Training on Galaxy: Statistics to explore metagenomics

Find, Rapidly, OTUs with Galaxy Solution

MARIA BERNARD, GÉRALDINE PASCAL, MAHENDRA MARIADASSOU, LAURENT CAUQUIL, STEPHANE CHAILLOU

Goals

- Exploratory Data Analysis
 - α-diversity: how diverse is my community?
 - β-diversity: how different are two communities?
 - Visual assessment of the data
 - Bar plots: what is the composition of each community?
 - Multidimensional Scaling: how are communities related?
 - Heatmaps: are there interactions between species and (groups of) communities?
 - Use a distance matrix to study structures:
 - Hierarchical clustering: how do the communities cluster?
 - Permutational ANOVA: are the communities structured by some known environmental factor (pH, height, etc)?

FROGSSTAT with Phyloseq R package

R package (McMurdie and Holmes, 2013) to analyse community composition data in a phylogenetic framework

It uses other R packages:

- Community ecology functions from vegan, ade4, picante
- Tree manipulation from ape
- Graphics from ggplot2
- (Differential analysis from DESeq2)

Overview

- 1. Part A: We play together on a first dataset
- 2. Part B: You play alone with our guideline on a 2nd dataset
- 3. Part C: You play alone on another dataset if we have time

PART A

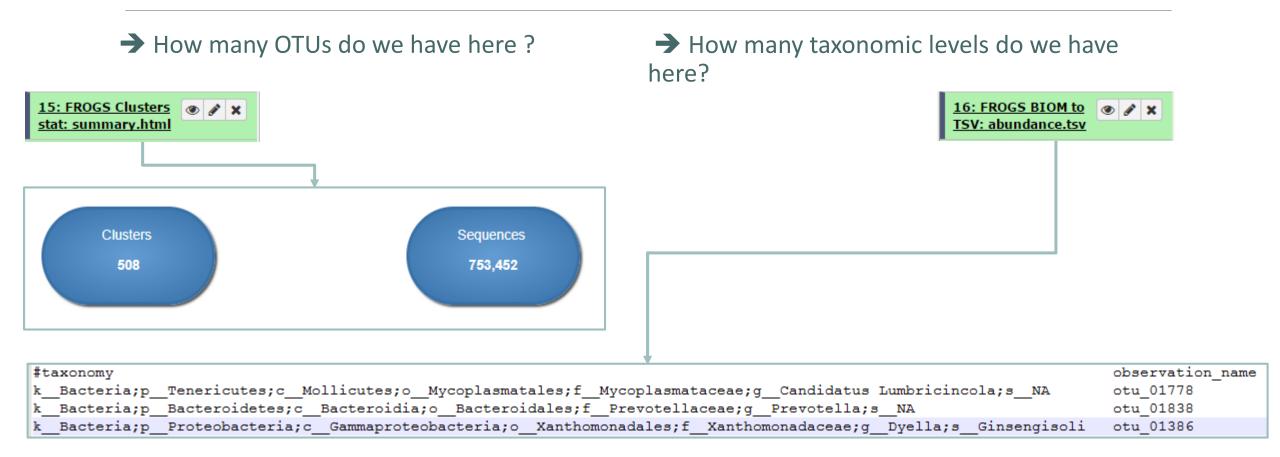
Training Data1

A real analysis provided by Stéphane Chaillou et al.

Comparison of meat and seafood bacterial communities.

8 environment types (EnvType) :

- Meat \rightarrow Ground Beef, Ground veal, Poultry sausage, Diced bacon
- Seafood \rightarrow Cooked schrimps, Smoked salmon, Salmon filet, Cod filet


- 64 samples of 16S V1-V3
- Taxonomic affiliations was made with the Greengenes database

- 1. Create a new history : « food »
- → At the end of FROGS pipeline, what kind of data do we have ?
- → What supplementary data do we need to perform statistical analysis ?

۲

- 2. Upload data
 - 1. chaillou/sample_metadata.tsv
 - 2. chaillou/chaillou.biom
 - 3. chaillou/tree.nwk (datatype nhx)
- → Take a look at the data

1	2	3	4
	EnvType	Description	FoodType
BHT0.LOT01	BoeufHache	LOT1	Meat
BHT0.LOT03	BoeufHache	LOT3	Meat
BHT0.LOT04	BoeufHache	LOT4	Meat
BHT0.LOT05	BoeufHache	LOT5	Meat
BHT0.LOT06	BoeufHache	LOT6	Meat
BHT0.LOT07	BoeufHache	LOT7	Meat
BHT0.LOT08	BoeufHache	LOT8	Meat
BHT0.LOT10	BoeufHache	LOT10	Meat
VHT0.LOT01	VeauHache	LOT1	Meat
VHT0.LOT02	VeauHache	LOT2	Meat
VHT0.LOT03	VeauHache	LOT3	Meat
VHT0.1 OT04	VeauHache	LOT4	Meat

Data import tool

PHYLOSEQ OBJECT CREATION

Phyloseq : Data import

The FROGS biom format contains:

- OTU count tables (required)
- OTU description : taxonomy

Others informations used in FROGSSTAT are:

- sample description in TSV file
- phylogenetic tree in Newick format (nwk or nhx)

