |
| 0.00005                                                                                                                                                                                                                                                                              |
| Fill the field only if you want this treatment. Use decimal notation for proportion (example: 0.01 for keep OTU with at least 1% of all sequences) ;<br>Use integer notation for number of sequence (example: 2 for keep OTU with at least 2 sequences, so remove single singleton). |
| N biggest OTU                                                                                                                                                                                                                                                                        |
| 100                                                                                                                                                                                                                                                                                  |
| Fill the fields only if you want this treatment. Keep the N biggest OTU.                                                                                                                                                                                                             |

| *** THE FILTERS ON RDP                                                    |               |
|---------------------------------------------------------------------------|---------------|
| Apply filters                                                             | -             |
| f you want to filter OTUs on their taxonomic affiliation produced by RDP. |               |
| Rank with the bootstrap filter                                            | Filter 2 & 3: |
| Genus                                                                     | offiliation   |
| Minimum bootstrap % (between 0 and 1)                                     | affiliation   |
| 0.8                                                                       |               |
| *** THE FILTERS ON BLAST                                                  |               |
| Apply filters                                                             | -             |
| you want to filter OTUs on their taxonomic affiliation produced by Blast. |               |
| Maximum e-value (between 0 and 1)                                         |               |
|                                                                           |               |
| Fill the field only if you want this treatment                            |               |
| Minimum identity % (between 0 and 1)                                      |               |
| 1                                                                         |               |
| Fill the field only if you want this treatment                            |               |
| Minimum coverage % (between 0 and 1)                                      |               |
| 0.95                                                                      |               |
| Fill the field only if you want this treatment                            |               |
|                                                                           |               |
| Minimum alignment length                                                  |               |
|                                                                           |               |
| Fill the field only if you want this treatment                            |               |

# Filter 4 : contamination

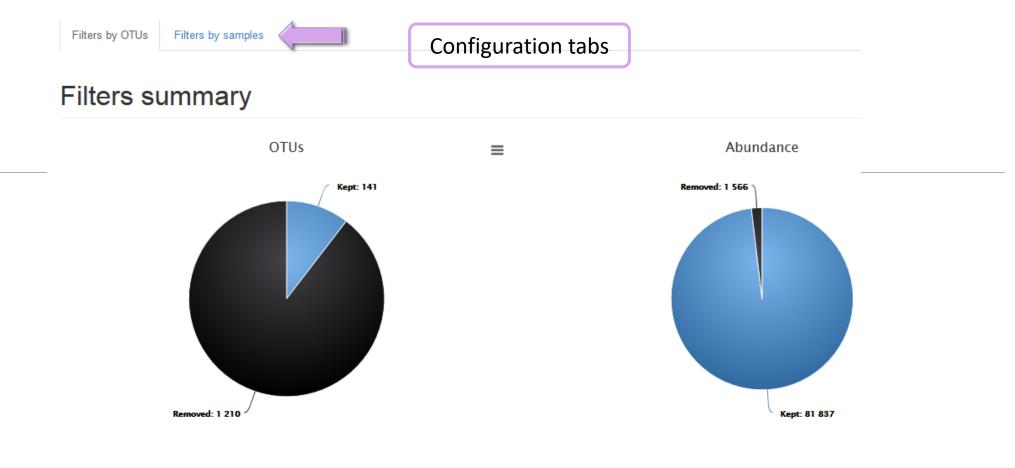
| Cotaminant databank                                                                  |
|--------------------------------------------------------------------------------------|
| phiX                                                                                 |
| The phiX databank (the phiX is a control added in Illumina sequencing technologies). |

Soon, several contaminant banks

# Your Turn! - 5

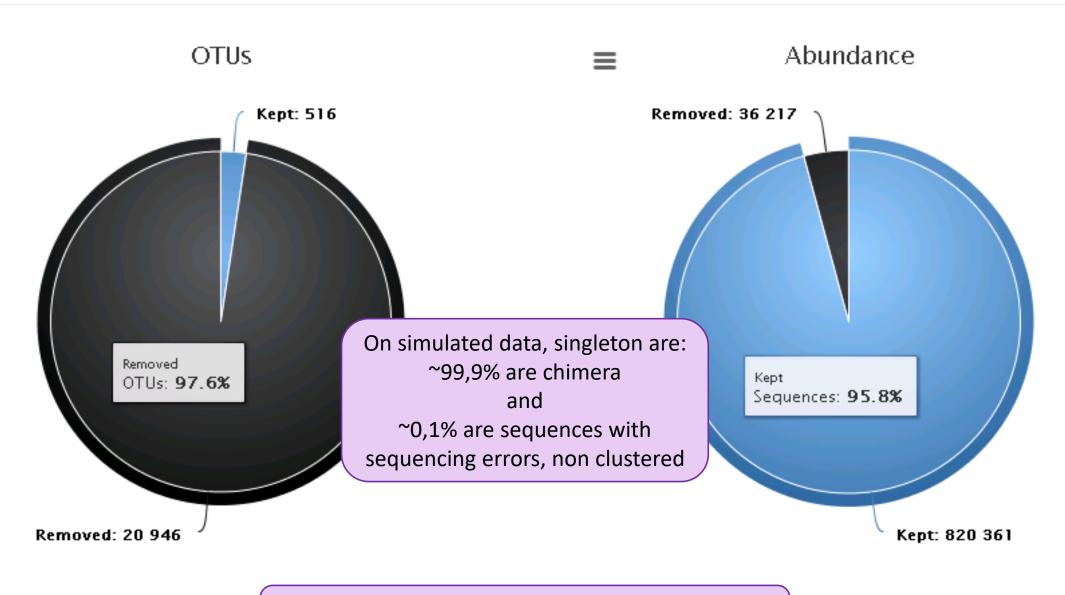
LAUNCH THE « FILTERS » TOOL

Go to history « MiSeq merged »


Launch « Filters » tool with non\_chimera\_abundanced1d3.biom, non\_chimerad1d3.fasta Apply 2 filters :

- Minimum proportion/number of sequences to keep OTU: 0.00005\*
- Minimum number of samples: 3

 $\rightarrow$  objective : play with filters, understand their impacts on falses-positives OTUs

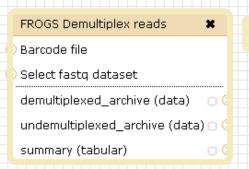

| FROGS Filters 🗶               | FROGS Filters Filters OTUs on several criteria. (Galaxy Version 1.2.0)                                                                                                                                                                                                         | ptions             |                    |        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------|
| Sequences file                | Sequences file                                                                                                                                                                                                                                                                 |                    | Output             |        |
| Abundance file                | 1 2 9: FROGS Remove chimera: non_chimera.fasta                                                                                                                                                                                                                                 | •                  |                    |        |
| output_fasta (fasta) 🛛 🔘 🤇    | The sequence file to filter (format: fasta).                                                                                                                                                                                                                                   |                    |                    |        |
| output_biom (biom1) 🛛 🔅 🤇     | Abundance file                                                                                                                                                                                                                                                                 |                    |                    |        |
| output_excluded (tabular) 🖂 🤇 | 10: FROGS Remove chimera: non_chimera_abundance.biom                                                                                                                                                                                                                           | •                  | 92: FROGS Filters: | • / %  |
| output_summary (html) 🛛 🔾     | The abundance file to filter (format: BIOM).                                                                                                                                                                                                                                   |                    | <u>report.html</u> |        |
|                               | *** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE                                                                                                                                                                                                          |                    | 91: FROGS Filters: | • / ×  |
| Filters                       | Apply filters                                                                                                                                                                                                                                                                  | ▼                  | excluded.tsv       | - / // |
|                               | If you want to filter OTUs on their abundance and occurrence.                                                                                                                                                                                                                  |                    |                    |        |
|                               | Minimum number of samples                                                                                                                                                                                                                                                      |                    | 90: FROGS Filters: |        |
|                               | 3                                                                                                                                                                                                                                                                              |                    | abundance.biom     |        |
|                               | Fill the field only if you want this treatment. Keep OTU present in at least this number of samples.                                                                                                                                                                           |                    | 89: FROGS Filters: | • / ×  |
|                               | Minimum proportion/number of sequences to keep OTU                                                                                                                                                                                                                             |                    | sequences.fasta    | - / // |
|                               | 0.00005                                                                                                                                                                                                                                                                        |                    |                    |        |
|                               | Fill the field only if you want this treatment. Use decimal notation for proportion (example: 0.01 for keep OTU with at least 1% of a sequences); Use integer notation for number of sequence (example: 2 for keep OTU with at least 2 sequences, so remove single singleton). |                    |                    |        |
|                               | N biggest OTU                                                                                                                                                                                                                                                                  |                    |                    |        |
|                               |                                                                                                                                                                                                                                                                                |                    |                    |        |
|                               | Fill the fields only if you want this treatment. Keep the N biggest OTU.                                                                                                                                                                                                       | $1 \setminus L$    |                    |        |
|                               | *** THE FILTERS ON RDP                                                                                                                                                                                                                                                         |                    |                    |        |
|                               | No filters                                                                                                                                                                                                                                                                     | Filters fields are |                    |        |
|                               | If you want to filter OTUs on their taxonomic affiliation produced by RDP.                                                                                                                                                                                                     | oply » so you hav  | /e                 |        |
|                               |                                                                                                                                                                                                                                                                                | fill at one field. |                    |        |
|                               | No filters                                                                                                                                                                                                                                                                     |                    |                    |        |
|                               | If you want to finder of os on their taxonomic anniation produced by blast.                                                                                                                                                                                                    | therwise, galaxy   |                    |        |
|                               | *** THE FILTERS ON CONTAMINATIONS                                                                                                                                                                                                                                              | become red !       |                    |        |
|                               | No filters                                                                                                                                                                                                                                                                     |                    |                    |        |
|                               | If you want to filter OTUs on classical contaminations.                                                                                                                                                                                                                        | $1 \wedge 1$       |                    |        |
|                               | ✓ Execute                                                                                                                                                                                                                                                                      |                    |                    |        |
|                               |                                                                                                                                                                                                                                                                                |                    |                    |        |

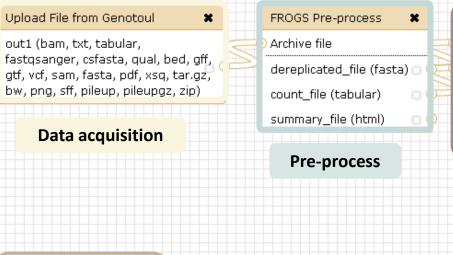
- **1**. What are the output files of "Filters" ?
- 2. Explore "FROGS Filter : report.html" file.
- 3. How many OTUs have you removed ?
- 4. Build the Venn diagram on the two filters.
- 5. How many OTUs have you removed with each filter "abundance > 0.005%", "Remove OTUs that are not present at least in 3 samples"?
- 6. How many OTUs do they remain ?
- 7. Is there a sample more impacted than the others ?
- 8. To characterize these new OTUs, do not forget to launch "FROGS Cluster Stat" tool, and rename the output HTML file.



### **Filters intersections**

| Draw a Venn to see which OTUs had been deleted by the filters chosen (Maximum 6 options): |
|-------------------------------------------------------------------------------------------|
| Present in minus of 3 samples                                                             |
| Abundance < 5e-05                                                                         |
| alt Venn                                                                                  |





Removing little OTUs (conservation rate =0.005%) and non shared OTU (in less than 2 samples)

#### Venn on removed OTUs



# Affiliation tool





 FROGS BIOM to TSV
 X

 Abundance file
 Sequences file

 tsv\_file (tabular)
 Imulti\_affi\_file (tabular)

Convert to TSV

|     | FROGS Clustering swarm       | FROGS Rer   |
|-----|------------------------------|-------------|
| Ħ   | ) Sequences file 🛛 💳         | ) Sequences |
| NV. | ) Count file                 | Abundance   |
| È   | seed_file (fasta) 💿 🛛 🔀      | non_chime   |
|     | abundance_biom (biom1) 🛛 🙃 🖙 | out_abund   |
|     | swarms_composition (tabular) | out_abund   |
|     | Clustering                   | summary_f   |
|     | clustering                   |             |
|     |                              |             |
|     |                              |             |
|     | FROGS Clusters stat 🕊        |             |
| 1   | 🔁 Abundance file             |             |

summary\_file (html) 🖂 🤇

Cluster

**Statistics** 

Demultiplexing

### FROGS Affiliation OTU OTU seed sequence Abundance file biom\_affiliation (biom1) summary (html) Affiliation

×

0(

Abundance file

output\_fasta (fasta)

output\_biom (biom1)

output\_summary (html)

output\_excluded (tabular) 🗇

14

**Filters** 

| FROGS Affiliation OTU X    |                                                       |                         |                                            |           |
|----------------------------|-------------------------------------------------------|-------------------------|--------------------------------------------|-----------|
| OTU seed sequence          |                                                       |                         |                                            |           |
| Abundance file             |                                                       |                         |                                            |           |
| biom_affiliation (biom1) 🔅 |                                                       |                         |                                            |           |
| summary (html) 🔅           |                                                       |                         |                                            |           |
| Affiliation                | FROGS Affiliation OTU Step 4 in metagenomics analysis | : Taxonomic affiliation | n of each OTH's seed by RDPtools and BLAST | ✓ Options |
|                            | (Galaxy Version 0.8.0)                                |                         |                                            | optionity |
|                            | Using reference database                              |                         |                                            |           |
|                            | silva123 165 OR                                       | silva128 16S            | ]                                          | •         |
|                            | Select reference from the list                        | silva128 18S            |                                            |           |
|                            | Also perform RDP assignation?                         | silva128 23S            |                                            |           |
|                            |                                                       | silva123 16S            |                                            |           |

silva123 23S

silva123 18S

greengenes13\_5

midas\_S123\_2.1.3

midas\_S119\_1.20 pr2\_gb203\_4.5 erform it also with RDP classifier (default No)

Optional

Yes

Ľ

No

**OTU seed sequence** 

Abundance file

ත

Execute

OTU sequences (format: fasta).

OTU abundances (format: BIOM).

C

Taxonomy affiliation will be perform thanks to Blast. This o

🙆 🗅 17: FROGS Filters: sequences.fasta

18: FROGS Filters: abundance.biom

•

•

### 1 Cluster = 2 affiliations

**Double Affiliation vs** SILVA 123 (for 16S, 18S or 23S), SILVA 119 (for 18S) or Greengenes with :

1. RDPClassifier\* (Ribosomal Database Project): one affiliation with bootstrap, on each taxonomic subdivision.

Bacteria(100);Firmicutes(100);Clostridia(100);Clostridiales(100);Lachnospiraceae(100);Pseudobutyrivibrio(80); Pseudobutyrivibrio xylanivorans (80)

2. NCBI Blastn+\*\* : all identical Best Hits with identity %, coverage %, e-value, alignment length and a special tag "**Multi-affiliation**".

Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Pseudobutyrivibrio; Pseudobutyrivibrio ruminis; Pseudobutyrivibrio xylanivorans Identity: 100% and Coverage: 100%

> \* Appl. Environ. Microbiol. August 2007 vol. 73 no. 16 5261-5267. doi : 10.1128/AEM.00062-07 Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Qiong Wang, George M.Garrity, James M. Tiedje and James R. Cole

### Affiliation Strategy of FROGS

Blastn+ with "Multi-affiliation" management

| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S unknown species                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------|
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S Butyrivibrio fibrisolvens       |
|         |                                                                                                                                 |
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S rumen bacterium 8   9293-9      |
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S Pseudobutyrivibrio xylanivorans |
|         |                                                                                                                                 |
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S Pseudobutyrivibrio ruminis      |

5 identical blast best hits on SILVA 123 databank

### Affiliation Strategy of FROGS

Blastn+ with "Multi-affiliation" management

| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S unknown species                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------|
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S Butyrivibrio fibrisolvens       |
|         |                                                                                                                                 |
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S rumen bacterium 8   9293-9      |
|         |                                                                                                                                 |
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S Pseudobutyrivibrio xylanivorans |
|         |                                                                                                                                 |
| V3 – V4 | Bacteria   Firmicutes   Clostridia   Clostridiales   Lachnospiraceae   Pseudobutyrivibrio   16S Pseudobutyrivibrio ruminis      |
|         |                                                                                                                                 |
|         |                                                                                                                                 |
|         |                                                                                                                                 |

**FROGS Affiliation:** Bacteria | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Pseudobutyrivibrio | **Multi-affiliation** 

# Your Turn! – 6

LAUNCH THE « FROGS AFFILIATION » TOOL

Miseq merged

### Exercise 6.1

Go to « MiSeq merged » history

Launch the « FROGS Affiliation » tool with

- SILVA 123 or 128 16S database
- FROGS Filters abundance biom and fasta files (after swarm d1d3, remove chimera and filter low abundances)
- $\rightarrow$  objectives :
  - understand abundance tables columns
  - understand the BLAST affiliation

#### FROGS Affiliation OTU

OTU seed sequence

Abundance file

biom\_affiliation (biom1) 🖂 🤇

summary (html)



| FROGS Affiliation                                                    |                                                                                                                  | Ŀ |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---|
| (Galaxy Version                                                      | 0.8.0)                                                                                                           |   |
| Using reference                                                      | e database                                                                                                       |   |
| silva123 16S                                                         |                                                                                                                  |   |
| Select reference                                                     | e from the list                                                                                                  |   |
| Also perform R                                                       | DP assignation?                                                                                                  |   |
| Mar Na                                                               |                                                                                                                  |   |
| Yes No                                                               |                                                                                                                  |   |
|                                                                      | ation will be perform thanks to Blast. This option allow you to perform it also with RDP classifier (default No) |   |
| Taxonomy affilia                                                     | ation will be perform thanks to Blast. This option allow you to perform it also with RDP classifier (default No) |   |
| Taxonomy affilia                                                     |                                                                                                                  |   |
| Taxonomy affilia                                                     |                                                                                                                  |   |
| Taxonomy affilia<br>OTU seed sequ                                    | ence                                                                                                             |   |
| Taxonomy affilia<br>OTU seed sequ<br>C C C<br>OTU sequences          | ence<br>17: FROGS Filters: sequences.fasta<br>(format: fasta).                                                   |   |
| Taxonomy affilia<br>OTU seed sequ<br>C                               | ence<br>17: FROGS Filters: sequences.fasta<br>(format: fasta).                                                   |   |
| Taxonomy affilia<br>OTU seed sequ<br>OTU sequences<br>Abundance file | ence<br>17: FROGS Filters: sequences.fasta<br>(format: fasta).<br>18: FROGS Filters: abundance.biom              |   |
| Taxonomy affilia<br>OTU seed sequ<br>OTU sequences<br>Abundance file | ence 17: FROGS Filters: sequences.fasta (format: fasta).                                                         |   |

Miseq merged

### Exercise 6.1

- 1. What are the « FROGS Affiliation » output files ?
- 2. How many sequences are affiliated by BLAST ?
- 3. Click on the « eye » button on the BIOM output file, what do you understand ?
- Use the Biom\_to\_TSV tool on this last file and click again on the "eye" on the new output generated.

What do the columns ?

What is the difference if we click on case or not ? What consequence about weight of your file ?

| Abundance file   |                                                                                                           |   |
|------------------|-----------------------------------------------------------------------------------------------------------|---|
| C 2 C            | 22: FROGS Affiliation OTU: affiliation.biom                                                               | - |
| The BIOM file to | convert (format: BIOM).                                                                                   |   |
| Sequences file   |                                                                                                           |   |
| C 2 C            | Nothing selected                                                                                          | - |
| The sequences f  | ile (format: fasta). If you use this option the sequences will be add in TSV.                             |   |
| Extract multi-al | ignments                                                                                                  |   |
| Yes No           |                                                                                                           |   |
| If you have used | I FROGS affiliation on your data, you can extract information about multiple alignements in a second TSV. |   |

#### Tools

۲

FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION

#### FROGS pipeline

FROGS Upload archive from your computer

FROGS Demultiplex reads Split by samples the reads in function of inner barcode.

FROGS Pre-process Step 1 in metagenomics analysis: denoising and dereplication.

FROGS Clustering swarm Step 2 in metagenomics analysis : clustering.

FROGS Remove chimera Step 3 in metagenomics analysis : Remove PCR chimera in each sample.

<u>FROGS Filters</u> Filters OTUs on several criteria.

FROGS Affiliation OTU Step 4 in metagenomics analysis : Taxonomic affiliation of each OTU's seed by RDPtools and BLAST

FROGS BIOM to TSV Converts a BIOM file in TSV file.

FROGS Clusters stat Process some metrics on clusters.

FROGS Affiliations stat Process some metrics on taxonomies.

FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM.

FROGS Abundance normalisation Miseq merged

### Exercise 6.1

5. Understand Blast affiliations - Cluster\_2388 (affiliation from silva 123)

| blast_su  | ubject  | blast_evalue | blast_len | blast_perc_q<br>uery_covera<br>ge | blast_perc_id<br>entity | blast_taxonomy                                                                                                           |
|-----------|---------|--------------|-----------|-----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| JN880417. | .1.1422 | 0.0          | 360       | 88.88                             | 99.44                   | Bacteria;Planctomycetes;Planctomycetacia;Pl<br>anctomycetales;Planctomycetaceae;Telmatoc<br>ola;Telmatocola sphagniphila |

### Blast JN880417.1.1422 vs our OTU

#### OTU length : 405

#### Excellent blast but no matches at the beginning of OTU.

Telmatocola sphagniphila strain SP2 16S ribosomal RNA gene, partial sequence

Sequence ID: ref[NR 118328.1

Length: 1422 Number of Matches: 1

| Range 1: 375 to 734 GenBank Graphics Vext Match 🔺 Pre |       |                    |                     |                    |             |  |
|-------------------------------------------------------|-------|--------------------|---------------------|--------------------|-------------|--|
| Score                                                 |       | Expect             | Identities          | Gaps               | Strand      |  |
| 654 bi                                                | ts(35 | 4) 0.0             | 358/360(99%)        | 0/360(0%)          | Plus/Plus   |  |
| Query                                                 | 46    |                    | CCTTCGGGTTGTAAAGCGC |                    |             |  |
| Sbjct                                                 | 375   | CGCGTGCGCGATGAAGG  | CCTTCGGGTTGTAAAGCGC | GAAAGAGGSAATAAAGG  | GAAACTT 434 |  |
| Query                                                 | 106   |                    | CTCGGGCTAAGTTTGTGCC |                    | GAACCGA 165 |  |
| Sbjct                                                 | 435   | GATTGAACCTCAGTAAG  | CTCGGGCTAAGTTTGTGCC | CAGCAGCCGCGGTAAGAC | GAACCGA 494 |  |
| Query                                                 | 166   | GCGAACGTTGTTCGGAA  | CACTGGGCATAAAGGGCG  | GCGTAGGCGGGTTTCTAA | GTCCGTG 225 |  |
| Sbjct                                                 | 495   | GCGAACGTTGTTCGGAA  | CACTGGGCATAAAGGGCG  | CGTAGGCGGGTTTCTAA  | GTCCGTG 554 |  |
| Query                                                 | 226   | GTGAAATACTTCAGCTC2 | AACTGGAGAACTGCCTCGG | GATACTGGGAATCTCGAG | TAATGTA 285 |  |
| Sbjct                                                 | 555   | GTGAAATACTTCAGCTCA | AACTGGAGAACTGCCTCGG | GATACTGGGAATCTCGAG | TAATGTA 614 |  |
| Query                                                 | 286   | GGGGCACGTGGAACGGC  | IGGTGGAGCGGTGAAATGC | CGTTGATATCAGTCGGAA | CTCCGGT 345 |  |
| Sbjct                                                 | 615   | GGGGCACGTGGAACGGC  | IGGTGGAGCGGTGAAATGO | GTTGATATCAGTCGGAA  | CTCCGGT 674 |  |
| Query                                                 | 346   |                    | GGACATTTACTGACGCTGA | AGGCGCGAAAGCCAGGGG |             |  |
| Sbjct                                                 | 675   |                    | GACATTTACTGACGCTGA  |                    |             |  |

#### Telmatocola sphagniphila strain SP2 16S ribosomal RNA gene, partial sequence

NCBI Reference Sequence: NR\_118328.1

FASTA Graphics

#### <u>Go to:</u> 🖂

| LOCUS  | NR_118328 1422 bp rRNA linear BCT 03-FEB-2015                            |
|--------|--------------------------------------------------------------------------|
| DEFINI | FION Telmatocola sphagniphila strain SP2 165 ribosomal RNA gene, partial |
|        |                                                                          |
| ACCESS | IO NR_118328                                                             |
| VERSIO | N <b>Least</b> III:645321338                                             |
| DBLINK | Project: <u>33175</u>                                                    |
|        | BioProject: PRJNA33175                                                   |
| KEYWOR | ········                                                                 |
| SOURCE |                                                                          |
| ORGAI  | NISM Telmatocola sphagniphila                                            |
|        | Bacteria; Planctomycetes; Planctomycetia; Planctomycetales;              |
|        | Planctomycetaceae.                                                       |
| REFERE |                                                                          |
| AUTH   |                                                                          |
|        | Damste, J.S., Liesack, W. and Dedysh, S.N.                               |
| TITL   |                                                                          |
|        | planctomycete from northern wetlands                                     |
| JOUR   |                                                                          |
| PUB    |                                                                          |
| REMA   |                                                                          |
|        | NCE 2 (bases 1 to 1422)                                                  |
| CONS   |                                                                          |
| JOURI  |                                                                          |
| JOOR   | Information, NIH, Bethesda, MD 20894, USA                                |
| REFERE |                                                                          |
| AUTH   |                                                                          |
| TITL   |                                                                          |
|        | NAL Submitted (20-OCT-2011) Winogradsky Institute of Microbiology RAS,   |
| 00010  | Prospect 60-Letva Octvabra 7/2, Moscow 117312, Russia                    |
| COMMEN |                                                                          |
|        | reference sequence is identical to JN880417:1-1422.                      |
|        |                                                                          |

### Blast columns

#### OTU\_2 seed has a best BLAST hit with the reference sequence AJ496032.1.1410

The reference sequence taxonomic affiliation is this one.

| #blast_taxonomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | blast_subject   | blast_perc_identity | blast_perc_query_coverage | blast_evalue | blast_aln_length |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------------|--------------|------------------|
| ${\tt Bacteria}; {\tt Actinobacteria}; {\tt Actinobacteria}; {\tt Bifidobacteriales}; {\tt Bifidobacteriaceae}; {\tt Metascardovia}; {\tt Multi-affiliation}; {\tt Multi-affili$                                   | multi-subject   | 100.0               | 100.0                     | 0.0          | 411              |
| Bacteria;Fibrobacteres;Fibrobacteria;Fibrobacterales;Fibrobacteraceae;Fibrobacter;Fibrobacter succinogenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AJ496032.1.1410 | 100.0               | 100.0                     | 0.0          | 419              |
| Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EU240886.1.1502 | 100.0               | 100.0                     | 0.0          | 427              |
| Bacteria ; Proteo bacteria ; Gamma proteo bacteria ; Pseudomonadales ; Moraxellaceae ; Psychrobacter ; Psychrobacter immobilis and the second secon                                                                                                                                                                                                                         | U39399.1.1477   | 100.0               | 100.0                     | 0.0          | 426              |
| Bacteria;Thermotogae;Thermotogae;Thermotogales;Thermotogaceae;Petrotoga;Petrotoga miotherma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FR733705.1.1499 | 100.0               | 100.0                     | 0.0          | 419              |
| ${\tt Bacteria}; {\tt Proteobacteria}; {\tt Alphaproteobacteria}; {\tt Rhizobiales}; {\tt Phyllobacteriaceae}; {\tt Pseudahrensia}; {\tt Pseudahrensia}; {\tt aquimaris}; {\tt Alphaproteobacteria}; {\tt Alphaproteobacteria}; {\tt Rhizobiales}; {\tt Phyllobacteriaceae}; {\tt Pseudahrensia}; {\tt Pseudahrens$ | GU575117.1.1441 | 100.0               | 100.0                     | 0.0          | 401              |
| Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Persicitalea;Persicitalea jodogahamensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | multi-subject   | 100.0               | 100.0                     | 0.0          | 421              |
| ${\tt Bacteria}; {\tt Proteobacteria}; {\tt Deltaproteobacteria}; {\tt Bdellovibrionales}; {\tt Bdellovibrionaceae}; {\tt Bdellovibrio}; {\tt Multi-affiliation}; {\tt Multi-af$                                   | multi-subject   | 100.0               | 100.0                     | 0.0          | 404              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                     |                           |              |                  |

#### **Convert to TSV**

| FROGS BIOM to TSV           |
|-----------------------------|
| Abundance file              |
| Sequences file              |
| tsv_file (tabular) 🛛 🔅      |
| multi_affi_file (tabular) 🖂 |

#### **Evaluation variables of BLAST**

DOMAIN Kingdom Phylum Class Order Family Genus

Does

Kennard Play

Classical

Guitar

Songs?

Or Folk

### Focus on "Multi-"

#### (affiliation from silva 123)

#### Observe line of Cluster 1 inside abundance.tsv and multi\_hit.tsv files, what do you conclude ?

| #blast_taxonomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | blast_subject   | blast_perc_identity | blast_perc_query_coverage | blast_evalue | blast_aln_length |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------------|--------------|------------------|
| ${\sf Bacteria} {\sf Actinobacteria} {\sf Actinobacteria} {\sf Bifidobacteriales} {\sf Bifidobacteriaceae} {\sf Metascardovia} {\sf Multi-affiliation} {\sf Multi-affilia$ | multi-subject   | 100.0               | 100.0                     | 0.0          | 411              |
| Bacteria;Fibrobacteres;Fibrobacteria;Fibrobacterales;Fibrobacteraceae;Fibrobacter;Fibrobacter succinogenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AJ496032.1.1410 | 100.0               | 100.0                     | 0.0          | 419              |
| Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EU240886.1.1502 | 100.0               | 100.0                     | 0.0          | 427              |
| Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Psychrobacter; Psychrobacter immobilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U39399.1.1477   | 100.0               | 100.0                     | 0.0          | 426              |
| Bacteria;Thermotogae;Thermotogae;Thermotogales;Thermotogaceae;Petrotoga;Petrotoga miotherma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR733705.1.1499 | 100.0               | 100.0                     | 0.0          | 419              |
| Bacteria ; Proteobacteria ; Alpha proteobacteria ; Rhizobiales ; Phyllobacteria ceae ; Pseudahrensia ; Pseudahrensia a quimaris a substantia a sub                                                                                                                                                                                               | GU575117.1.1441 | 100.0               | 100.0                     | 0.0          | 401              |
| Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Persicitalea;Persicitalea jodogahamensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | multi-subject   | 100.0               | 100.0                     | 0.0          | 421              |
| ${\tt Bacteria}; {\tt Proteobacteria}; {\tt Deltaproteobacteria}; {\tt Bdellovibrionales}; {\tt Bdellovibrionaceae}; {\tt Bdellovibrio}; {\tt Multi-affiliation}; {\tt Multi-af$         | multi-subject   | 100.0               | 100.0                     | 0.0          | 404              |

Cluster\_1 has 5 identical blast hits, with different taxonomies as the species level

### Focus on "Multi-"

(affiliation from silva 123)

Observe line of Cluster 11 inside abundance.tsv and multi hit.tsv files, what do you conclude ?

Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae; Henriciella; Henriciella marina

multi-subject

100.0

100.0

Cluster\_11 has 2 identical blast hits, with identical species but with different strains (strains are not written in our data)

### Focus on "Multi-"

(affiliation from silva 123)

| Observe line of Cluster 43 inside abundance.tsv and multi_hit.tsv files, what do you conclude ? |                                                                                                    |               |      |               |  |  |  |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------|------|---------------|--|--|--|
| Bacteria;Firmicutes                                                                             | s;Negativicutes;Selenomonadales;Veillonellacea <mark>e</mark> ;Multi-affiliation;Multi-affiliation | multi-subject | 99.3 | 100.0         |  |  |  |
| Cluster_43                                                                                      | Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas 3;unkr               | nown species  | JQ   | 447821.1.1420 |  |  |  |
| Cluster_43                                                                                      | Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Centipeda;Centipeda              | a periodontii | AJ   | 010963.1.1494 |  |  |  |



Cluster\_43 has 2 identical blast hits, with different taxonomies at the genus level

### Back on Blast parameters

| #blast_taxonomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | blast_subject   | blast_perc_identity | blast_perc_query_coverage | blast_evalue | blast_aln_length |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|---------------------------|--------------|------------------|
| Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Metascardovia; Multi-affiliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | multi-subject   | 100.0               | 100.0                     | 0.0          | 411              |
| Bacteria;Fibrobacteres;Fibrobacteria;Fibrobacterales;Fibrobacteraceae;Fibrobacter;Fibrobacter succinogenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AJ496032.1.1410 | 100.0               | 100.0                     | 0.0          | 419              |
| Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EU240886.1.1502 | 100.0               | 100.0                     | 0.0          | 427              |
| Bacteria ; Proteobacteria ; Gamma proteobacteria ; Pseudomonadales ; Moraxellaceae ; Psychrobacter ; Psychrobacter immobilis and the second                                                                                                                                                                                | U39399.1.1477   | 100.0               | 100.0                     | 0.0          | 426              |
| Bacteria;Thermotogae;Thermotogae;Thermotogales;Thermotogaceae;Petrotoga;Petrotoga miotherma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FR733705.1.1499 | 100.0               | 100.0                     | 0.0          | 419              |
| Bacteria ; Proteobacteria ; Alphaproteobacteria ; Rhizobiales ; Phyllobacteriaceae ; Pseudahrensia ; Pseudahrensia aquimaris a aquimaris a second s                                                                                                                                                                               | GU575117.1.1441 | 100.0               | 100.0                     | 0.0          | 401              |
| Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Persicitalea;Persicitalea jodogahamensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | multi-subject   | 100.0               | 100.0                     | 0.0          | 421              |
| ${\tt Bacteria} ; {\tt Proteobacteria} ; {\tt Delta proteobacteria} ; {\tt Bdellovibrionales} ; {\tt Bdellovibrionaceae} ; {\tt Bdellovibrio} ; {\tt Multi-affiliation} ; {\tt Multi-affiliat$ | multi-subject   | 100.0               | 100.0                     | 0.0          | 404              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                     |                           |              |                  |

#### **Evaluation variables of BLAST**

### Blast variables : e-value

The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance when searching a database of a particular size.

The lower the E-value, or the closer it is to zero, the more "significant" the match is.

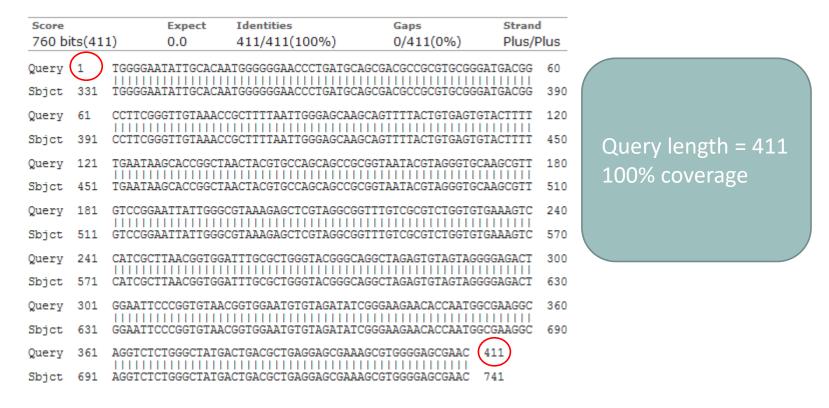
### Blast variables : blast\_perc\_identity

Identity percentage between the Query (OTU) and the subject in the alignment (length subject = 1455 bases)

| Score<br>760 bit | to(411   | Expect          | Identities<br>411/411(100%)                                               | Gaps<br>0/411(0%)  | Strand<br>Plus/F |            |                                  |
|------------------|----------|-----------------|---------------------------------------------------------------------------|--------------------|------------------|------------|----------------------------------|
| 700 Di           | 15(411   | .) 0.0          | 411/411(100%)                                                             | 0/411(0%)          | Plus/i           | hus        |                                  |
| Query<br>Sbjct   | 1<br>331 | 111111111111111 | AATGGGGGGGAACCCTGATGCA<br>                     <br>AATGGGGGGGAACCCTGATGCA |                    |                  | 60<br>390  |                                  |
| ~ -              |          | 111111111111111 | CCGCTTTTAATTGGGAGCAAG                                                     |                    |                  | 120<br>450 | Query length = 412               |
| Query            | 121      | TGAATAAGCACCGGC | TAACTACGTGCCAGCAGCCGC                                                     | GGTAATACGTAGGGTGC  | AAGCGTT          | 180        | Alignment length =<br>0 mismatch |
| Sbjct<br>Query   |          |                 | TAACTACGTGCCAGCAGCCGC<br>GCGTAAAGAGCTCGTAGGCGG                            |                    |                  | 510<br>240 | -> 100% identity                 |
| Sbjct<br>Query   |          |                 | GCGTAAAGAGCTCGTAGGCGG<br>GATTTGCGCTGGGTACGGGCA                            |                    |                  | 570<br>300 |                                  |
| Sbjct            | 571      | CATCGCTTAACGGTG | GATTTGCGCTGGGTACGGGCA                                                     | GGCTAGAGTGTAGTAGG  | GGAGACT          | 630        |                                  |
| ~ 1              |          | 111111111111111 | ACGGTGGAATGTGTAGATATC                                                     | 111111111111111111 |                  | 360        |                                  |
|                  |          |                 | ACGGTGGAATGTGTAGATATC<br>GACTGACGCTGAGGAGCGAAA                            |                    | GAAGGC           | 690        |                                  |
| Sbjct            | 691      | AGGTCTCTGGGCTAT | GACTGACGCTGAGGAGCGAAA                                                     | GCGTGGGGGAGCGAAC   | 741              |            |                                  |

411

### Blast variables : blast\_perc\_identity


Identity percentage between the Query (OTU) and the subject in the alignment (length subject = 1455 bases)

| 614 bits(332)5e-172385/411(94%)5/411(1%)Plus/FQuery1TGGGGATATTGCACAATGGGGGGAACCCTGATGCAGCGACGCCGCGGGGGATGAACSbjct140728TGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGGGGGATGAACQuery61CCTTCGGGTTGTAAACCGCTTTTAATTGGGAGCAAGCAGTTTTACTGTGAGTGTACTTSbjct140788CCTTCGGGTTGTAAACCGCTTTTGATGGGAGCAAGC-GAGAGTGAGGGGGACAGCAQuery121TGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGGTAATACGTAGGGTGCAAGCGQuery121TGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGGTAATACGTAGGGTGCAAGCGSbjct140843CGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGGTAATACGTAGGGTGCAAGCGQuery181GTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTGTCGCGCTCGGGTGTGAAAGSbjct140903ATCCGGAATTATTGGGCGGTAAAGAGCTCGTAGGCGGCTGGAGGGAG                                                                                                                                                                        |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Sbjct       140728       TGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGCGGGATGAC         Query       61       CCTTCGGGTTGTAAACCGCTTTTAATTGGGAGCAAGCAGCTTTACTGTGAGTGTACTT         Sbjct       140788       CCTTCGGGTTGTAAACCGCTTTTGATTGGGAGCAAGC-GAGAGTGAGTGTACCT         Query       121       TGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGGTAATACGTAGGGTGCAAGCG         Sbjct       140843       CGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGGTAATACGTAGGGTGCAAGCG         Query       181       GTCCGGAATTATTGGGCGTAACACGTGGCGGCGGCGGCGGCGGTCGGCGGTGGGAAGG         Sbjct       140903       ATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGGGCAGCTGGCGGTCGGGTGGGAAGAG         Sbjct       140903       ATCCGGGAATTATTGGGCGTAAAGAGGCTCGTAGGGGCAGCTAGAGTGTAGTAGGGGGAAGA         Sbjct       140963       CATCGCTTAACGGTGGATTGCGCCGGGGTACGGGCGGCGGCGGCGGGCG | IS    |
| Sbjct140728TGGGGGAATATTGGCACAATGGGGGGAAGGGGAAGGCGACGCGCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Sbjet140788CCTTCGGGTTGTAAACCGCGCTATTGATTGGGAGCAAGC-GAGAGTGAGTGTACCTQuery121TGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGSbjet140843CGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGGTAATACGTAGGGTGCAAGCGQuery181GTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTGTCGCGCTCTGGTGTGAAAGSbjet140903ATCCGGAATTATTGGGCGTAAAGRGCTCGTAGGCGGCTCGTCGCGTCTGGTGTGAAAGSbjet140903ATCCGGAATTATTGGGCGTAAAGRGCTCGTAGGCGGCAGGCTAGAGTGTAGTAGGGGGAGAQuery241CATCGCTTAACGGTGGATTTGCGCCGGGTACGGGCAGGCTAGAGTGTAGTAGGGGGAGASbjet140963CATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGCGGAGGGGGGGG                                                                                                                                                                                                                                                                           | 120   |
| %*****       ******         Sbjct       140843       CGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCAAGCG         Query       181       GTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTGTCGCGGTCTGGTGTGAAAG         Sbjct       140903       ATCCGGAATTATTGGGCGTAAAGRGCTCGTAGGCGGCTCGTCGCGGTCTGGTGTGAAAG         Query       241       CATCGCTTAACGGTGGATTTGCGCTGGGTACGGGCAGGCTAGAGTGTAGTAGGGGGAGA         Sbjct       140963       CATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGCGGCGGAGGGGAGAGAGGGGGAGA         Query       301       GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Sbjct       141023       GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Query       361       AGGTCTCTGGGCTATGACTGACGCTGAGGGGAGCGGAAGGGCGGAAC       411                                                         | 14084 |
| Sbjct       140843       CGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCG         Query       181       GTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCGGTAATACGTAGGGTGCAAGCG         Sbjct       140903       ATCCGGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGCTCGTCGCGCGTCTGGTGTGAAAG         Query       241       CATCGCTTAACGGTGGATTTGCGCGTGGGTACGGGCAGGCTAGAGTGTAGTAGGGGGAGA         Sbjct       140963       CATCGCTTAACGGTGGATTTGCGCCGGGTACGGGCGGGCG                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 2       111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Sbjct       140903       ATCCGGAATTATTGGGCGTAAAGRGCTCGTAGGCGGTTCGTCGCGCTCTGGTGTGAAAG         Query       241       CATCGCTTAACGGTGGATTTGCGCGCGGGTACGGGCAGGCTAGAGTGTAGTAGGGGGAGA         Sbjct       140963       CATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGCGGCGGAGGAGGAGGAGGAGA         Query       301       GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Sbjct       141023       GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Query       361       AGGTCTCTGGGCTATGACTGACGCTGAGGGGAGCGAAAGCGTGGGGAGCGAAC       411                                                                                                                                                                                                                                                                      |       |
| wind       wind         Sbjct       140963         CATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGRCTGGAGTGCGGTAGGGGGAGA         Query       301         GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Sbjct       141023         GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Query       361         AGGTCTCTGGGCTATGACTGACGCTGAGGGAGCGAAAGCGTGGGGAGCGAAC         411                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Sbjct       140963       CATCGCTTAACGGTGGATCTGCGCCGGGTACGGGCGGRCTGGAGTGCGGTAGGGGGAGA         Query       301       GGAATTCCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Sbjct       141023       GGAATTCCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG         Query       361       AGGTCTCTGGGCTATGACTGACGCTGAGGAGCGAAGCGTGGGGAGCGAAC         Query       361       AGGTCTCTGGGCTATGACTGACGCTGAGGAGCGAAGCGTGGGGAGCGAAC                                                                                                                                                                                                                                                                                                                                                                                       |       |
| xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Sbjct 141023 GGAATTCCCGGTGTAACGGTGGAATGTGTAGATATCGGGAAGAACACCAATGGCGAAG<br>Query 361 AGGTCTCTGGGCTATGACTGACGCGAGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Sbjct 141083 AGGTCTCTGGGCCGTTACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAAC 14113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |

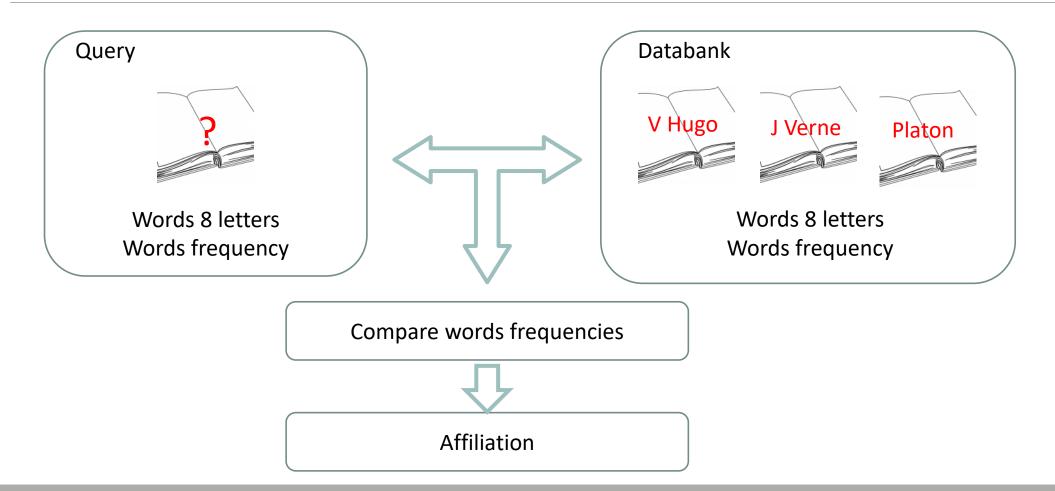
Query length = 411 Alignment length = 411 26 mismatches (gaps included) -> 94% identity

# Blast variables : blast\_perc\_query\_coverage

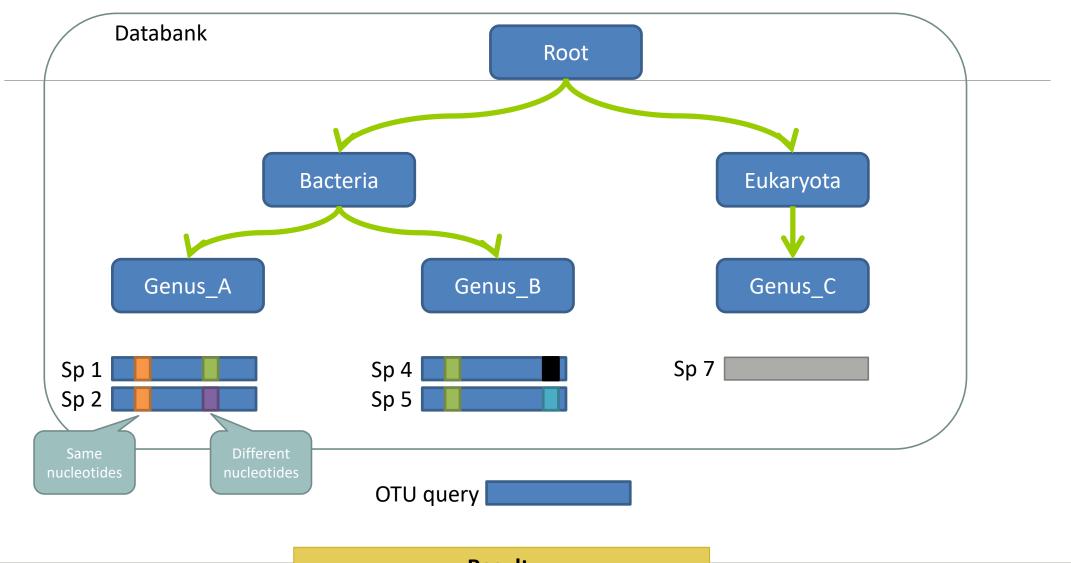
#### Coverage percentage of alignment on query (OTU)



### Blast variables : blast-length

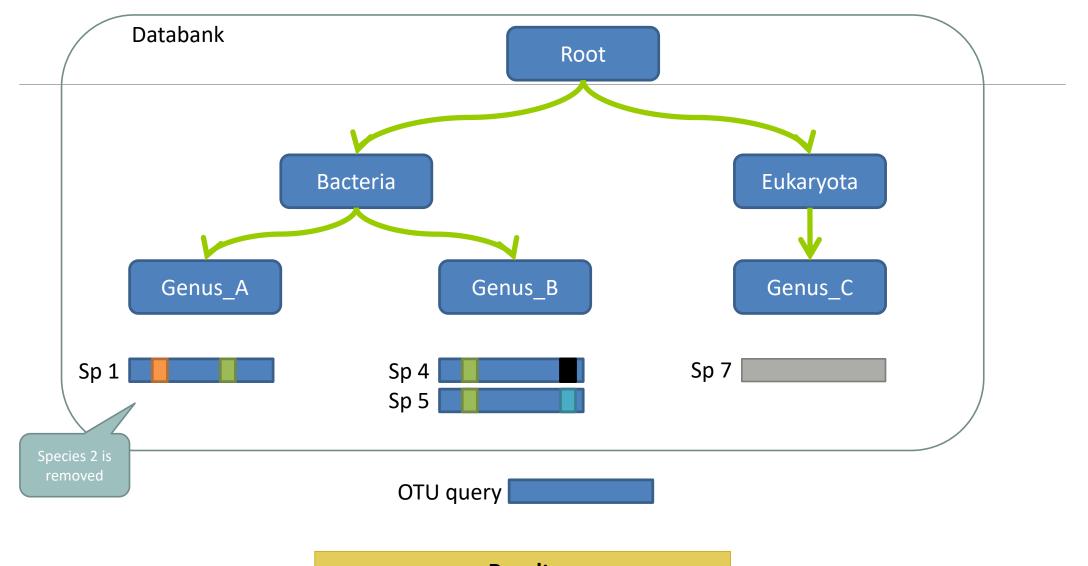

Length of alignment between the OTUs = "Query" and "subject" sequence of database

|      | Coverage % | Identity % | Length alignment |
|------|------------|------------|------------------|
| OTU1 | 100        | 98         | 400              |
| OTU2 | 100        | 98         | 500              |

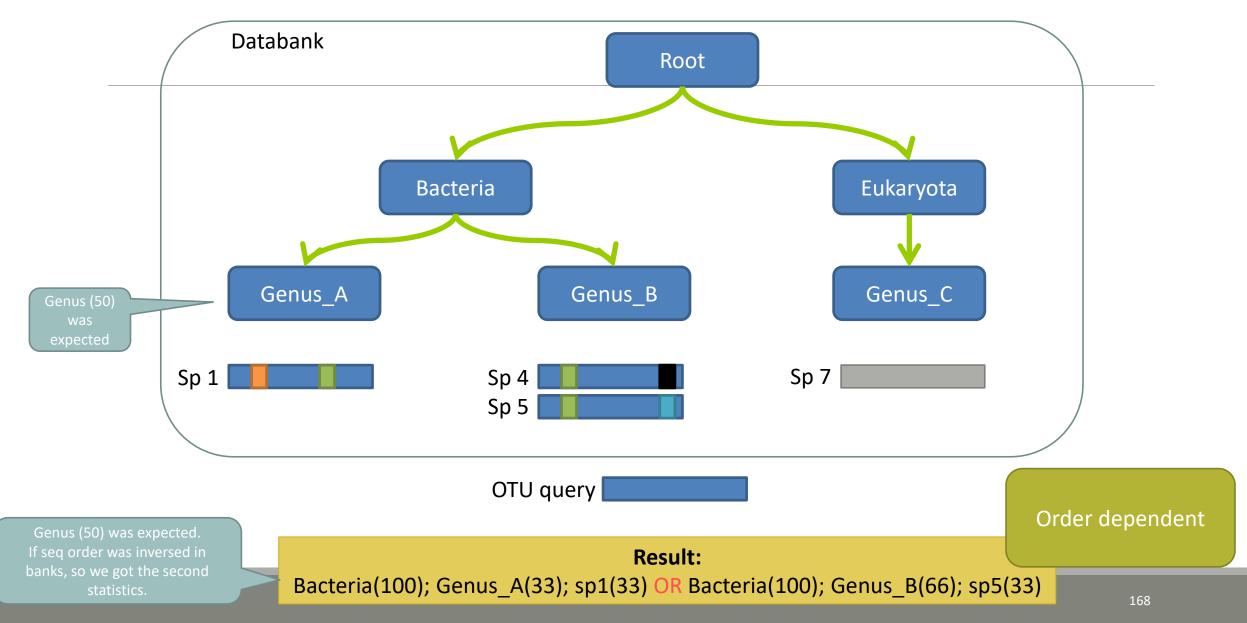

|                                               | <b>FROGS Affiliation OTU</b> Step 4 in metagenomics analysis : Taxonomic affiliation of each OTU's seed by RDPtools and BLAST (Galaxy Version 0.8.0)                                                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROGS Affiliation OTU                         | Using reference database                                                                                                                                                                                                   |
| OTU seed sequence<br>Abundance file           | silva123 16S Select reference from the list                                                                                                                                                                                |
| biom_affiliation (biom1) ()<br>summary (html) | Also perform RDP assignation?<br>Yes No<br>Taxonomy affiliation will be perform thanks to Blast. This option allow you to perform it also with RDP classifier (default No)<br>OTU seed sequence                            |
|                                               | <ul> <li>17: FROGS Filters: sequences.fasta</li> <li>OTU sequences (format: fasta).</li> <li>Abundance file</li> <li>18: FROGS Filters: abundance.biom</li> <li>OTU abundances (format: BIOM).</li> <li>Execute</li> </ul> |

Escape RDP explanation

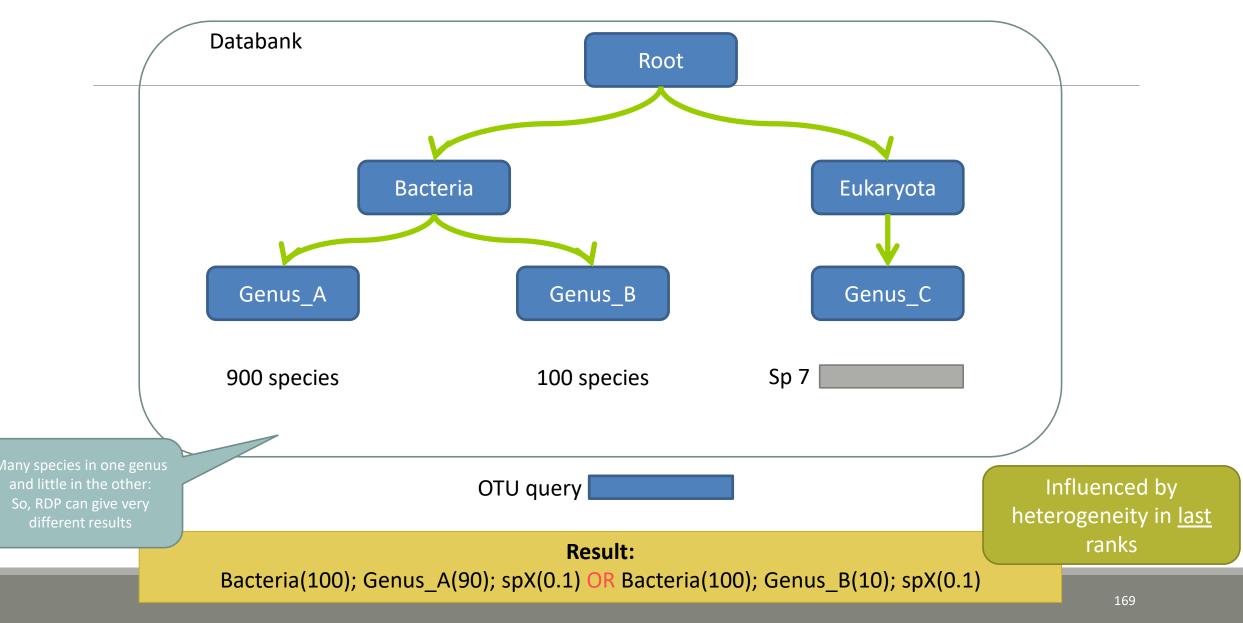
### How works RDP ?



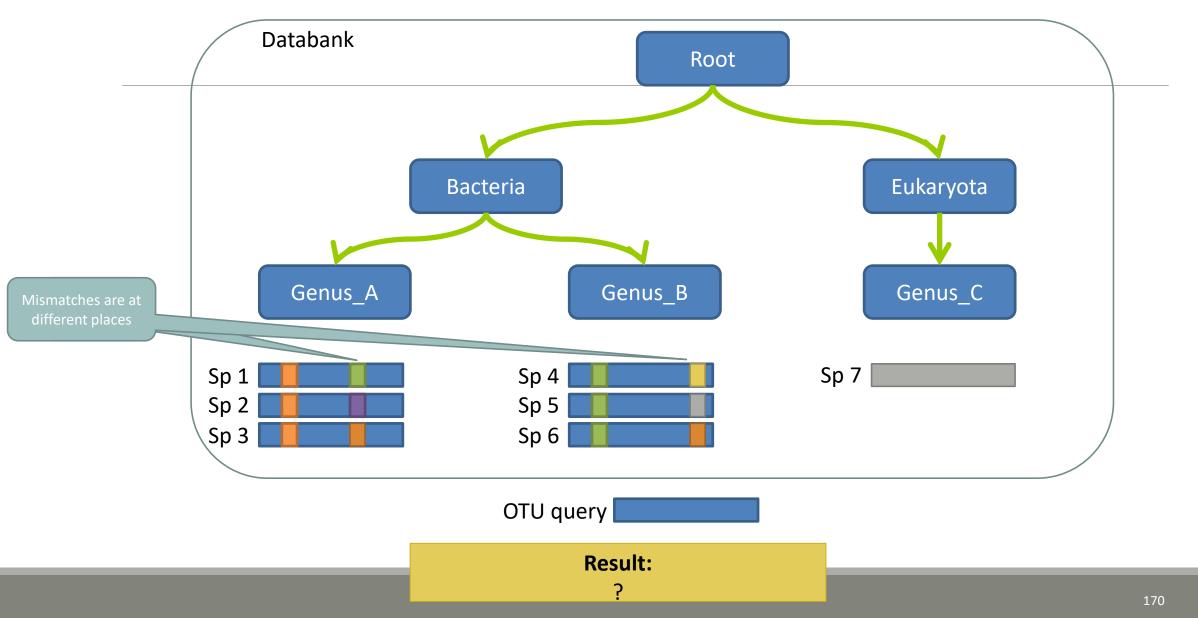

### How works RDP ?



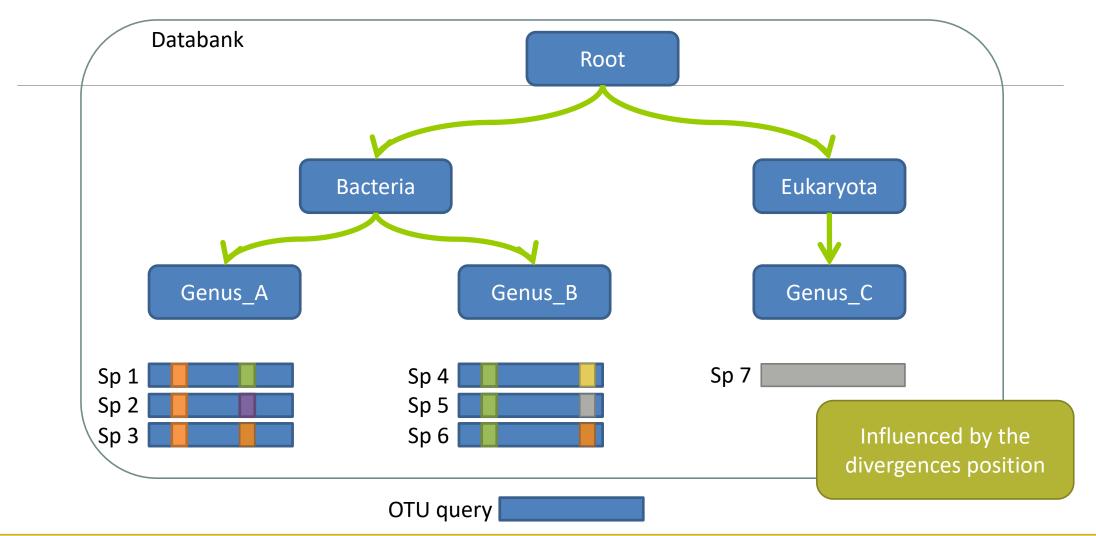

Result: Bacteria(100) ; Genus\_A(50) ; Sp1(25)


### The dysfunctions of RDP ?



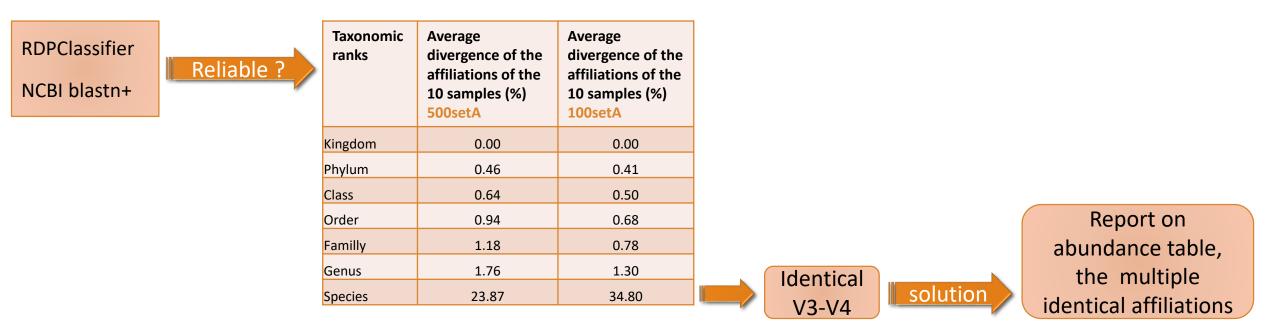

### The dysfunctions of RDP n°1?




### The dysfunctions of RDP n°2 ?



### The dysfunctions of RDP n°3 ?

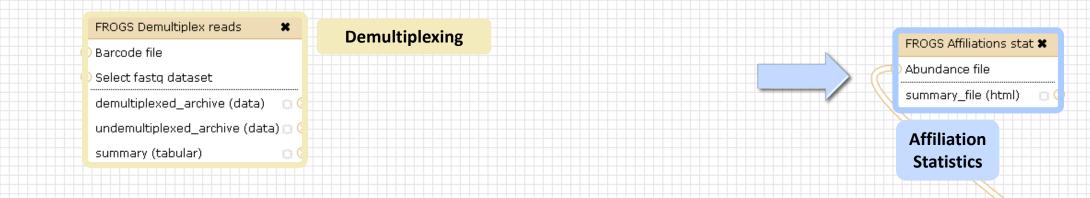


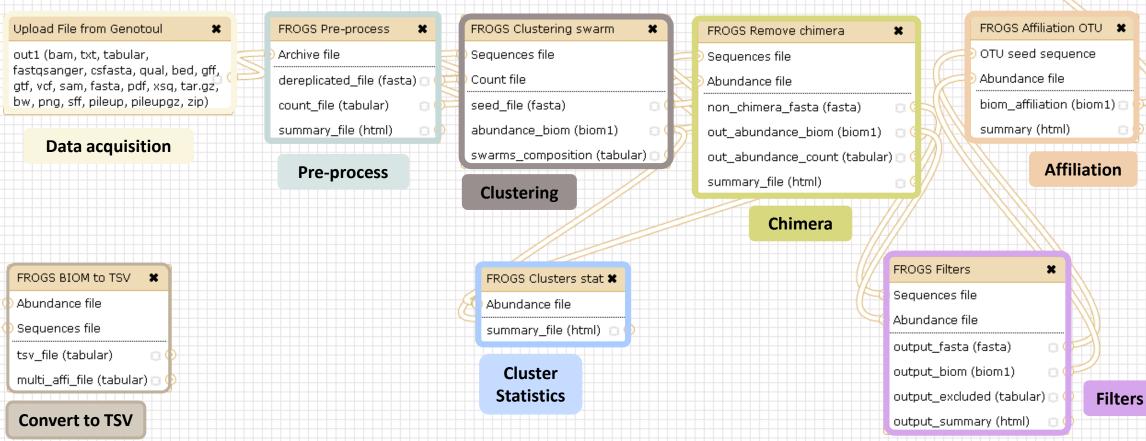

### The dysfunctions of RDP n°3 ?



Si le mismatch se fait sur un mot très "significatif" dans le profil de k-mers, RDP ne tombera que rarement sur l'espèce lors du bootstrap. Avec une même distance d'édition (2 mismatchs) on peut donc avoir une grande différence de bootstrap pour peu que le mot affecté soit important dans le profil. 171

# Divergence on the composition of microbial communities at the different taxonomic ranks





| Only one best hit  |                                                                                  |                                                                                  |                    | Multiple best hit                                 |                                                                                                                  |                                                                                                                                       |  |
|--------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| Taxonomic<br>ranks | Average<br>divergence of the<br>affiliations of the<br>10 samples (%)<br>500setA | Average<br>divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA |                    | Taxonomic<br>ranks                                | Median<br>divergence of the<br>affiliations of the<br>10 samples (%)<br>500setA                                  | Median<br>divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA                                                       |  |
| Kingdom            | 0.00                                                                             | 0.00                                                                             |                    | Kingdom                                           | 0.00                                                                                                             | 0.00                                                                                                                                  |  |
| Phylum             | 0.46                                                                             | 0.41                                                                             |                    | Phylum                                            | 0.46                                                                                                             | 0.41                                                                                                                                  |  |
| Class              | 0.64                                                                             | 0.50                                                                             |                    | Class                                             | 0.64                                                                                                             | 0.50                                                                                                                                  |  |
| Order              | 0.94                                                                             | 0.68                                                                             |                    | Order                                             | 0.93                                                                                                             | 0.68                                                                                                                                  |  |
| Familly            | 1.18                                                                             | 0.78                                                                             |                    | Familly                                           | 1.17                                                                                                             | 0.78                                                                                                                                  |  |
| Genus              | 1.76                                                                             | 1.30                                                                             |                    | Genus                                             | 1.60                                                                                                             | 1.00                                                                                                                                  |  |
| Species            | 23.87                                                                            | 34.80                                                                            |                    | Species                                           | 6.63                                                                                                             | 5.75                                                                                                                                  |  |
|                    |                                                                                  |                                                                                  |                    | Taxonomic                                         | Median                                                                                                           | Median                                                                                                                                |  |
|                    |                                                                                  | W<br>FROGS                                                                       | ith the<br>S guide |                                                   | divergence of the<br>affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -<br>505 OTUs            | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -<br>100 OTUs                                 |  |
|                    |                                                                                  |                                                                                  | S guid             | e                                                 | affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -                                             | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -                                             |  |
|                    |                                                                                  |                                                                                  | S guid             | e<br>eline                                        | affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -<br>505 OTUs                                 | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -<br>100 OTUs                                 |  |
|                    |                                                                                  |                                                                                  | S guid             | e<br>eline<br><sup>Kingdom</sup>                  | affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -<br>505 OTUs<br>0.00                         | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -<br>100 OTUs<br>0.00                         |  |
|                    |                                                                                  |                                                                                  | S guide            | e<br>eline<br><sup>Kingdom</sup><br>Phylum        | affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -<br>505 OTUs<br>0.00<br>0.38                 | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -<br>100 OTUs<br>0.00<br>0.38                 |  |
|                    |                                                                                  |                                                                                  | S guid             | e<br>eline<br>Kingdom<br>Phylum<br>Class          | affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -<br>505 OTUs<br>0.00<br>0.38<br>0.57         | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -<br>100 OTUs<br>0.00<br>0.38<br>0.48         |  |
|                    |                                                                                  |                                                                                  | S guid             | e<br>eline<br>Kingdom<br>Phylum<br>Class<br>Order | affiliations of the<br>10 samples (%)<br>500setA<br>filter: 0.005% -<br>505 OTUs<br>0.00<br>0.38<br>0.57<br>0.81 | divergence of the<br>affiliations of the<br>10 samples (%)<br>100setA<br>filter: 0.005% -<br>100 OTUs<br>0.00<br>0.38<br>0.48<br>0.64 |  |

### Careful: Multi hit blast table is non exhaustive !

- Chimera (multiple affiliation)
- V3V4 included in others
- Missed primers on some 16S during database building

## Affiliation Stat





| FROGS Affiliations stat Process some metrics on taxonomies. (Galaxy Version 1.1.0)                                    | ▼ Options | FROGS Affiliations stat Process some metrics on taxonomies. (Galaxy Version 1.1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓ Options |
|-----------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Abundance file                                                                                                        |           | Abundance file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| 🗋 🖆 🗅 22: FROGS Affiliation OTU: affiliation.biom                                                                     | -         | 22: FROGS Affiliation OTU: affiliation.biom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •         |
| OTUs abundances and affiliations (format: BIOM).                                                                      |           | OTUs abundances and affiliations (format: BIOM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Rarefaction ranks                                                                                                     |           | Rarefaction ranks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Class Order Family Genus Species                                                                                      |           | Class Order Family Genus Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| The ranks that will be evaluated in rarefaction. Each rank is separated by one space.                                 |           | The ranks that will be evaluated in rarefaction. Each rank is separated by one space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Affiliation processed                                                                                                 |           | Affiliation processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| FROGS blast                                                                                                           | •         | FROGS rdp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •         |
| Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'. |           | OR Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| ✓ Execute                                                                                                             |           | ✓ Execute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| Taxonomy distribution Alignment distribution                                                                          | Opp       | Taxonomy distribution Bootstrap distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|                                                                                                                       |           | FROGS Affiliations stat Process some metrics on taxonomies. (Galaxy Version 1.1.0)  • Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                                                                                                                       |           | Abundance file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|                                                                                                                       |           | Image: Constraint of the second se |           |
|                                                                                                                       |           | Rarefaction ranks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|                                                                                                                       |           | Class Order Family Genus Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                       |           | The ranks that will be evaluated in rarefaction. Each rank is separated by one space.  Affiliation processed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|                                                                                                                       |           | Custom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
|                                                                                                                       |           | Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|                                                                                                                       |           | Taxonomic ranks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                       |           | Domain Phylum Class Order Family Genus Species<br>The ordered taxonomic ranks levels stored in BIOM. Each rank is separated by one space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                                                                                                                       |           | Taxonomy tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|                                                                                                                       |           | taxonomy The metadata title in BIOM for the taxonomy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|                                                                                                                       |           | Bootstrap tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                       |           | The metadata title in BIOM for the taxonomy bootstrap. Identity tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                       |           | The metadata tag used in BIOM file to store the alignment identity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                       |           | Coverage tag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
|                                                                                                                       |           | The metadata tag used in BIOM file to store the alignment OTUs coverage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |

✓ Execute

177

### Exercise 6.2

#### FROGS Affiliations stat (version 1.1.0)

#### Abundance file:

17: FROGS Affiliation OTU: affiliation.biom

OTUs abundances and affiliations (format: BIOM).

#### Rarefaction ranks:

#### **Class Order Family Genus Species**

The ranks that will be evaluated in rarefaction. Each rank is separated by one space.

#### Affiliation processed:

FROGS blast ᅌ

Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.

#### Execute

#### FROGS Affiliations stat (version 1.1.0)

#### Abundance file:

17: FROGS Affiliation OTU: affiliation.biom

OTUs abundances and affiliations (format: BIOM).

#### **Rarefaction ranks:**

#### **Class Order Family Genus Species**

The ranks that will be evaluated in rarefaction. Each rank is separated by one space.

#### Affiliation processed:

#### Is it adequate on our data ? Why ?

0

Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.

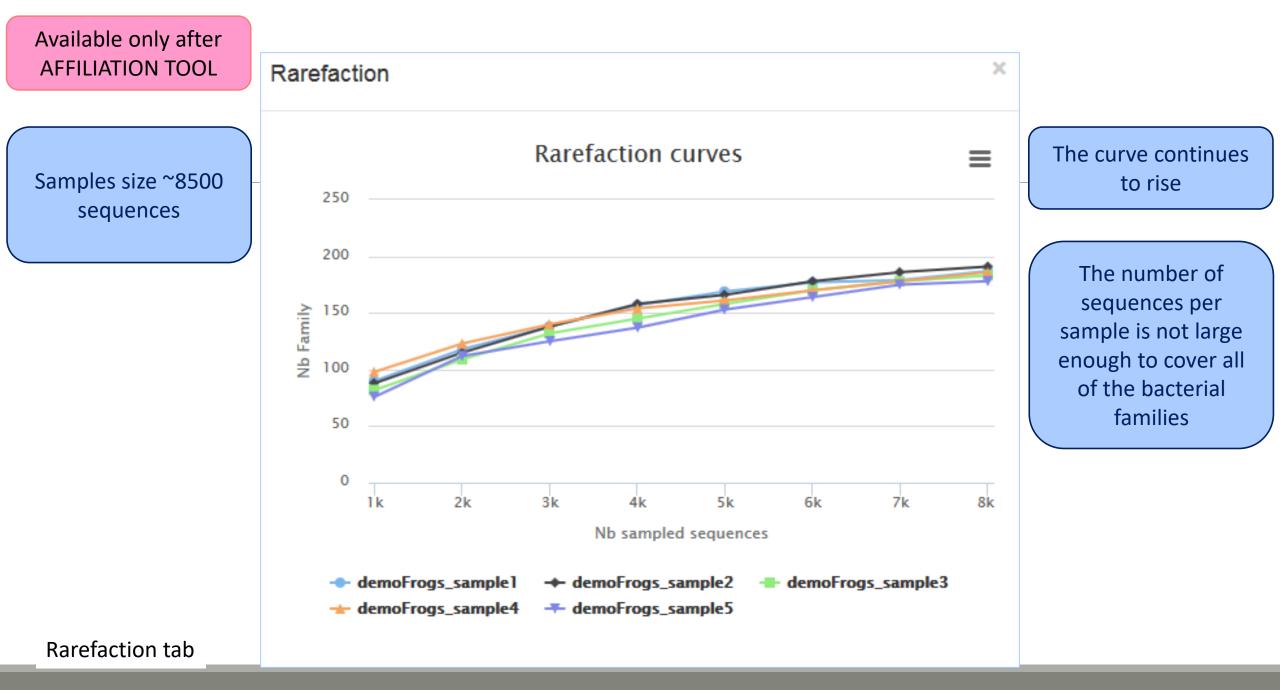
#### Execute

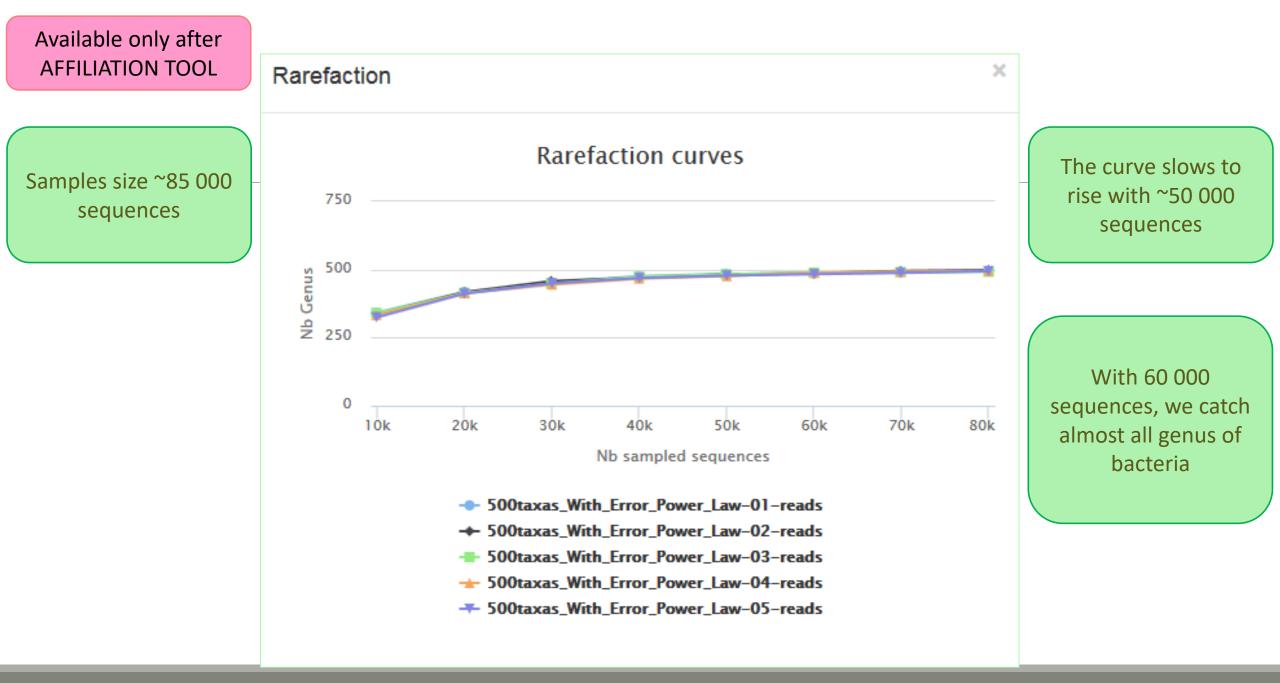
FROGS rdp

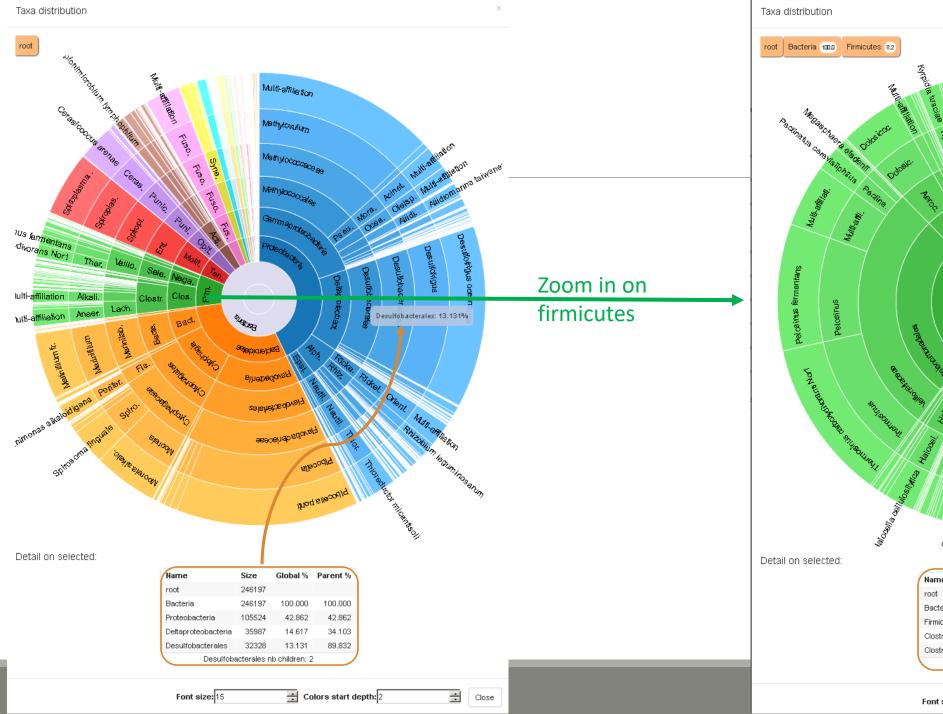
 Omega
 Omega

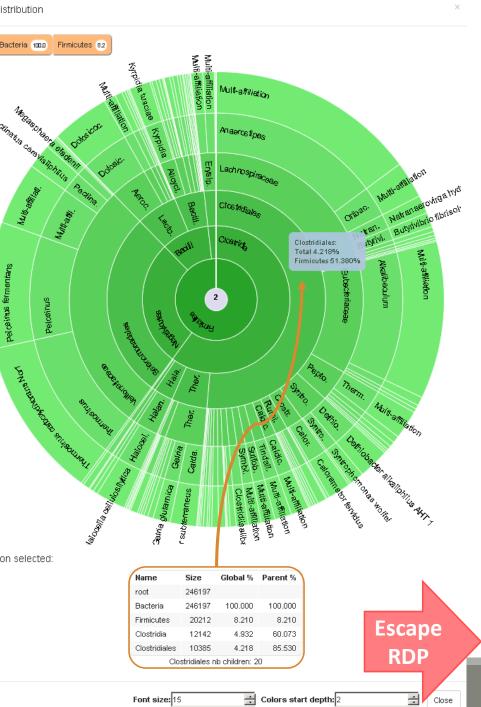
### Exercise 6.2

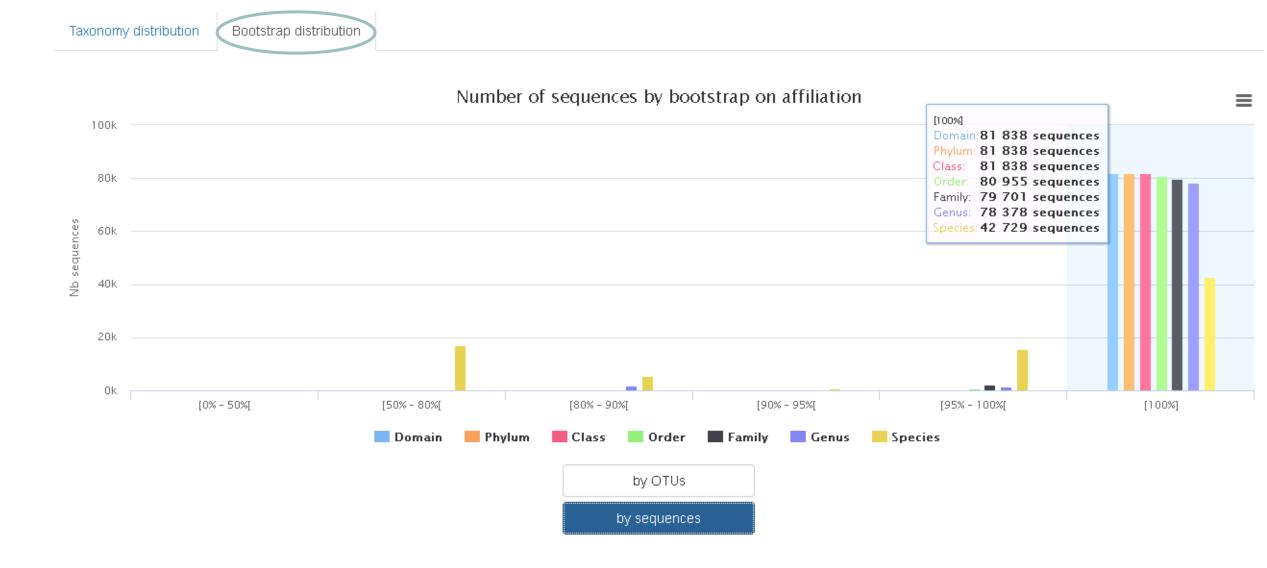
 $\rightarrow$  objectives :


understand rarefaction curve and sunburst


**1**. Explore the Affiliation stat results on FROGS blast affiliation.


2. What kind of graphs can you generate? What do they mean?


| 💳 Sigenae - Welcom                                                                                                           | e mbernard                                   | Analyze Data Workflow Share | d Data 🔻 Visualizati   | on▼ Admin Help▼   | User▼        |            |                |                                                                                               | Using 6%    |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------|------------------------|-------------------|--------------|------------|----------------|-----------------------------------------------------------------------------------------------|-------------|
| Tools<br>RADSEQ - STACKS<br>RADseqSTACKS                                                                                     | Taxonomy distribution Alignment distribution |                             |                        |                   |              |            |                | History<br>imported: 500WEPL_setA<br>451.3 MB                                                 | 2 *<br>// = |
| METHYLATION - BISULFITE<br><u>Bisulfite BISMARK</u>                                                                          |                                              | <b>di</b> Displ             | ay global distribution |                   |              |            |                | 106: FROGS Clusters stat:<br>summary.html                                                     | • / %       |
| DEEPTOOLS<br><u>deepTools</u>                                                                                                |                                              |                             |                        |                   |              |            | kcsv           | 105: report_download                                                                          | • / %       |
| FROGS - FIND RAPIDLY OTU<br>WITH GALAXY SOLUTION                                                                             | Show 10 💌 entries                            |                             |                        |                   |              | Search:    |                | 103: Vsearch Clusters stat                                                                    | • / ×       |
| FROGS pipeline         Taxonomies by sample                                                                                  |                                              |                             |                        |                   |              |            |                | <u>102: FROGS Affiliations stat:</u> ● ℓ ⊗<br><u>summary.html</u>                             |             |
| <u>FROGS Upload archive</u> from<br>your computer                                                                            | Samples                                      | A Nb domain Nb phylum       | 🔶 Nb class 🔶 Nb        | order 🕴 Nb family | 🕴 Nb genus 🕴 | Nb species | Nb sequences 🔶 | 299.1 KB<br>format: html, database: <u>?</u>                                                  |             |
| <u>FROGS Demultiplex reads</u><br>Split by samples the reads in                                                              | Ø 500taxas_With_Error_Power_Law-01-reads     | 1 29                        | 59 12                  | 9 243             | 491          | 492        | 81,572         | ## Application Software:<br>affiliations_stat.py (version:                                    |             |
| function of inner barcode.<br>FROGS Pre-process Step 1 in                                                                    | i00taxas_With_Error_Power_Law-02-reads       | 1 29                        | 59 13                  | 0 243             | 491          | 492        | 82,466         | Command: /usr/local/bioinfo<br>/src/galaxy-dev/galaxy-dist/t<br>/FROGS/tools/affiliations_sta | tools       |
| metagenomics analysis:<br>denoising and dereplication.                                                                       | 500taxas_With_Error_Power_Law-03-reads       | 1 29                        | 59 13                  | 0 243             | 491          | 493        | 82,159         | input-biom /galaxydata/dat<br>/files/054/dataset_54829.da                                     | tabase      |
| FROGS Clustering swarm<br>Step 2 in metagenomics                                                                             | 500taxas_With_Error_Power_Law-04-reads       | 1 29                        | 59 13                  | 0 243             | 491          | 492        | 81,985         | output-file /work/galaxy-de<br>🔚 🗊 🍪                                                          | ev/data 🧷 📄 |
| analysis : clustering.                                                                                                       | 500taxas_With_Error_Power_Law-05-reads       | 1 29                        | 59 13                  | 0 241             | 487          | 488        | 82,039         | HTML file                                                                                     |             |
| <u>FROGS Remove chimera</u> Step<br>3 in metagenomics analysis :<br>Remove PCR chimera in each                               | 500taxas_With_Error_Power_Law-06-reads       | 1 29                        | 59 13                  | 0 244             | 493          | 494        | 81,758         | 101: swarm cluster stat                                                                       | • / %       |
| sample.                                                                                                                      | 50 taxas_With_Error_Power_Law-07-reads       | 1 29                        | 59 13                  | 0 244             | 491          | 492        | 81,714         | 100: FROGS BIOM to std                                                                        | • / X       |
| <u>FROGS Filters</u> Filters OTUs on<br>several criteria.                                                                    | 500taxas_With_Error_Power_Law-08-reads       | 1 29                        | 58 12                  | 9 243             | 493          | 494        | 82,255         | BIOM: blast metadata.tsv                                                                      | - P. M      |
| <u>FROGS Affiliation OTU</u> Step 4<br>in metagenomics analysis :                                                            | 500taxas With_Error_Power_Law-09-reads       | 1 29                        | 59 13                  | 0 244             | 493          | 494        | 82,113         | <u>99: FROGS BIOM to std</u><br>BIOM: abundance.biom                                          | • / ×       |
| Taxonomic affiliation of each<br>OTU's seed by RDPtools and<br>BLAST                                                         | 500taxas_With_Error_Power_Law-10-reads       | i 29                        | 58 12                  | 8 240             | 487          | 489        | 82,300         | <u>98: FROGS BIOM to TSV:</u><br>multi_hits.tsv                                               | • / ×       |
| <u>FROGS BIOM to TSV</u> Converts<br>a BIOM file in TSV file.                                                                | With selection: Class                        | Display distribution        | >                      |                   |              |            |                | 97: FROGS BIOM to TSV:<br>abundance.tsv                                                       | • / ×       |
| <u>FROGS Clusters stat</u> Process<br>some metrics on clusters.<br><u>FROGS Affiliations stat</u><br>Process some metrics on | Showing 1 to 10 of 10 entries                |                             |                        |                   |              | Pre        | evious 1 Next  | 96: FROGS Affiliations stat<br>summary.html<br>295.0 KB<br>format: html, database: <u>2</u>   | : • / %     |
| taxonomies.<br>FROGS BIOM to std BIOM<br>Converts a FROGS BIOM in                                                            |                                              |                             |                        |                   |              |            |                | ## Application Software:<br>affiliations_stat.py (version:<br>Command: /usr/local/bioinfo     |             |
|                                                                                                                              | 1                                            |                             |                        |                   |              |            |                |                                                                                               |             |

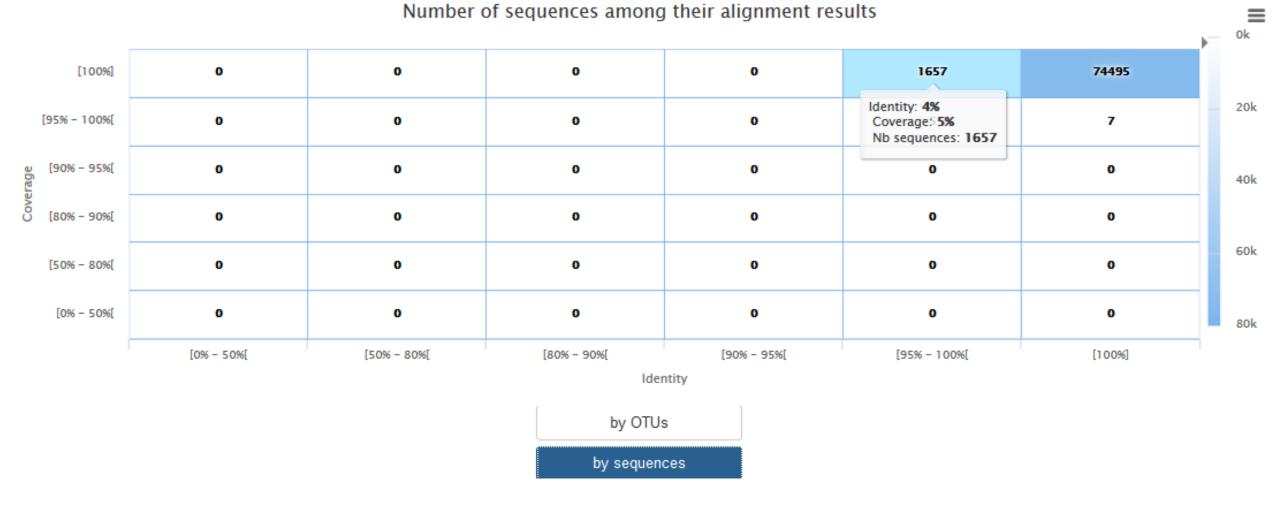

|                  | Alignment di         |                                                                                                                                                                                                             | rkflow Shared Data <del>-</del>                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Using 88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | n Alignment al       | stribution                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Formation 9samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                |                      | Number o                                                                                                                                                                                                    | of OTUs among th                                                                                                                                                                                                                                                                                    | neir alignment re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.3 MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [100%]           | 0                    | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20: FROGS BIOM to • Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [95% - 100%[     | 0                    | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                   | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TSV: abundance.tsv<br>19: FROGS Affiliations ● Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| u [90% - 95%[    | 0                    | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stat: summary.html<br>230.0 KB<br>format: html, database: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Š<br>[80% – 90%] | 0                    | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ## Application Software:<br>affiliations_stat.py (version:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [50% - 80%[      | 0                    | 0                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1.0) Command: /usr/local<br>/bioinfo/src/galaxy-dev/galaxy-<br>dist/tools/FROGS/tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [0% - 50%[       | 0                    | 0                                                                                                                                                                                                           | o                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /affiliations_stat.pyinput-bio<br>/galaxydata/database/files<br>/060/dataset_60522.dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I                | [0% - 50%[           | [50% - 80%[                                                                                                                                                                                                 | [80% - 90%[<br>Ide                                                                                                                                                                                                                                                                                  | [90% – 95%[<br>ntity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [95% - 100%[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [100%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | output-file /work/galaxy-<br>dev/data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  |                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                      |                                                                                                                                                                                                             | by OTU                                                                                                                                                                                                                                                                                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HTML file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                      |                                                                                                                                                                                                             | by sequen                                                                                                                                                                                                                                                                                           | ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18: FROGS Affiliation ③ Ø<br>OTU: report.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Taxonomy distributio | Taxonomy distribution       Alignment di         [100%]       0         [95% - 100%[       0         [90% - 95%[       0         [80% - 90%[       0         [50% - 80%[       0         [0% - 50%[       0 | Taxonomy distribution         Alignment distribution           Number of           [100%]         0           [95% - 100%[         0           [90% - 95%[         0           [90% - 95%[         0           [80% - 90%[         0           [50% - 80%[         0           [0% - 50%[         0 | Taxonomy distribution         Alignment distribution           Number of OTUs among th           [100%]         0         0         0           [95% - 100%]         0         0         0         0           [95% - 95%]         0         0         0         0           [90% - 95%]         0         0         0         0           [90% - 95%]         0         0         0         0           [90% - 90%]         0         0         0         0           [0% - 50%]         0         0         0         0           [0% - 50%]         0         0         0         0           [0% - 50%]         [0% - 50%]         [50% - 80%]         [80% - 90%]         Ide | Taxonomy distribution         Alignment distribution           Number of OTUs among their alignment re           [100%]         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | Taxonomy distribution       Alignment distribution         Number of OTUs among their alignment results         100%       0       0       0       22         100%       0       0       0       20       20         100%       0       0       0       0       20         100%       0       0       0       0       20         100%       0       0       0       0       20         100%       0       0       0       0       20         100%       0       0       0       0       20         100%       0       0       0       0       20         100%       0       0       0       0       20         100%       0       0       0       0       2         100%       0       0       0       0       0       0         100%       0       0       0       0       0       0       0         100%       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | Taxonony distribution         Alignment distribution           Number of OTUs among their alignment results           [1008]         0         0         0         22         89           [95% - 1009]         0         0         0         0         1           [90% - 958]         0         0         0         10         1           [90% - 958]         0         0         0         2         0           [90% - 958]         0         0         0         2         0           [90% - 958]         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | Taxonomy distribution       Alignment distribution         Image: statistic light of the stati |












|                                                                                                              |            |             | -                   |                      |              |        | 0   |
|--------------------------------------------------------------------------------------------------------------|------------|-------------|---------------------|----------------------|--------------|--------|-----|
| [100%]                                                                                                       | 0          | 0           | 0                   | 0                    | 6            | 95     |     |
| [95% - 100%[                                                                                                 | 0          | 0           | 0                   | 0                    | 1            | 1      | 25  |
| u [90% - 95%[<br>D<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0          | 0           | 0                   | 0                    | 0            | 0      | 50  |
| O [80% - 90%]                                                                                                | 0          | 0           | 0                   | 0                    | 0            | 0      |     |
| [50% - 80%[                                                                                                  | 0          | 0           | 0                   | 0                    | 0            | 0      | 75  |
| [0% - 50%[                                                                                                   | 0          | 0           | 0                   | 0                    | 0            | 0      | 100 |
|                                                                                                              | [0% - 50%[ | [50% - 80%[ | [80% – 90%[<br>Ider | [90% - 95%[<br>ntity | [95% - 100%[ | [100%] |     |
|                                                                                                              |            |             | ſ                   | )                    |              |        |     |
|                                                                                                              |            |             | by OTU:             | 5                    |              |        |     |
|                                                                                                              |            |             | by sequen           | ces                  |              |        |     |

#### Number of OTUs among their alignment results

 $\equiv$ 

#### Taxonomy distribution Alignment distribution



# TSV to BIOM

FROGS Abundance normalisation 🗶 FROGS Demultiplex reads × Demultiplexing Seauences file Barcode file Abundance file Select fastq dataset demultiplexed\_archive (data) output\_fasta (fasta) undemultiplexed archive (data) 🖂 🤇 output biom (biom1) **Normalization** summary (tabular) summary file (html)

×

00

#### Upload File from Genotoul × out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsg, tar.gz, bw, png, sff, pileup, pileupgz, zip)

0

Data acquisition

FROGS BIOM to TSV

-multi\_affi\_file (tabular) 🖂 🌗

Abundance file

Sequences file

tsv\_file (tabular)

**Convert to TSV** 

FROGS Pre-process FROGS Clustering swarm × Archive file Sequences file dereplicated\_file (fasta) 🖸 Count file count file (tabular) seed file (fasta) E ( summary\_file (html) abundance\_biom (biom1) E 🖸 swarms\_composition (tabular) **Pre-process** Clustering FROGS BIOM to std BIOM 🗱 Abundance file output\_biom (biom1) output\_metadata (tabular) 🖸

**Convert to** standard Biom

FROGS Clusters stat 🕱 Abundance file summary\_file (html) 🔅 Cluster **Statistics** 

FROGS Remove chimera × Sequences file Abundance file non chimera fasta (fasta) out abundance biom (biom1) out\_abundance\_count (tabular) 🗇 🤇 summary\_file (html)

Chimera

FROGS TSV to BIOM X Abundance TSV File Multi hits TSV File biom file (biom1) sequence\_file (fasta) **Convert TSV to** Biom

FROGS Affiliations stat 🗶 Abundance file summary\_file (html)

Affiliation **Statistics** 

FROGS Affiliation OTU OTU seed sequence Abundance file biom\_affiliation (biom1) summary (html)

Affiliation

FROGS Filters × Sequences file Abundance file output\_fasta (fasta) output\_biom (biom1) output\_excluded (tabular) 🖂 output\_summary (html)

**Filters** 

## TSV to BIOM

After modifying your abundance TSV file you can again:

- generate rarefaction curve
- sunburst §

Careful :

- <u>do not</u> modify column name
- <u>do not</u> remove column
- take care to choose a taxonomy available in your multi\_hit TSV file
- if deleting line from multi\_hit, take care to not remove a complete cluster without removing all "multi tags" in you abundance TSV file.
- if you want to rename a taxon level (ex : genus "Ruminiclostridium 5;" to genus "Ruminiclostridium;"), do not forget to modify also your multi\_hit TSV file.

## TSV to BIOM

| FROGS TSV_to_BIOM Converts a TSV file in a BIOM file. (Galaxy Version 2.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ▼ Options |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Abundance TSV File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 21: FROGS BIOM to TSV: abundance.tsv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -         |
| Your FROGS abundance TSV file. Take care to keep original column names.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Multi_hits TSV File         Image: Stress of the second s | •         |
| Extract seeds in FASTA file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Yes No<br>If there is a 'seed_sequence' column in your TSV table, you can extract seed sequences in a separated FASTA file.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| ✓ Execute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |

# Your Turn! – 7

PLAY WITH TSV\_TO\_BIOM

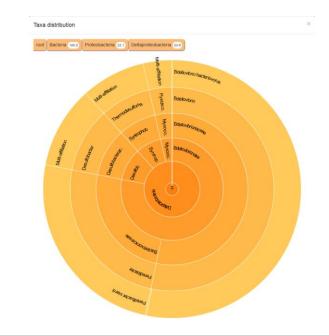

#### $\rightarrow$ objectives : Play with multi-affiliation and TSV\_to\_BIOM

1. Observe in Multi\_hit.tsv and abundance.tsv cluster\_8 annotation

| #blast_taxonomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | blast_subject   | observation_name | observation_sum |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------------|
| Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Metascardovia; Multi-affiliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | multi-subject   | Cluster_1        | 13337           |
| Bacteria;Fibrobacteres;Fibrobacteria;Fibrobacterales;Fibrobacteraceae;Fibrobacter;Fibrobacter succinogenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AJ496032.1.1410 | Cluster_2        | 11830           |
| Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EU240886.1.1502 | Cluster_3        | 11405           |
| Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Psychrobacter; Psychrobacter immobilis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U39399.1.1477   | Cluster_4        | 4125            |
| Bacteria;Thermotogae;Thermotogae;Thermotogales;Thermotogaceae;Petrotoga;Petrotoga miotherma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FR733705.1.1499 | Cluster_5        | 4034            |
| Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae; Pseudahrensia; Pseudahrensia aquimaris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GU575117.1.1441 | Cluster_6        | 3966            |
| Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Persicitalea;Persicitalea jodogahamensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | multi-subject   | Cluster_7        | 2433            |
| ${\sf Bacteria}; {\sf Proteobacteria}; {\sf Deltaproteobacteria}; {\sf Bdellovibrionales}; {\sf Bdellovibrionaceae}; {\sf Bdellovibrio}; {\sf Multi-affiliation}; {\sf Multi-af$ | multi-subject   | Cluster_8        | 2268            |

| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio Bdellovibrio bacteriovorus                      | ] | CP007656.1036900.1038415 |      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|------|
| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio Bdellovibrio bacteriovorus str. Tiberius        |   | CP002930.1837665.1839157 |      |
| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio Bdellovibrio bacteriovorus str. Tiberius        |   | CP002930.842397.843889   |      |
| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio <mark>;</mark> Bdellovibrio bacteriovorus       |   | AJ292760.1.1334          |      |
| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio <mark>;</mark> Bdellovibrio bacteriovorus       |   | Bdellovibrio bacteriov   | oruc |
| Cluster_8 | Bacteria;Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio <mark>;</mark> Bdellovibrio bacteriovorus            |   |                          | UIUS |
| Cluster_8 | Bacteria;Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio <mark>;</mark> Bdellovibrio bacteriovorus            |   | AF084850.1.1436          |      |
| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio <mark>;</mark> Bdellovibrio bacteriovorus HD100 |   | BX842648.123565.125058   |      |
| Cluster_8 | Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio Bdellovibrio bacteriovorus HD100                |   | BX842650.295616.297109   |      |
|           |                                                                                                                                                    |   |                          |      |

2. Observe le diversity diagramm




#### 3. How to change affiliation of cluster 8 ????

- 4. Modify multi\_hit.tsv and keep only :
- Cluster\_8 Bacteria;Proteobacteria;Deltaproteobacteria;Bdellovibrionales;Bdellovibrionaceae;Bdellovibrio;Bdellovibrio bacteriovorus CP007656.1036900.1038415

Careful, <u>no quotes</u> around text !!!

- 5. Upload the new multihit file.
- 6. Create a new biom with a TSV\_to\_BIOM tool
- 7. Launch again the affilation\_stat tool on this new biom
- 8. Observe the diversity diagram



## Normalization

FROCC Abundanaa namaaligati FROGS Demultiplex reads × Demultiplexing Barcode file Select fastq dataset demultiplexed\_archive (data) undemultiplexed\_archive (data) 🖸 🤇 Normalization summary (tabular)

| -ROGS Abunuance normalisado |
|-----------------------------|
| Sequences file              |
| Abundance file              |
| output_fasta (fasta)        |
| output_biom (biom1)         |
| summary_file (html)         |

FROGS Affiliations stat 🗶 Abundance file summary\_file (html)

> Affiliation **Statistics**

#### FROGS Affiliation OTU OTU seed sequence Abundance file biom\_affiliation (biom1) summary (html)

×

Affiliation

| Upload File from Genotoul 🛛 🗙                                                    | FROGS Pre-process            | ×            | FROGS Clustering swarm         |
|----------------------------------------------------------------------------------|------------------------------|--------------|--------------------------------|
| out1 (bam, txt, tabular,                                                         | Archive file                 | Ħ            | ) Sequences file               |
| fastqsanger, csfasta, qual, bed, gff,<br>gtf, vcf, sam, fasta, pdf, xsq, tar.gz, | dereplicated_file (fasta     | ) 🛛 😫        | ) Count file                   |
| bw, png, sff, pileup, pileupgz, zip)                                             | count_file (tabular)         | 8 ( <b>)</b> | seed_file (fasta) 🛛 🔅          |
| · · · · · · · · · · · · · · · · · · ·                                            | summary_file (html)          |              | abundance_biom (biom1) 🛛 🔅     |
| Data acquisition                                                                 |                              |              | swarms_composition (tabular) 🗅 |
|                                                                                  | Pre-process                  |              | Clustering                     |
|                                                                                  |                              |              | Clustering                     |
|                                                                                  |                              |              |                                |
|                                                                                  |                              |              |                                |
| FROGS BIOM to TSV X                                                              | ROGS BIOM to std BIOM 🗙      |              | FROGS Clusters stat 🗙          |
| Abundance file 💦 🕹 🗛                                                             | bundance file                | (            | Abundance file                 |
| Sequences file                                                                   | utput_biom (biom1) 🛛 💿 🥺     |              | summary_file (html) 💿 🖯 📩      |
| tsv_file (tabular)                                                               | utput_metadata (tabular) 🗅 💡 |              |                                |
| multi_affi_file (tabular) 🛛 🦻                                                    |                              |              | Cluster                        |
| Convert to TSV                                                                   | Convert to<br>standard Biom  |              | Statistics                     |

FROGS Remove chimera × Sequences file Abundance file non\_chimera\_fasta (fasta) 00 out\_abundance\_biom (biom1) 🛛 🖸 🤇 out\_abundance\_count (tabular) 🖂 🤇 summary\_file (html)

1 X

0

Chimera

FROGS TSV to BIOM X Abundance TSV File ) Multi\_hits TSV File biom\_file (biom1) sequence\_file (fasta) **Convert TSV to Biom** 

FROGS Filters Sequences file Abundance file output\_fasta (fasta) output\_biom (biom1) output\_excluded (tabular) 🗇 output\_summary (html)

**Filters** 

## Normalization

Conserve a predefined number of sequence per sample:

- update Biom abundance file
- update seed fasta file

May be used when :

- Low sequencing sample
- Required for some statistical methods to compare the samples in pairs

# Your Turn! – 8

LAUNCH NORMALIZATION TOOL

Launch Normalization Tool

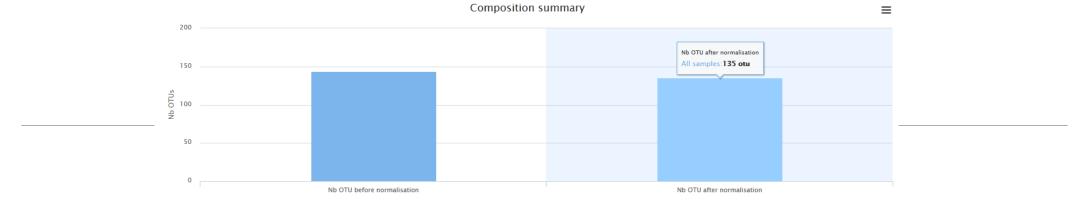
- 1. What is the smallest sequenced samples ?
- 2. Normalize your data from Affiliation based on this number of sequence
- 3. Explore the report HTML result.
- 4. Try other threshold and explore the report HTML result What do you remark ?

| Sequences file                               |   |
|----------------------------------------------|---|
| 17: FROGS Filters: sequences.fasta           | • |
| Sequences file to normalize (format: fasta). |   |
| Abundance file                               |   |
| 22: FROGS Affiliation OTU: affiliation.biom  | • |
| Abundances file to normalize (format: BIOM). |   |
| Number of reads                              |   |
| 9088                                         |   |
| The final number of reads per sample.        | , |

| FROGS Abundar     | ce normalisation (Galaxy Version 1.1.1)                                                                                                                              | ✓ Option |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sequences file    |                                                                                                                                                                      |          |
|                   | 17: FROGS Filters: sequences.fasta                                                                                                                                   | •        |
| Sequences file to | normalize (format: fasta).                                                                                                                                           |          |
| Abundance file    |                                                                                                                                                                      |          |
|                   | 22: FROGS Affiliation OTU: affiliation.biom                                                                                                                          | •        |
| Abundances file   | to normalize (format: BIOM).                                                                                                                                         |          |
| Number of read    | 5                                                                                                                                                                    |          |
| 2000              |                                                                                                                                                                      |          |
| The final number  | eds per sample.                                                                                                                                                      |          |
| ✓ Execute         |                                                                                                                                                                      |          |
|                   | Or, this number can be chosen according to the rarefaction<br>curve. For example, we can choose the smallest number of<br>sequences that still retain all the genus. |          |

204

| composition by sample          |                               |                                          |        |
|--------------------------------|-------------------------------|------------------------------------------|--------|
| Sample                         | A Nb OTU before normalisation | $\Rightarrow$ Nb OTU after normalisation | \$     |
| 100_10000seq_sampleA1_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleA2_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleA3_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleB1_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleB2_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleB3_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleC1_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleC2_cutadapt | 144                           | 135                                      |        |
| 100_10000seq_sampleC3_cutadapt | 144                           | 135                                      |        |
| Showing 1 to 9 of 9 entries    |                               | Previous                                 | 1 Next |
|                                |                               |                                          |        |


#### Composition by sample

Show 10 - entries

Search:

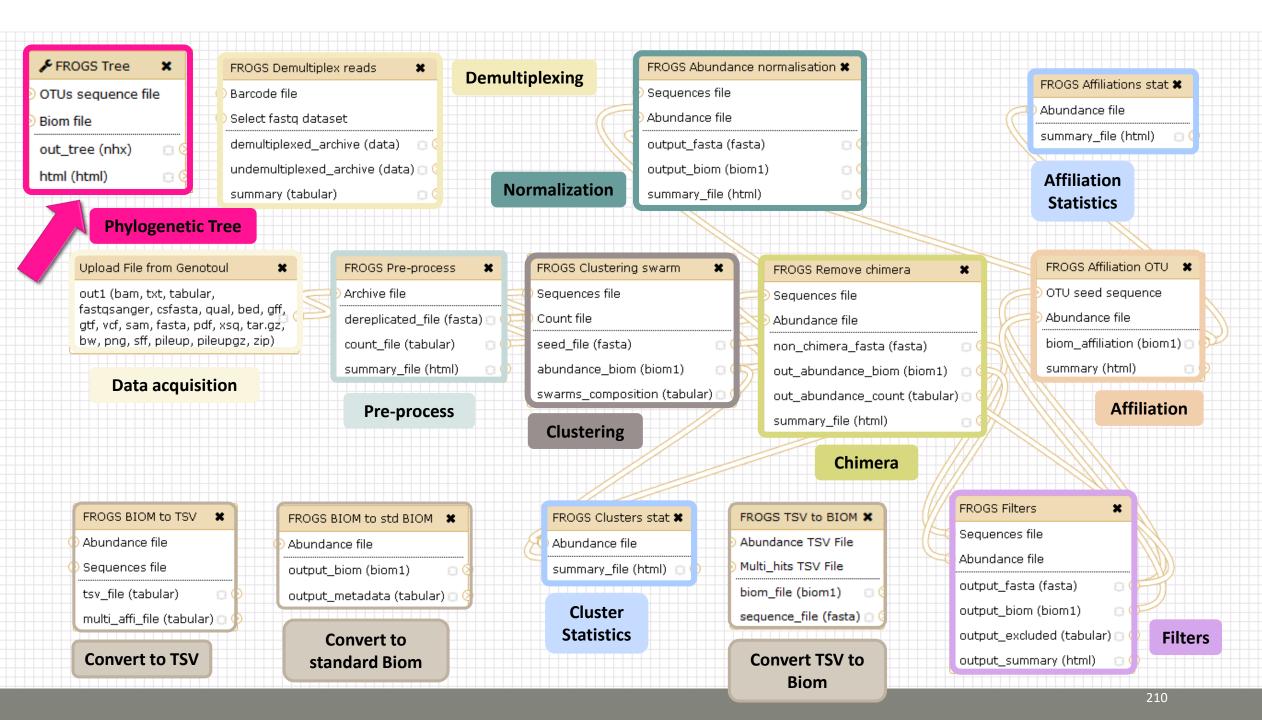
**C**SV

All samples



# Filters on affiliations

Do not forget, with filter tool we can filter the data based on their affiliation


| ROGS Filters Filters OTUs on several criteria. (Galaxy Version 1.2.0)                                                                                                                                                                              | ✓ Options                |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----|
| Sequences file                                                                                                                                                                                                                                     |                          |    |
|                                                                                                                                                                                                                                                    | -                        |    |
| 9: FROGS Remove chimera: non_chimera.fasta                                                                                                                                                                                                         |                          |    |
| he sequence file to filter (format: fasta).                                                                                                                                                                                                        |                          |    |
| Abundance file                                                                                                                                                                                                                                     |                          |    |
| C & C                                                                                                                                                                                                                                              | -                        |    |
| 10: FROGS Remove chimera: non_chimera_abundance.biom                                                                                                                                                                                               |                          |    |
| The abundance file to filter (format: BIOM).                                                                                                                                                                                                       |                          |    |
| ** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE                                                                                                                                                                               |                          |    |
| Apply filters                                                                                                                                                                                                                                      | Abundance filters        |    |
| Apply meas<br>If you want to filter OTUs on their abundance and occurrence.                                                                                                                                                                        | Abunuance milers         |    |
| Minimum number of samples                                                                                                                                                                                                                          |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the field only if you want this treatment. Keep OTU present in at least this number of samples.                                                                                                                                               |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Minimum proportion/number of sequences to keep OTU                                                                                                                                                                                                 |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the field only if you want this treatment. Use decimal notation for proportion (example: 0.01 for keep OTU with at le<br>Use integer notation for number of sequence (example: 2 for keep OTU with at least 2 sequences, so remove single sin |                          |    |
| N biggest OTU                                                                                                                                                                                                                                      |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the fields only if you want this treatment. Keep the N biggest OTU.                                                                                                                                                                           |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| *** THE FILTERS ON RDP                                                                                                                                                                                                                             | DDD offiliation filter   |    |
| Apply filters                                                                                                                                                                                                                                      | RDP affiliation filters  | >  |
| If you want to filter OTUs on their taxonomic affiliation produced by RDP.                                                                                                                                                                         |                          |    |
| Rank with the bootstrap filter                                                                                                                                                                                                                     |                          |    |
| Nothing selected                                                                                                                                                                                                                                   | <b></b>                  |    |
| Minimum bootstrap % (between 0 and 1)                                                                                                                                                                                                              |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| *** THE FILTERS ON BLAST                                                                                                                                                                                                                           |                          |    |
| Apply filters                                                                                                                                                                                                                                      | BLAST affiliation filter | rs |
| If you want to filter OTUs on their taxonomic affiliation produced by Blast.                                                                                                                                                                       |                          |    |
| Maximum e-value (between 0 and 1)                                                                                                                                                                                                                  |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the field only if you want this treatment                                                                                                                                                                                                     |                          |    |
| Minimum identity % (between 0 and 1)                                                                                                                                                                                                               |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the field only if you want this treatment                                                                                                                                                                                                     |                          |    |
| Minimum coverage % (between 0 and 1)                                                                                                                                                                                                               |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the field only if you want this treatment                                                                                                                                                                                                     |                          |    |
| Minimum alignment length                                                                                                                                                                                                                           |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
|                                                                                                                                                                                                                                                    |                          |    |
| Fill the field only if you want this treatment                                                                                                                                                                                                     |                          |    |
| Fill the field only if you want this treatment                                                                                                                                                                                                     |                          |    |
| *** THE FILTERS ON CONTAMINATIONS                                                                                                                                                                                                                  |                          |    |
| Apply filters                                                                                                                                                                                                                                      | Contamination filter     | •  |
| Apply filters If you want to filter OTUs on classical contaminations.                                                                                                                                                                              | Contamination filter     | ~  |
| Apply filters If you want to filter OTUs on classical contaminations. Cotaminant databank                                                                                                                                                          | Contamination filter     | -  |
|                                                                                                                                                                                                                                                    | Contamination filter     |    |
| Apply filters If you want to filter OTUs on classical contaminations. Cotaminant databank                                                                                                                                                          |                          |    |
| Apply filters If you want to filter OTUs on classical contaminations. Cotaminant databank phiX                                                                                                                                                     |                          |    |

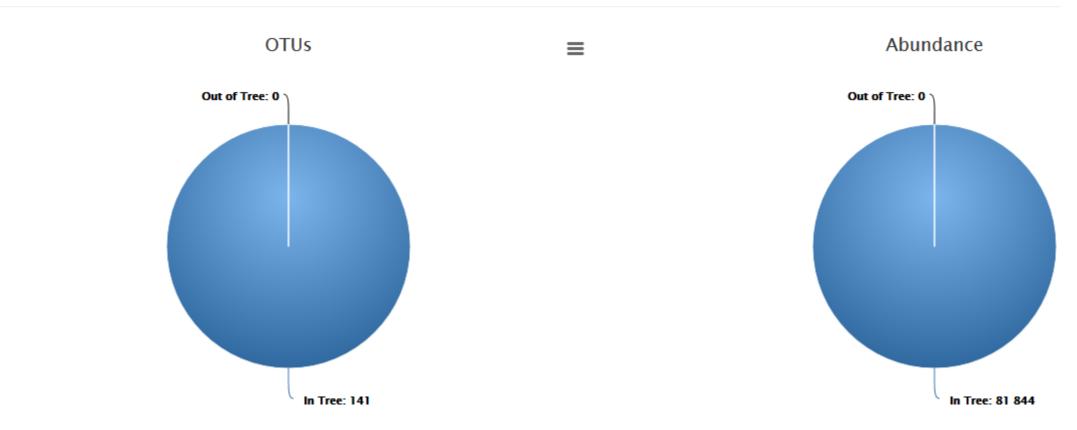
- 1. Apply filters to keep only data with perfect alignment.
- 2. How many clusters have you keep?

|                                                                             | ✓ Options |
|-----------------------------------------------------------------------------|-----------|
| equences file                                                               |           |
| 17: FROGS Filters: sequences.fasta                                          | -         |
| he sequence file to filter (format: fasta).                                 |           |
| bundance file                                                               |           |
| 22: FROGS Affiliation OTU: affiliation.biom                                 | -         |
| he abundance file to filter (format: BIOM).                                 |           |
| ** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE        |           |
| No filters                                                                  | •         |
| f you want to filter OTUs on their abundance and occurrence.                |           |
| ** THE FILTERS ON RDP                                                       |           |
| No filters                                                                  | •         |
| f you want to filter OTUs on their taxonomic affiliation produced by RDP.   |           |
| ** THE FILTERS ON BLAST                                                     |           |
| Apply filters                                                               | -         |
| f you want to filter OTUs on their taxonomic affiliation produced by Blast. |           |
| Maximum e-value (between 0 and 1)                                           |           |
|                                                                             |           |
| Fill the field only if you want this treatment                              |           |
| Minimum identity % (between 0 and 1)                                        |           |
| 1                                                                           |           |
| Fill the field only if you want this treatment                              |           |
| Minimum coverage % (between 0 and 1)                                        |           |
| 1                                                                           |           |
| Fill the field only if you want this treatment                              |           |
|                                                                             |           |
| Minimum alianment length                                                    |           |
| Minimum alignment length                                                    | ]         |

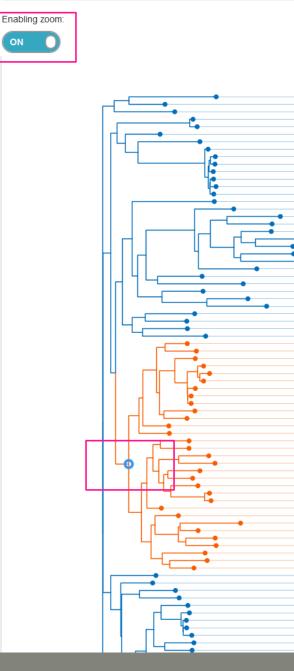
# FROGS Tree

CREATE A PHYLOGENETICS TREE OF OTUS




|                      | FROGS Tree Reconstruction of phylogenetic tree (Galaxy Version 1.0.0)                               | ✓ Options |
|----------------------|-----------------------------------------------------------------------------------------------------|-----------|
| 2 choices to do your | OTUs sequence file                                                                                  |           |
| phylogenetics tree   | 12: FROGS Filters: sequences.fasta                                                                  | -         |
|                      | OTUs sequence file (format: fasta). Warning: FROGS Tree does not work on more than 10000 sequences! |           |
|                      | Do you have the template alignment file ?                                                           |           |
|                      | Yes No                                                                                              |           |
|                      | If yes, precise the template multi-alignment file.                                                  |           |
|                      | Biom file                                                                                           |           |
|                      | 16: FROGS Affiliation OTU: affiliation.biom                                                         | •         |
|                      | The abundance table of OTUs (format: biom).                                                         |           |
|                      | ✓ Execute                                                                                           |           |

| FROGS Tree Reconstruction of phylogenetic tree (Galaxy Version 1.0.0)                                     |   |
|-----------------------------------------------------------------------------------------------------------|---|
| OTUs sequence file                                                                                        |   |
| 12: FROGS Filters: sequences.fasta                                                                        | • |
| OTUs sequence file (format: fasta). Warning: FROGS Tree does not work on more than 10000 sequences!       |   |
| Do you have the template alignment file ?<br>Yes No<br>If yes, precise the template multi-alignment file. |   |
| Template alignment file                                                                                   |   |
| 🕒 🖆 🗅 22: otus_pynast.fasta                                                                               | • |
| Template multi-alignment file (format: fasta).                                                            |   |
| Biom file                                                                                                 |   |
| 16: FROGS Affiliation OTU: affiliation.biom                                                               | • |
| The abundance table of OTUs (format: biom).                                                               |   |
| ✓ Execute                                                                                                 |   |


- 1. Create a tree with the filtered OTUs without template
- 2. Explore the HTML file
- 3. Look tree.nwk

| <u>40: FROGS Tree:</u><br><u>summary.html</u> | ۲ | <i>.</i> | × |  |
|-----------------------------------------------|---|----------|---|--|
| <u>39: FROGS Tree:</u><br><u>tree.nwk</u>     | ۲ | <i>.</i> | × |  |

#### Summary



#### **Tree View**



Cluster\_54 Bacteria Spirochaetae Spirochaetes Spirochaetales Leptospiraceae Leptospira Multi-affiliation Cluster\_19 Bacteria Firmicules Clostridia Thermoanaerobacterales Thermoanaerobacteraceae Caloribacterium Caloribacterium cistemae Bryobacter Bryobacter aggregatus Cluster\_8 Backeria Proteobacteria Deltaproteobacteria Bdellov/brionales Bdellov/brionaceae Bdellov/brio Multi-affiliation Cluster 115 Bacteria Proteobacteria Deltaproteobacteria Edellov/brionales Edellov/brionaceae Edellov/brio Multi-affiliation Cluster, 28 Bacteria Proteobacteria Dettamoteobacteria Desuttobacterates Desuttobacteraceae Desuttobacter Multi-affiliation Cluster 35 Bacteria Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus Deinococcus radiodurans Cluster 1161 Bacteria Fibrobacteres Fibrobacteria Fibrobacteraies Fibrobacteraceae Fibrobacter Fibrobacter succinogenes Cluster 105 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogenes Cluster 2390 Bacterta Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogene Cluster 217 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogenes Cluster 2 Bacteria Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae Fibrobacter Fibrobacter succinogenes Cluster, 576 Badeda Ebrohaderes Ebrohaderia Ebrohaderales Ebrohaderaceae Ebrohader Ebrohader succincoenes Cluster, 396 Bacteria Elbrohaderes Elbrohaderia Elbrohaderales Elbrohaderaceae Elbrohader Elbrohader succincoenes Cluster 57 Bacteria Chryslogenetes Chryslogenates Chryslogenates Chryslogenaceae Desulfurispira Desulfurispira natronophila Cluster\_86 Bacteria Bacteroidetes Cytophagia Cytophagales Cyclobacteriaceae Fontibacter Multi-affiliation Cluster 72 Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae Fibrisoma Multi-affiliation Cluster\_97 Bacteria Bacteroidetes Sphingobacterila Sphingobacteriales Chitinophagaceae Niabella Niabella aurantiaca Cluster\_100 Bacterta Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae Parapedobacter Parapedobacter koreensis Cluster\_33 Bacteria Bacteroidetes Flavobacterila Flavobacteriales Flavobacteriaceae Hyunsoonieella Hyunsoonieella jejuensis Cluster\_75 Bacteria Bacteroidetes Flavobacterila Flavobacteriales Flavobacteriaceae Cruoricaptor Multi-affiliation Cluster, 96 Bacteria Bacteroidetes Bacteroidia Bacteroidaes Rikeneliaceae Anaerocella Multi-affiliation

Cluster: 34 Bacteria Firmicules Clostridia Clostridiales Lachnospiraceae Lachnoanaerobaculum Lachnoanaerobaculum umeaense

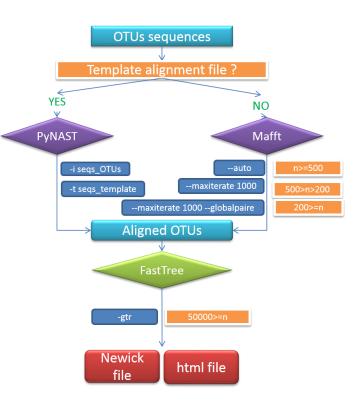
Custer\_56 Badetra Firmioutes Badill Baditales Ruminococaceae Paecalisaderium Mutti-Hittaton Custer\_55 Badetra Firmioutes Badill Baditales Estaphylococaceae Nascomitococus Noscomitococus ampulae Custer\_5420 Badetra Firmioutes Badill Baditales Staphylococaceae Nascomitococus Noscomitococus ampulae Custer\_533 Badetra Firmioutes Badill Baditales Staphylococaceae Nascomitococus Noscomitococus ampulae Custer\_533 Badetra Firmioutes Badill Baditales Staphylococaceae Nascomitococus Noscomitococus ampulae Custer\_533 Badetra Firmioutes Badill Baditales Staphylococaceae Nascomitococus Noscomitococus ampulae Custer\_538 Badetra Firmioutes Badill Baditales Staphylococaceae Nascomitococus Nascomitococus ampulae Custer\_52 Badetra Firmioutes Badill Baditales Baditales Baditales Baditales Baditales Baditales Baditales Baditales Custer\_508 Badetra Firmioutes Badill Baditales Baditales Baditales Baditales Custer\_508 Badetra Firmioutes Badill Baditales Badi

Cluster 18 Bacteria Bacteroidetes Bacteroida Bacteroidales Prevotellaceae Prevotella 7 Multi-affiliation Cluster\_7 Bacteria Bacteroidetes Cytophagia Cytophagales Cytophagaceae Persicitalea Persicitalea jodogahamensia Cluster 9 Bacteria Chioroflexi Dehalococcoldia Dehalococcoldales Dehalococcoldaceae Dehalococcoldes Multi-affiliation Cluster 32 Bacteria Chiamvdiae Chiamvdiae Chiamvdiales Chiamvdiaceae Chiamvdia Mutti-affiliation Cluster\_15 Bacteria Elusimicrobia Elusimicrobia Elusimicrobiales Élusimicrobiaceae Elusimicrobium Multi-affiliation Cluster\_80 Bacteria Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium Multi-affiliation Cluster\_98 Bacteria Fusobacteria Fusobacterila Fusobacteriales Leptotrichiaceae Leptotrichia Leptotrichia buccalis C-1013-b Cluster 14 Bacteria Proteobacteria Dettaproteobacteria Bdellovibrionales Bacteriovoracaceae Peredibacter Peredibacter starril Cluster 82 Bacteria Proteobacteria Epsilonproteobacteria Campviobacterales Helicobacteraceae Helicobacter Multi-affiliation Cluster: 23 Bacteria Deferribacteres Deferribacteres Deferribacteraies Deferribacteraceae Denitrovibrio Multi-affiliation Cluster 48 Bacteria Chiorobi Chiorobia Chiorobiales Chiorobiaceae Chioroherpeton Chioroherpeton thalassium ATCC 35110 Cluster\_11 Bacterta Proteobacterta Alphaproteobacteria Caulobacterales Hyphomonadaceae Henriclella Henriclella marina Cluster\_37 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Asticcacaulis Multi-affiliation Cluster\_81 Bacteria Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Pacificibacter Pacificibacter maritimus Cluster 924 Bacteria Proteobacteria Alphaproteobacteria Rhizoblales Phyliobacteriaceae Pseudahrensia Pseudahrensia aquimaris Cluster 618 Bacteria Proteobacteria Alphaproteobacteria Rhizobtales Phyliobacteriaceae Pseudahrensia Pseudahrensia aquimaris Cluster 616 Bacteria Proteobacteria Alphaproteobacteria Rhizoblaies Phyliobacteriaceae Pseudahrensia Pseudahrensia adulmaris Cluster 204 Bacteria Proteobacteria Alphaproteobacteria Rhizoblaies Phyliobacteriaceae Pseudahrensia Pseudahrensia aquimaris Cluster\_6 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyliobacteriaceae Pseudahrensia Pseudahrensia aquimarts Cluster\_937 Bacterta Proteobacterta Alphaproteobacterta Rhizoblales Phyliobactertaceae Pseudahrensia Pseudahrensia aquimaria Cluster\_30 Bacteria Proteobacteria Alphaproteobacteria Rhizoblales Bradymizoblaceae Multi-affiliation Multi-affiliation Cluster\_90 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomicrobium Sph Cluster\_64 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Limimonas Limimonas halophila Cluster\_47 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Saccharibacter Multi-affiliation Cluster 60 Bacteria Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Kushneria Kushneria aurantia - Cluster 38 Bacteria Proteobacteria Gammaproteobacteria Alteromonadales Idiomarinaceae Altidiomarina Attidiomarina talwanensis Cluster 41 Bacteria Proteobacteria Gammaproteobacteria Aeromonadales Succinivibrionaceae Succinivibrio Succinivibrio dextrinosolvena Cluster\_70 Bacteria Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Galilbacterium Multi-affiliation Cluster\_42 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Azorhizophilus Azorhizophilus paspali Cluster\_99 Bacteria Proteobacteria Gammaproteobacteria Thiotrichales Pischickettsiaceae Galenea Galenea microaerophila Cluster\_61 Bacteria Proteobacteria Gammaproteobacteria Cellvibrionales Halleaceae Congregibacter Congregibacter Itoralis KT71 Cluster 4 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter Psychrobacter Immobilis Cluster 111 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter Psychrobacter Immobilis Cluster 17 Bacteria Proteobacteria Gammaproteobacteria Chromattales Chromattaceae Thiohaiobacter Thiohaiobacter thioxyanaticus · Cluster 39 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Silanimonas Silanimonas lenta Cluster 53 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Verminephrobacter Verminephrobacter elseniae EF01-2 Cluster\_59 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Burkholderiales Incertae Sedis Thiomonas Multi-affiliation Cluster 85 Bacteria Proteobacteria Betaproteobacteria Nelsseriales Nelsseriaceae Elkenella Mutti-affiliation Cluster 91 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Oligelia Mutti-affiliation Cluster 67 Bacteria Proteobacteria Gammaproteobacteria Thiotrichaies Thiotrichaies incertae Sedis Fangla Fangla hongkongensis Cluster 51 Bacteria Proteobacteria Gammaproteobacteria Legionellales Coxiellaceae Diplorickettsia Multi-affiliation Cluster 77 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadalees Solimonadaceae Solimonas Solimonas soli Cluster, 74 Bacteria Firmicutes Clostridia Clostridiales Peotostreotococcaceae Filifactor Filifactor viliosus Cluster 36 Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 1 Multi-affiliation Multi-affiliation

#### Tree.nwk:

(((Cluster\_54:0.19489,Cluster\_19:0.07629)0. 892:0.03423,Cluster\_58:0.13306)0.853:0.02 661,((((Cluster\_8:0.00054,Cluster\_115:0.010 25)1.000:0.16828,(Cluster\_28:0.07332, .....)))

## How works FROGS TREE ?


Pynast needs alignment template to go fast

But if your species is not similar at 75% with a sequence in the template, your species will be not in the tree !

To find templates:

Based on 16S GreenGenes databank <u>https://github.com/biocore/qiime-default-</u> <u>reference/blob/master/qiime\_default\_reference/gg\_13\_8\_otus/rep\_set\_aligned/85</u> <u>otus.pynast.fasta.gz</u>

Based on 16S SILVA databank https://www.arb-silva.de/fileadmin/silva databases/giime/Silva 128 release.tgz



# Tool descriptions



### What it does

FROGS Pre-process filters and dereplicates amplicons for use in diversity analysis.

### <sup>1</sup> Inputs/Outputs

#### Inputs

By sample your sequences and their qualities.

#### Illumina inputs

Usage: The amplicons have been sequenced in paired-end. The amplicon expected length is inferior than the R1 and R2 length. R1 and R2 can be merge by the common region.
 Files: One R1 and R2 by sample (format <u>FASTQ</u>)
 Example: splA\_R1.fastq.gz, splA\_R2.fastq.gz, splB\_R1.fastq.gz, splB\_R2.fastq.gz

#### OR

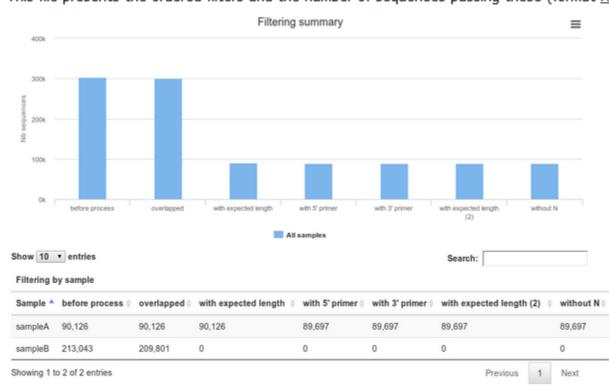
Usage: The single end sequencing cover all the amplicons or the R1 and R2 have already been overlaped.
 Files: One sequence file by sample (format <u>FASTQ</u>).
 Example: splA.fastq.gz, splB.fastq.gz

#### 454 inputs

Files: One sequence file by sample (format <u>FASTQ</u>) Example: splA.fastq.gz, splB.fastq.gz

These files must be added sample by sample or provide in an archive file (tar.gz). Remark: In an archive if you use R1 and R2 files they names must end with \_R1 and \_R2.

### Outputs


Sequence file (dereplicated.fasta):

Only one file with all samples sequences (format <u>FASTA</u>). These sequences are dereplicated: strictly identical sequence are represented only one and the initial count is kept in count file.

Count file (count.tsv):

This file contains the count of all uniq sequences in each sample (format TSV).

Summary file (excluded\_data.html):



This file presents the ordered filters and the number of sequences passing these (format HTML).

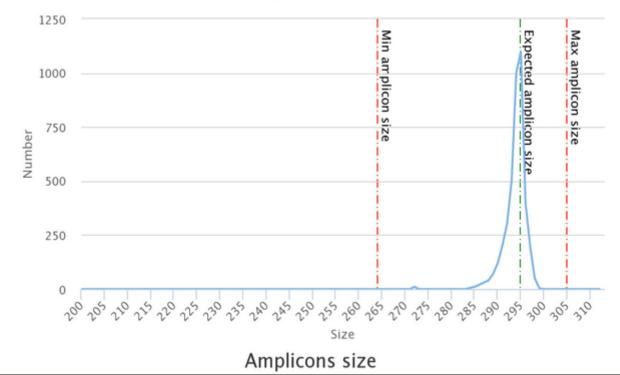
## How it works

| Steps | Illumina                                                                                                                                                  | 454                                                                                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | For uncontiged data: contig read1 and read2 with a maximum of 10% mismatch in the overlaped region ( <u>FLASh</u> )                                       | /                                                                                                                                                                                                           |
| 2     | Filter contig sequence on its length which must be between<br>Minimum amplicon size" and "Maximum amplicon size"                                          | 1                                                                                                                                                                                                           |
| 3     | Remove sequences where the two primers are not persent<br>and remove primers sequence ( <u>cutadapt</u> ). The primer<br>search accept 10% of differences | Remove sequence where the two primers are not persent,<br>remove primers sequence and reverse complement the<br>sequences with strand - ( <u>cutadapt</u> ). The primer search<br>accept 10% of differences |
| 4     | Filter sequences on its length and with ambiguous nucleotids                                                                                              | filter sequences on its length, with ambiguous nucleotids,<br>with at least one homopolymer with size >7nt and with<br>distance between two poor qualities ()< 10) of <= 10 nt                              |
| 5     | Dereplicate sequences                                                                                                                                     | Dereplicate sequences                                                                                                                                                                                       |

### <sup>1</sup> Advices/details on parameters

### Primers parameters

The primers must provided in 5' to 3' orientation.


Example:

5' ATGCCC GTCGTCGTAAAATGC ATTTCAG 3'

Value for parameter 5' primer: ATGCC Value for parameter 3' primer: ATTTCAG

### Amplicons sizes parameters

The two following images shown two examples of perfect values fors sizes parameters.



Amplicons size

# Workflow creation

Workflow Canvas | frogs v1.0

#### Details

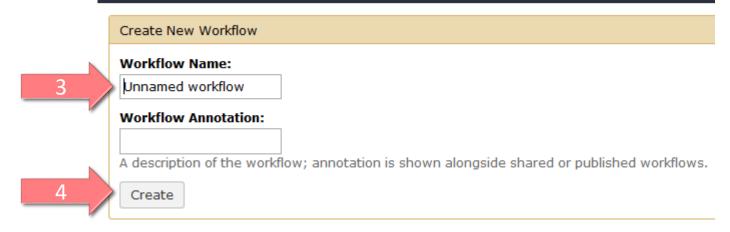
|                                                                           |                                               |                                           |                                         | Table (hata) EDOCC Filtera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                               |                                           |                                         | Tool: (beta) FROGS Filters<br>(beta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                           |                                               |                                           |                                         | Version: 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                           |                                               |                                           | (beta) FROGS Clusters stat X<br>(beta)  | None: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                           | (beta) FROGS Pre-process 🗙<br>Illumina (beta) | (beta) FROGS Clustering swarm 🗙<br>(beta) | Oluster file                            | Biom File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upload File X                                                             | Archive file                                  | Sequences file                            | summary_file (html)                     | Data input 'biom' (txt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| out1 (bam, txt, fastqsanger,<br>csfasta, qual, bed, gff, gtf, vcf, sam, o | dereplicated_file (fasta)                     | Count file                                |                                         | Fasta File<br>Data input 'fasta' (fasta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| fasta, pdf, xsq, tar.gz, bw, png)                                         | png) count_file (tabular)                     | abundance_biom (txt)                      |                                         | Remove phiX: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                           | summary_file (html)                           | seed_file (fasta)                         | (beta) FROGS Remove chimera X<br>(beta) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                           |                                               | swarms_composition (tabular)              | Sequences file                          | PhiX databank: 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                           |                                               |                                           | Abundance file                          | phiX •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                           |                                               |                                           | non_chimera_fasta (fasta)               | *** THE FILTERS ON OT<br>IN SAMPLES, OTUS SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                           |                                               |                                           | out_abundance_biom (txt)                | SEQUENCE PERCENTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                           | (beta) FROGS Filter                           | s (beta) 🗙                                | out_abundance_count (tabular)           | Remove OTUs that are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                           | 🕐 Biom File                                   |                                           | summary_file (html)                     | present at least in XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                           | 🔗 Fasta File                                  |                                           |                                         | samples; how many samples; how many samples; how many samples and be a sample sam |
|                                                                           | summary (txt)                                 |                                           | ffiliation otu 165 🗙                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                           | fasta_output (fasta                           |                                           | (beta) FROGS Clusters stat X<br>(beta)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                           | web (html)<br>biom_output (txt)               | OTU abondance                             | ence in fasta format                    | how many OTU do you w<br>to keep ?: ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                           | krona (html)                                  | OTU seed sequ                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                           |                                               | summary_file (h                           |                                         | proportion/number of<br>sequences threshold to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                           | (hat                                          | a) FROGS Clusters stat                    |                                         | remove an OTU: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                           | (beta                                         |                                           |                                         | 0.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                           |                                               | ter file                                  |                                         | *** THE FILTERS ON RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                           | sum                                           | mary_file (html)                          |                                         | No filters 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                           |                                               |                                           |                                         | *** THE FILTERS ON BLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Your Turn! – 10

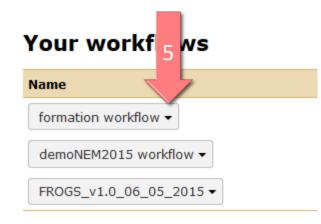
CREATE YOUR OWN WORKFLOW !

| Exercise 10                              |                                        |                  |                     |                          |
|------------------------------------------|----------------------------------------|------------------|---------------------|--------------------------|
|                                          | 1                                      |                  | 2                   |                          |
| Galaxy Sigenae - Welcome gpascal Analyze | Data Workflow Shared Data - Visualizat | ion▼ Help▼ User▼ |                     | Using 18.3 GB            |
| Your workflows                           |                                        |                  | Create new workflow | pload or import workflow |
| Name                                     |                                        | # of Ste         | sps                 |                          |
| formation workflow -                     |                                        | 9                |                     |                          |
| demoNEM2015 workflow 🗸                   |                                        | 9                |                     |                          |
| FROGS_v1.0_06_05_2015 -                  |                                        | 10               |                     |                          |

### Workflows shared with you by others


No workflows have been shared with you.

### **Other options**


Configure your workflow menu

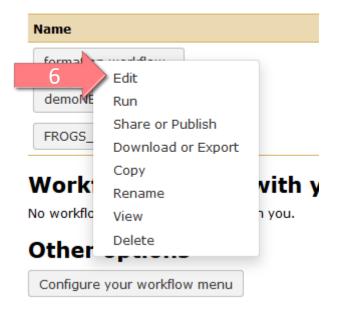
## Exercise 10

## Galaxy Sigenae - Welcome gpascal Analyze Data Workflow



## Exercise 10




## Workflows shared with y

No workflows have been shared with you.

### **Other options**

Configure your workflow menu

### Your workflows



#### Upload File from Genotoul

>

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip) FROGS Pre-process

×

dereplicated\_file (fasta) 0 ( count\_file (tabular) 0 (

×

summary\_file (html)

> Sequences file

FROGS Clustering swarm

Count file

seed\_file (fasta)

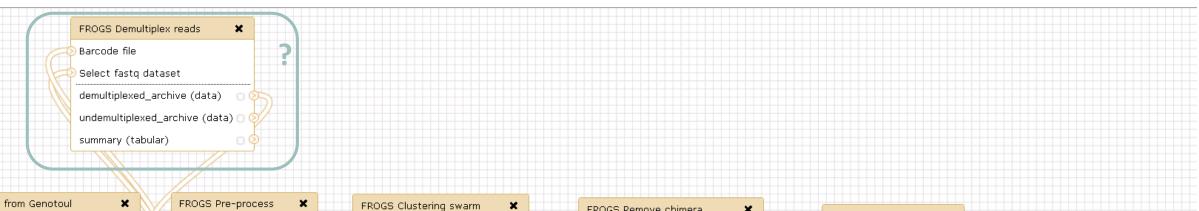
abundance\_biom (biom1) O

×

 FROGS Remove chimera
 X

 Sequences file
 Abundance file

 non\_chimera\_fasta (fasta)
 Image: Comparison (fasta)


 out\_abundance\_biom (biom1)
 Image: Comparison (fasta)

 out\_abundance\_count (tabular)
 Image: Comparison (fasta)

 summary\_file (html)
 Image: Comparison (fasta)

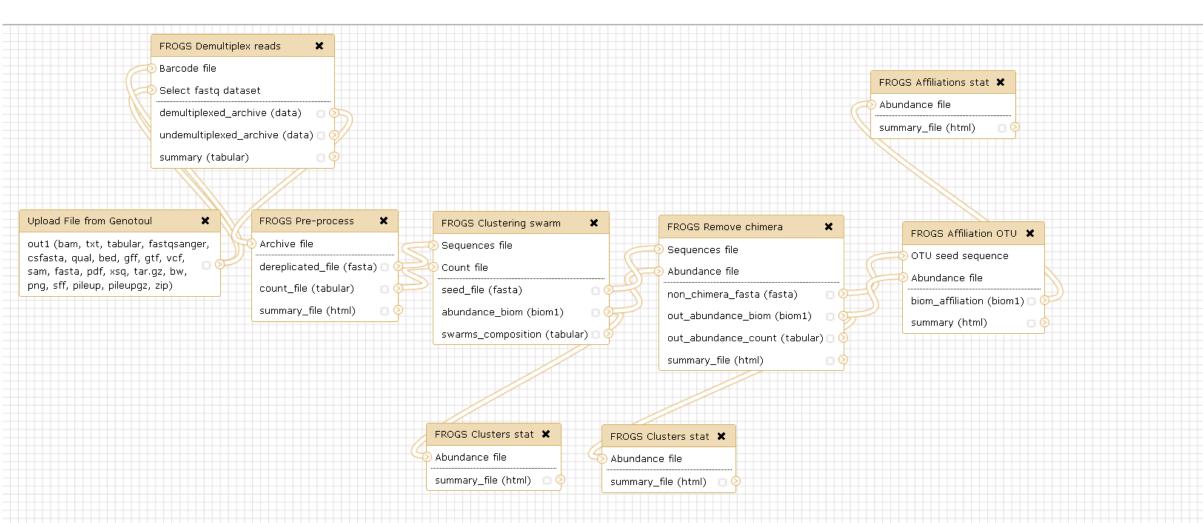
FROGS Affiliation OTU X OTU seed sequence Abundance file biom\_affiliation (biom1)

227

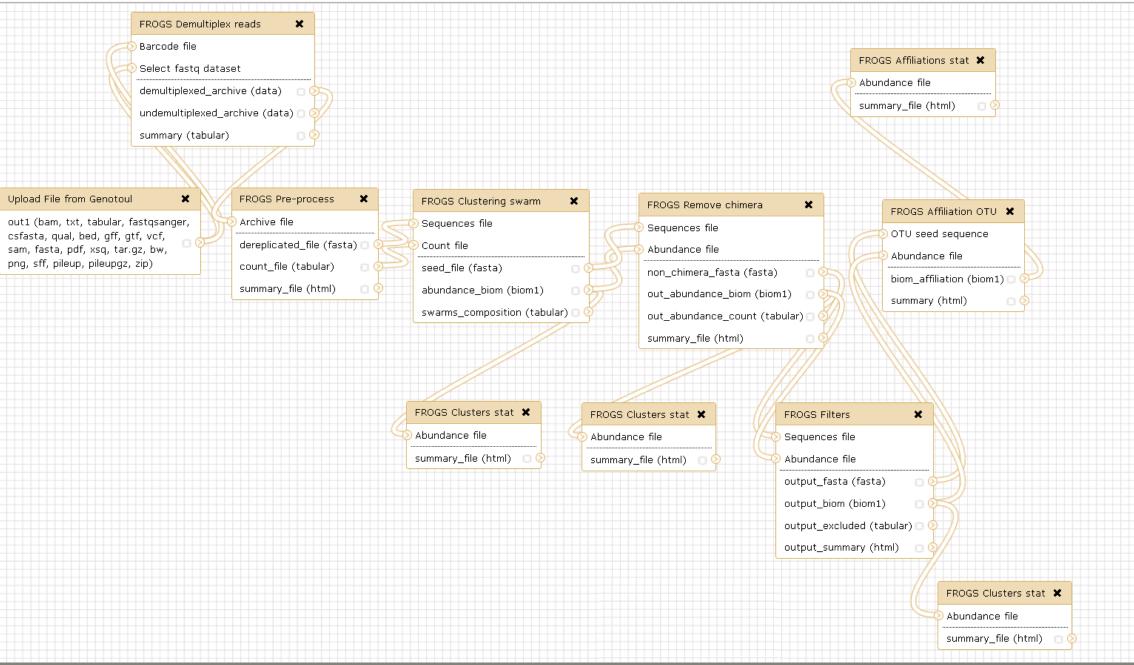


### Upload File from Genotoul

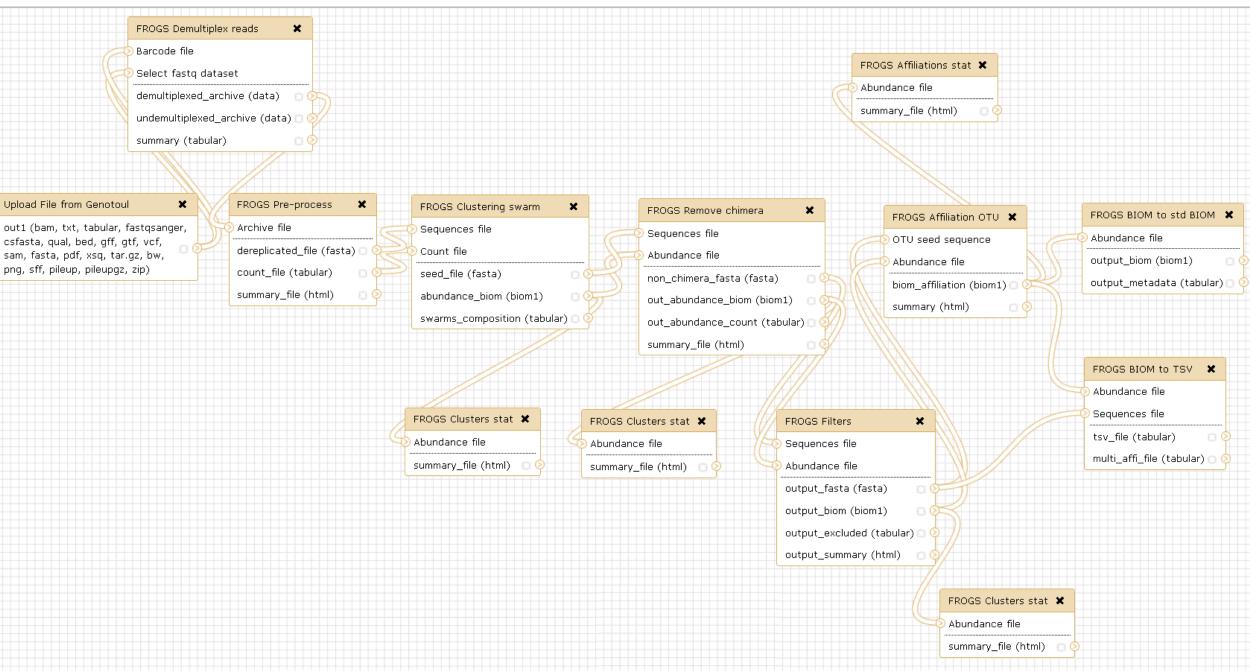
>


out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip) FROGS Pre-process
Archive file
dereplicated\_file (fasta)
count\_file (tabular)

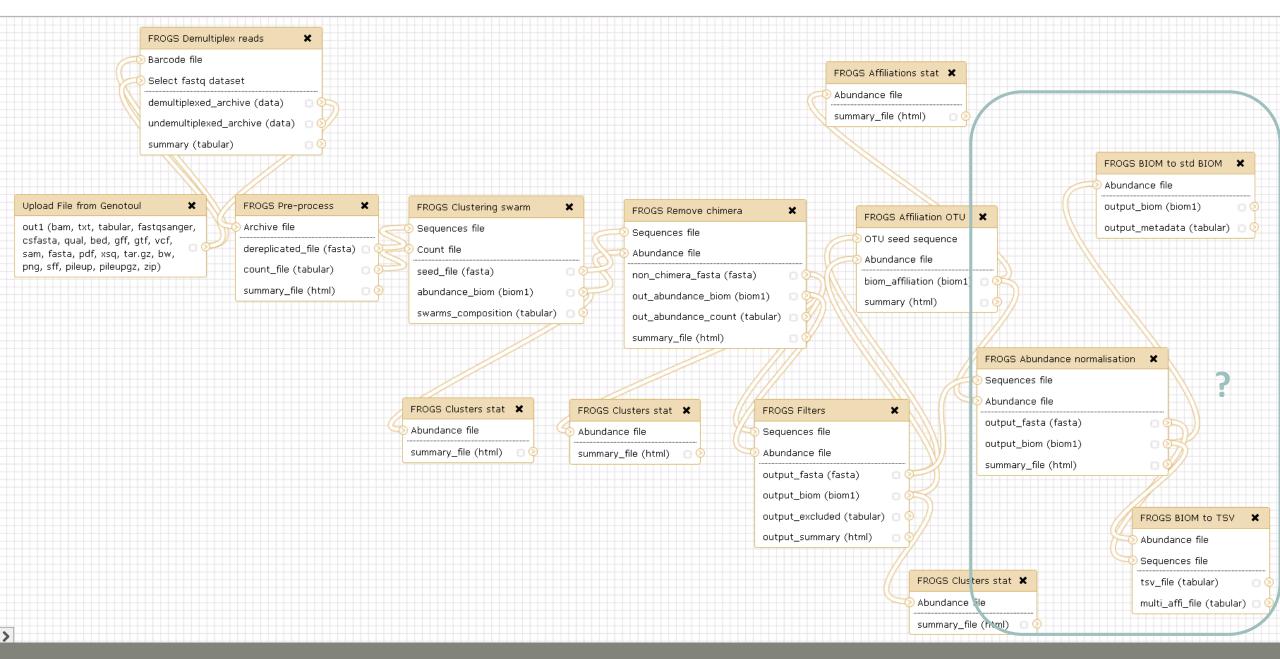
summary\_file (html)

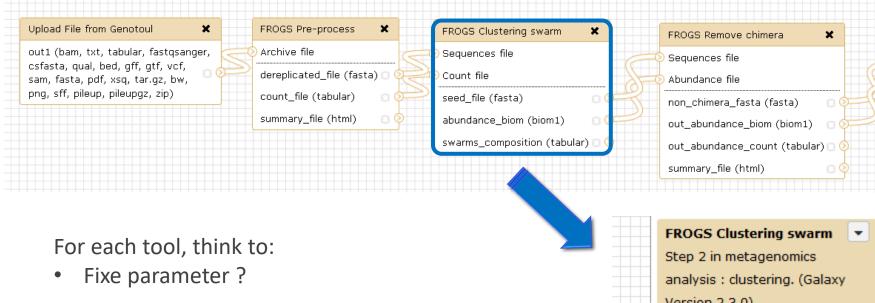

FROGS Clustering swarm Sequences file Count file seed\_file (fasta) abundance\_biom (biom1)

\_swarms\_composition (tabular) 🗆 📀


| FROGS Remove chimera          | FROGS Affiliation OTU 🗙  |
|-------------------------------|--------------------------|
| Sequences file                | OTU seed sequence        |
| Abundance file                | Abundance file           |
| non_chimera_fasta (fasta)     | biom_affiliation (biom1) |
| out_abundance_biom (biom1)    | summary (html)           |
| out_abundance_count (tabular) |                          |
| summary_file (html)           | <u>_</u>                 |






>



>





Version 2.3.0)
Sequences file
Data input 'sequence\_file' (fasta)
The sequences file (format: fasta).
Count file
Data input 'count\_file' (tabular)
It contains the count by sample for
each sequence (format: TSV).

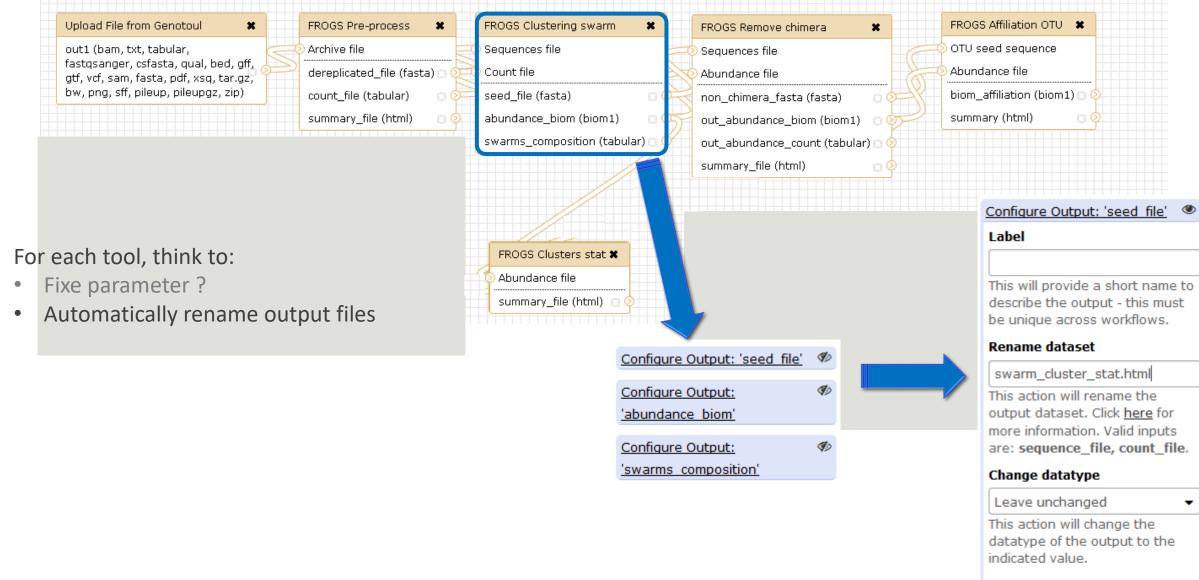
FROGS Affiliation OTU 🗶

biom\_affiliation (biom1) 🖸

OTU seed sequence

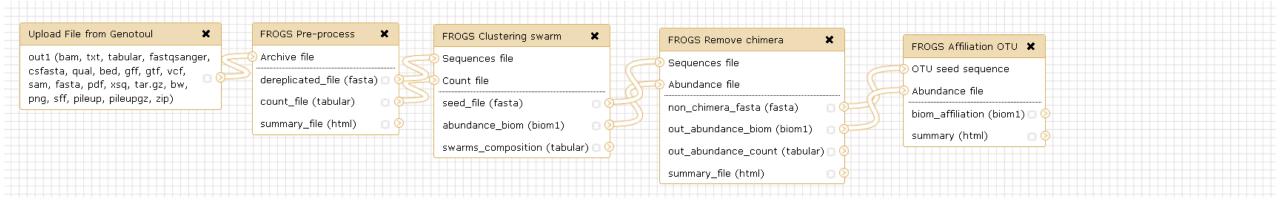
Abundance file

summary (html)


Aggregation distance

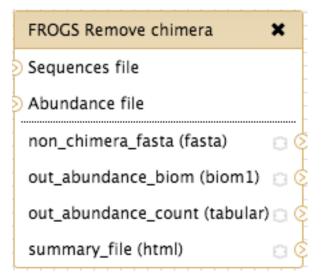
Set at Runtime

Maximum number of differences between sequences in each aggregation step.


Performe denoising clustering step?

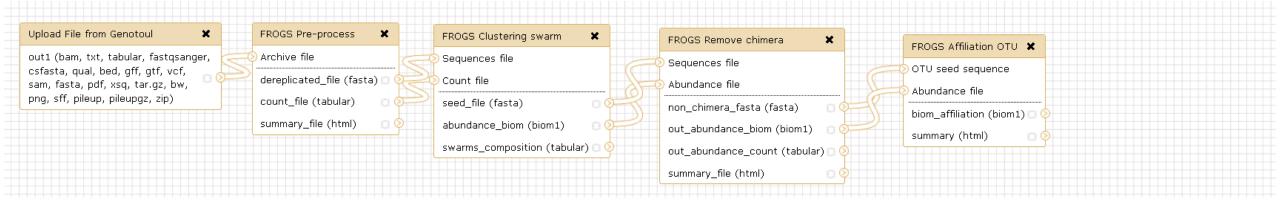
Yes No If checked, clustering will be perform in two steps, first with




#### Tags

This action will set tags for the dataset.

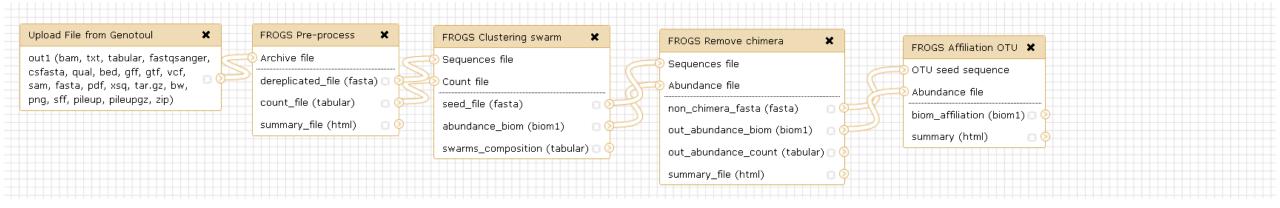



### For each tool, think to:

- Fixe parameter ?
- Automatically rename output files
- Hide intermediate files ?

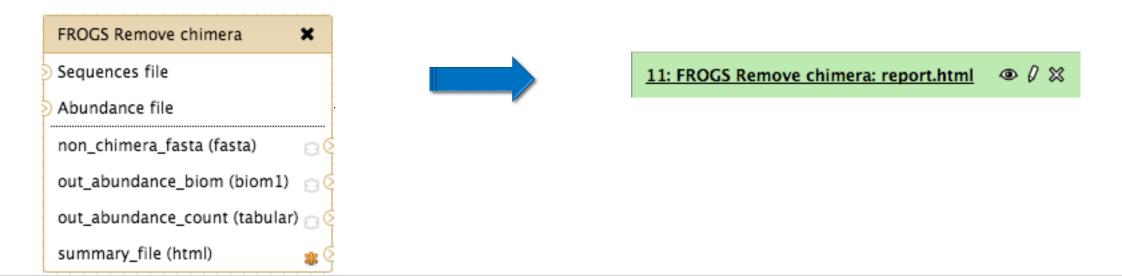





| 11: FROGS Remove chimera: report.html                   | • / % |
|---------------------------------------------------------|-------|
| 10: FROGS Remove chimera:<br>non chimera abundance.biom | • / × |
| <u>9: FROGS Remove chimera:</u><br>non_chimera.fasta    | • / × |



### For each tool, think to:


- Fixe parameter ?
- Automatically rename output files
- Hide intermediate files ?

| FROGS Remove chimera 🗙                                                        |
|-------------------------------------------------------------------------------|
| Sequences file                                                                |
| Abundance file                                                                |
| non_chimera_fasta (fasta)                                                     |
| out_abundance_bio_Mark dataset as a workflow<br>output. All unmarked datasets |
| out_abundance_count (tatwill be hidden.                                       |
| summary_file (html)                                                           |
|                                                                               |



### For each tool, think to:

- Fixe parameter ?
- Automatically rename output files
- Hide intermediate files ?



# Download your data

In order to share resources as well as possible, files that have not been accessed for more than 120 days are regularly purged. The backup of data generated using of Galaxy is your responsibility.

| of Galaxy is your responsibility.                                                                                                                 | OTU:                                        | HISTORY LISTS              |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|
|                                                                                                                                                   | excluded data report.html                   | Saved Histories            |
|                                                                                                                                                   | 11.4 KB                                     | Histories Shared with Me   |
|                                                                                                                                                   | format: html, database: <u>?</u>            | HISTORY ACTIONS            |
|                                                                                                                                                   | ## Application Software:                    | Create New                 |
|                                                                                                                                                   | affiliation_OTU.py (version: 0.4.0)         | Copy History               |
|                                                                                                                                                   | Command: /usr/local/bioinfo                 | Share or Publish           |
|                                                                                                                                                   | /src/galaxy-test/galaxy-dist/tools          | Show Structure             |
|                                                                                                                                                   | /FROGS/affiliation_OTU.py                   |                            |
| You have the opportunity:                                                                                                                         | reference /save/galaxy-                     | Extract Workflow           |
|                                                                                                                                                   | test/bank/FROGS/silva_119-1                 | Delete                     |
| 1/ Save your datasets one by one using the "floppy disk" icon.                                                                                    | /prokaryotes                                | Delete Permanently         |
|                                                                                                                                                   | /silva_119-1_prokaryotes.fasta<br>abundance | DATASET ACTIONS            |
|                                                                                                                                                   |                                             | Copy Datasets              |
|                                                                                                                                                   |                                             | Dataset Security           |
|                                                                                                                                                   | HTML file                                   | Resume Paused Jobs         |
|                                                                                                                                                   |                                             | Collapse Expanded Datasets |
| 2/ Or export each history.                                                                                                                        |                                             | Unhide Hidden Datasets     |
| To export a history, from the "History" menu, click on the wheel, then "Export History to File": Purge Deleted Datasets<br>Purge Deleted Datasets |                                             |                            |
|                                                                                                                                                   |                                             |                            |
|                                                                                                                                                   |                                             | Export Tool Citations      |
|                                                                                                                                                   |                                             | Export History to File     |
|                                                                                                                                                   |                                             | OTHER ACTIONS              |

Import from File

COL

To retrieve your history, click on the http link that appears automatically:

### It is then possible to record the data :



### This directory contains :

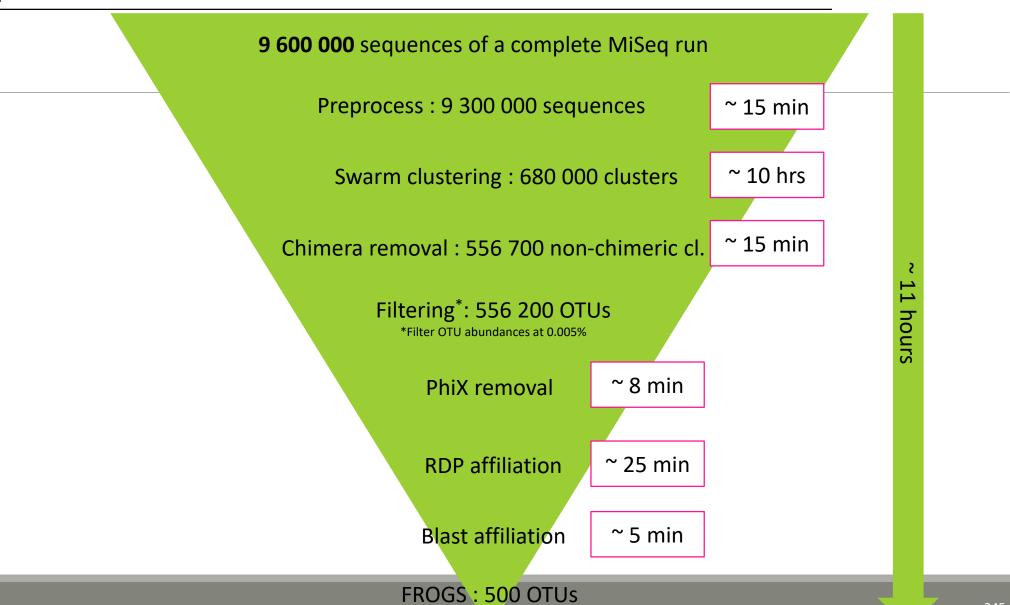


in the "datasets" directory: Your Galaxy files.
 in the files "-attrs.txt" : Metadata about your datasets, your jobs and your history.

# FROGS BIOM to Standard BIOM

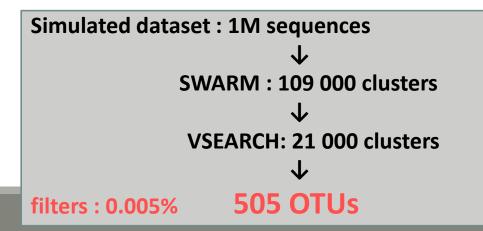
# FROGS biom to standard Biom

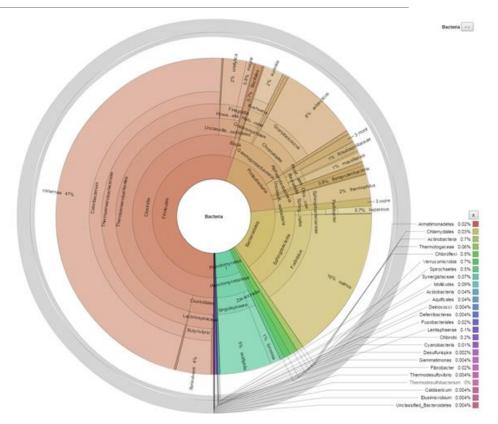
## This step is required to run R


| FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM. (Galaxy Version 1.1.0) | <ul> <li>Options</li> </ul> |
|-----------------------------------------------------------------------------------------------|-----------------------------|
| Abundance file                                                                                |                             |
| 22: FROGS Affiliation OTU: affiliation.biom                                                   | •                           |
| The FROGS BIOM file to convert (format: BIOM).                                                |                             |
| ✓ Execute                                                                                     |                             |
|                                                                                               |                             |
|                                                                                               | 43: FROGS I<br>blast metad  |
|                                                                                               | 42: FROGS                   |
|                                                                                               |                             |

# Some figures

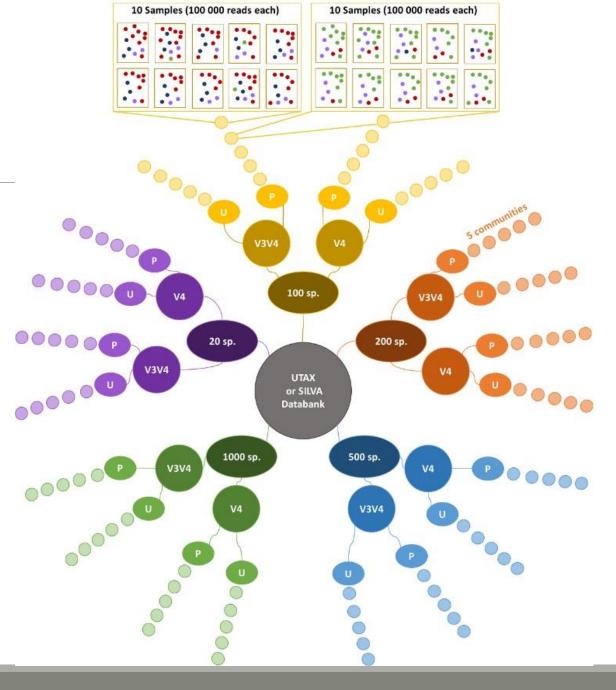
# Some figures - Fast


| NB SEQ     | TIME with complete pipeline without Filters |
|------------|---------------------------------------------|
| 50 000     | 40 min                                      |
| 400 000    | 4 hrs                                       |
| 3 500 000  | 2 days                                      |
| 10 000 000 | 5 days                                      |


# Speed on real datasets with filter

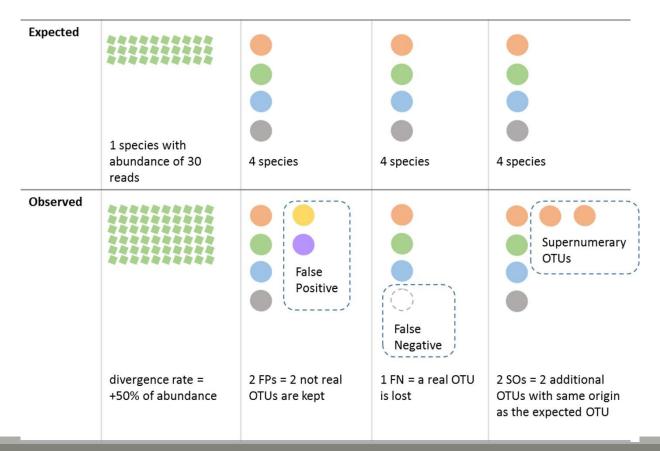


# Simulated datasets, for testing FROGS' Accuracy


- 500 species, covering all bacterial phyla
- Power Law distribution of the species abundances
- Error rate calibrated with real sequencing runs
- 20% chimeras
- 10 samples of 100 000 sequences each (IM sequences)





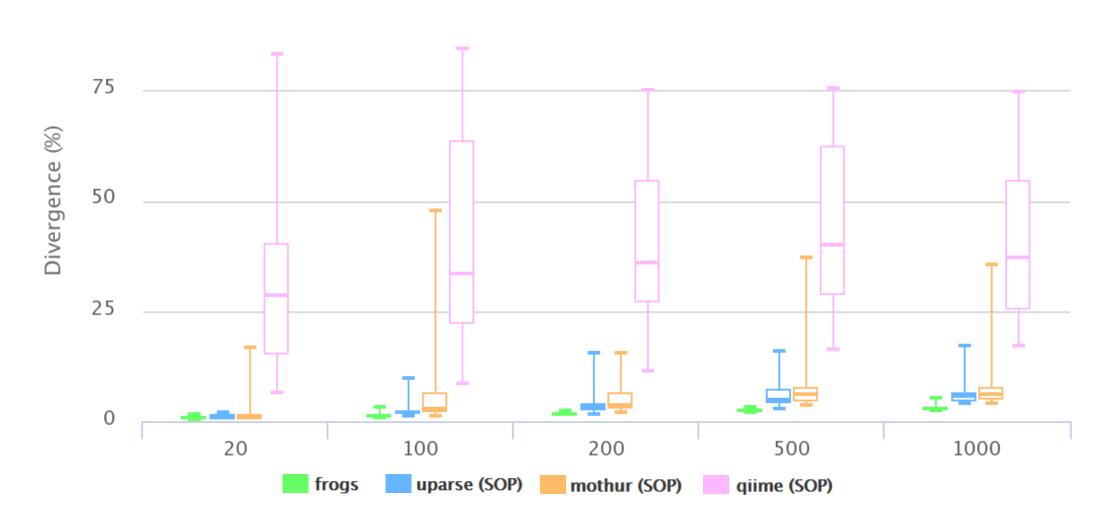

# FROGS' Accuracy

- 1.10<sup>+8</sup> synthetic sequences were treated with FROGS, UPARSE and MOTHUR, QIIME, with their guidelines, to compare their performances
- 20, 100, 200, 500 or 1000 different species
- power law or a uniform distribution
- 5 to 20% of chimera
- $\rightarrow$  Divergence on the composition of microbial communities at the different taxonomic ranks



# FROGS' Accuracy

### The four metrics used to compare results of FROGS, UPARSE, QIIME and MOTHUR are :

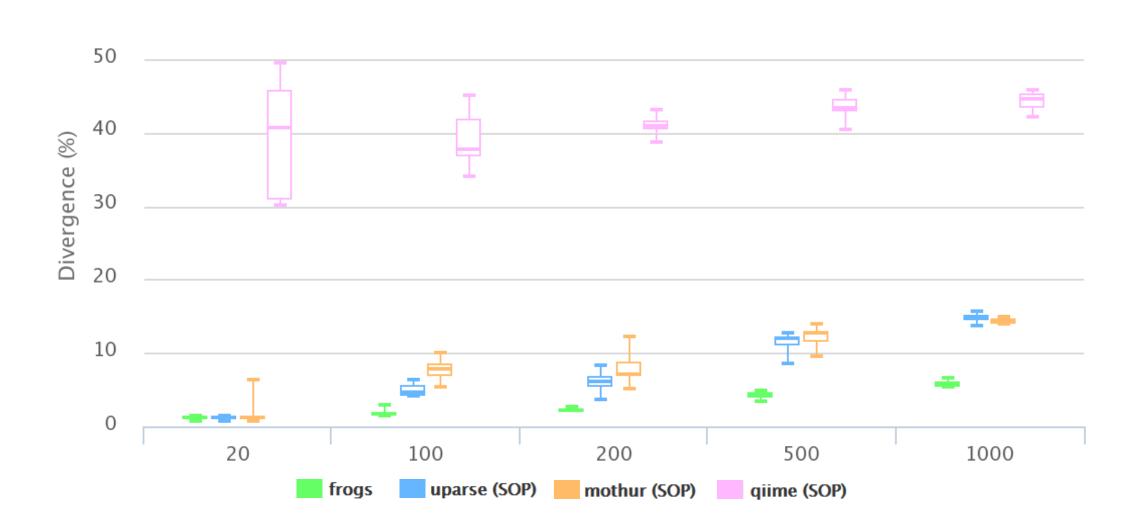



V3V4 Power Law

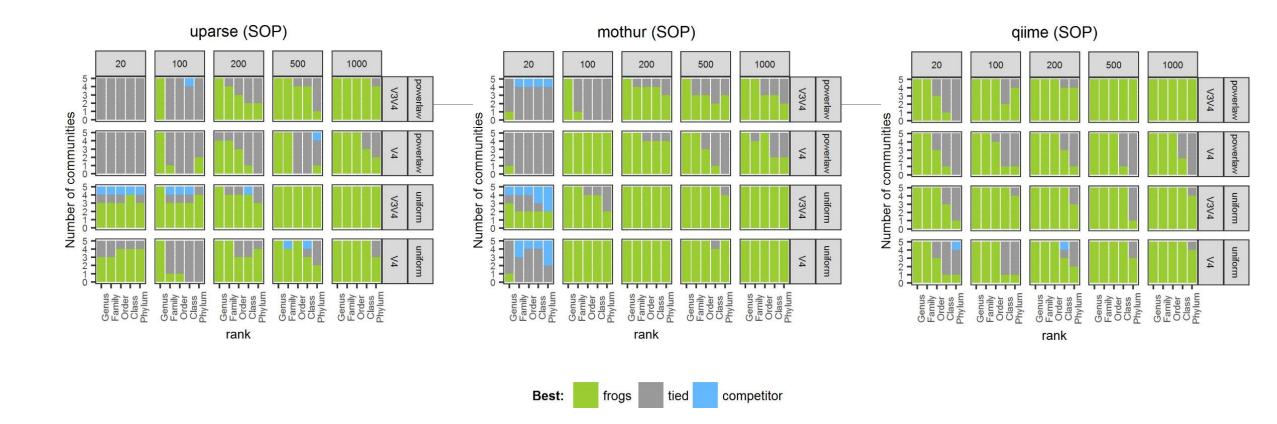
## Affiliations divergence

Divergence on the composition of microbial communities at genus rank

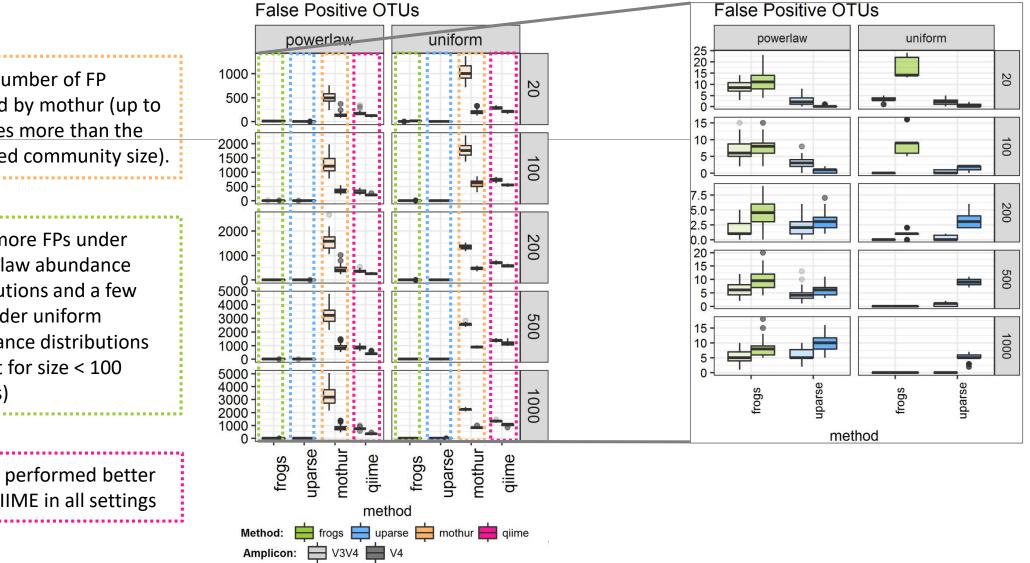
100




V3V4 Uniform


60

## Affiliations divergence


Divergence on the composition of microbial communities at genus rank



### The results of non-parametric paired tests (signed rank test) of Affiliation divergence on simulated data from UTAX

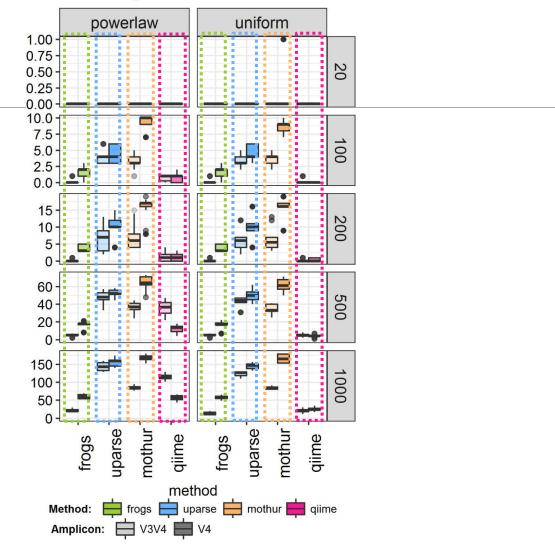


FROGS performed as well as or better than UPARSE and mothur in most settings. The infrequent condition in which FROGS performed worse than UPARSE and mothur was for small community sizes (20 species), except at genus level. It performed better than QIIME in all settings.



Huge number of FP inferred by mothur (up to 20 times more than the expected community size).

a few more FPs under power law abundance distributions and a few less under uniform abundance distributions (except for size < 100 species)


FROGS performed better than QIIME in all settings

### False Negative OTUs

FROGS truly outperformed mothur in terms of FN taxa

FROGS always produced fewer FNs than UPARSE.

FROGS sometimes produced more FNs than QIIME, especially on the V4 region.



## Conclusions on assessments

FROGS performed much better than mothur in all settings

FROGS is less conservative than UPARSE for small size communities and better (for both FPs and FNs) for large size communities

FROGS is more conservative than QIIME on the V4 region and better (for both FPs and FNs) on V3V4 regions.

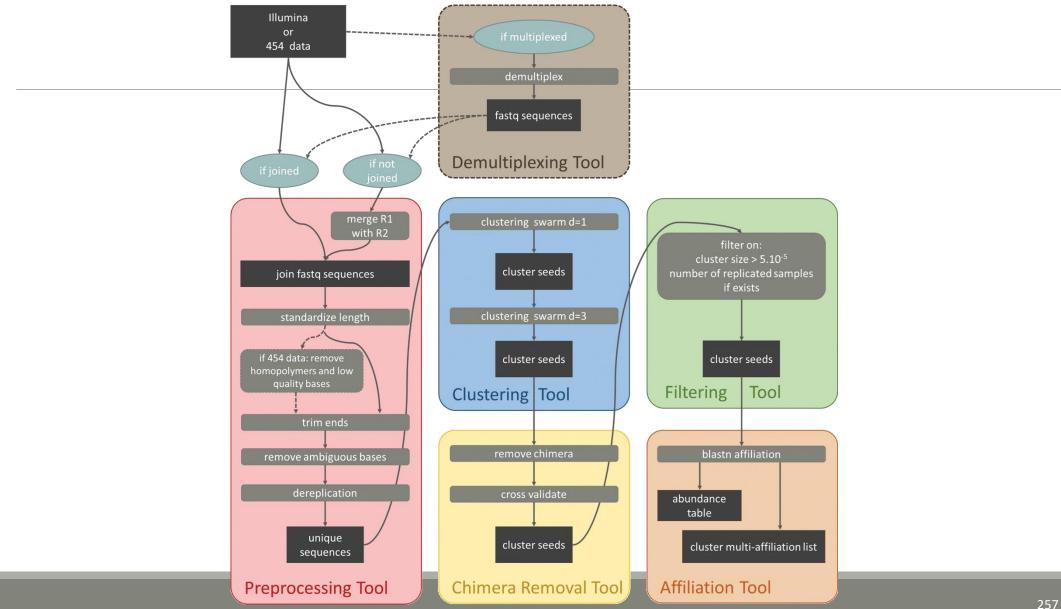
FROGS maintained both the number of FP and FN OTUs low, especially in complex communities.

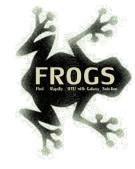
→ cross-validation of chimeras, only used in FROGS, which avoids confusing real OTUs with chimeras.

 $\rightarrow$  3 step strategy (clustering by Swarm + chimera removal with cross-validation + filtering) = a low FP rate and the high probability of detecting a species that is really present in the dataset *i.e.* a high recall rate.

 $\rightarrow$  unlike QIIME or mothur, FROGS never produced Supernumerary OTUs, which further validates the FROGS OTU picking strategy.

# Conclusions





# Why Use FROGS ?

- User-friendly
- Fast
- 454 data and Illumina data
  - sequencing methods change but same tool
  - easier for comparisons
- Clustering without global threshold and independent of sequence order
- New chimera removal method (Vsearch + cross-validation)

- Filters tool
- Multi-affiliation with 2 taxonomy affiliation procedures
- Cluster Stat and Affiliation Stat tools
- A lot of graphics
- Independant tools
- Few FPs and few FNs

## Our recommended guideline:






# How to cite FROGS

Frédéric Escudié, Lucas Auer, Maria Bernard, Mahendra Mariadassou, Laurent Cauquil, Katia Vidal, Sarah Maman, Guillermina Hernandez-Raquet, Sylvie Combes, Géraldine Pascal, 2017. <u>"FROGS:</u> Find, Rapidly, OTUs with Galaxy Solution." *Bioinformatics* 

Pipeline FROGS on <a href="http://sigenae-workbench.toulouse.inra.fr">http://sigenae-workbench.toulouse.inra.fr</a>

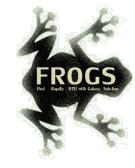
Github: <u>https://github.com/geraldinepascal/FROGS.git</u>

Website: <u>http://frogs.toulouse.inra.fr</u>



## To contact

FROGS:


frogs@inra.fr

Galaxy:

support.sigenae@inra.fr

Newsletter – subscription request:

frogs@inra.fr



# Next training sessions

25th June 2018 – 28th June 2018 -> FULL

Next one in autumn 2018