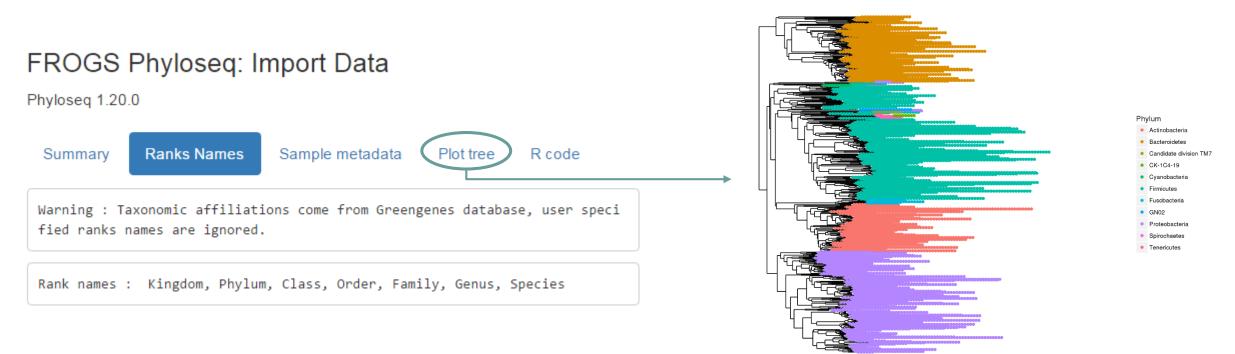
FROGSSTAT Ph	loseq Import Data from 3 files: biomfile, samplefile, treefile (Galaxy Version 1.0.0)	 Optior
Biom file		
C 2 C	2: chaillou.biom	
The file contains	the OTU informations (format: biom1).	
Sample tsv file		
D 2 D	3: sample_metadata.tsv	
The file contains	the samples informations (format: tabular).	
Tree file		
B 4 D	1: tree.nwk	
The file contains	the tree informations (format: Newick - nhx or nwk).	
Names of taxor	omics levels	
Kingdom Phylun	I Class Order Family Genus Species	
The ordered taxe	nomic levels stored in BIOM. Each level is separated by one space.	
Do you want to	normalise your data ?	
Yes No		
To normalise data	a before analysis.	
✓ Execute		

1. Use FROGSSTAT Phyloseq Import Data, with and without samples normalization (rename datasets in consequence).

Phyloseq 1.20.0

FROGS Phyloseq: Import Data

→ What is the difference ?


2. Guess what is a Rdata file?

3. Explore the HTML results

Summary	Ranks Names	Sample metadata	Plot tree	R code
otu_table()	Sample Data:	[508 taxa and	4 sample va	ariables]
sample_data()	Taxonomy Table:	[64 samples by	taxonomic r	ranks]

Number of sequences in each sample after normalization: 11718

3. Explore the HTML results

Phylogenetic tree colored by Phylum

3. Explore the HTML results

FROGS Phyloseq: Import Data

Phyloseq 1.20.0

FROGS Phyloseq: Import Data Phyloseq 1.20.0 Summary Ranks Names Sample metadata Plot tree R code Loading packages library(phyloseq) library(ape) library(ggplot2) Warning ! Metadata order (in each sample variable) are used to organised graphics. So take extra care when you construct your sample metadata file

Biodiversity analysis

Biodiversity analysis

- 1. Exploring the sample composition
- 2. Notions of biodiversity
- 3. α-diversity analysis
- 4. β-diversity analysis

I. Biodiversity analysis

COMPOSITION VISUALISATION

Exploring biodiversity : visualisation

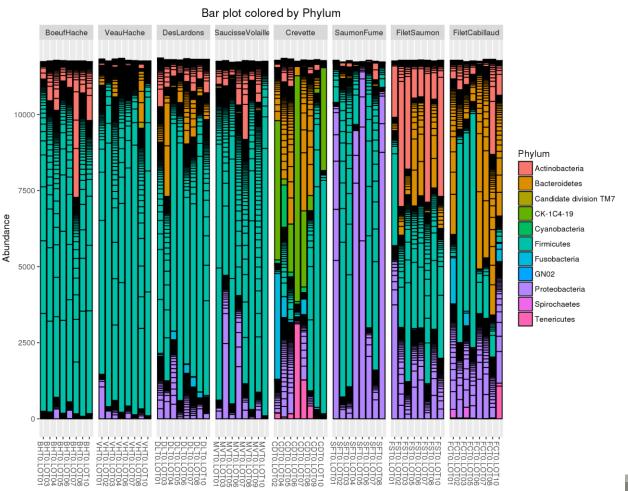
FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot (Galaxy Version 1.0.0) • Options	
Phyloseq object (format rdata)	
🖹 🖓 🗅 8: food.Rdata 🗸	Explore the san
This is the result of FROGS Phyloseq Import Data tool.	
Grouping variable	Change a comp
ЕпѵТуре	Choose a samp
Experimental variable used to group samples (Treatment, Host type, etc).	graphics: either
Taxonomic level to filter your data	
Kingdom	
ex: Kingdom, Phylum, Class, Order, Family, Genus, Species	
Taxa (at the above taxonomic level) to keep in the dataset	
Bacteria	For the first usa
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, *i.e.* Firmicutes Proteobacteria	parameters, bu
Taxonomic level used for aggregation	Take care of
Phylum	name
ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.	Is the Taxon
Number of most abundant taxa to keep	
9	
ex: 9, *i.e.* Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'	

Explore the sample raw count

Choose a sample variable to organise graphics: either EnvType or FoodType

For the first usage, let the default parameters, but :

- Take care of your taxonomic level name
- Is the Taxon « Bacteria » in your data ?


FROGS Phyloseq: Visualize Data Composition

Phyloseq 1.20.0

Bar plot Composition plot R code

→ Interpretations ?

- Firmicutes and Proteobacteria are presents in all samples, but with a wide range of abundance
- Meat type share common Phylum composition with a majority of Firmicutes
- Seafoods seem to be much more variable

Exploring biodiversity : visualisation

→ Limitations:

Plot bar works at the OTU-level...

- ...which may lead to graph cluttering and useless legends
- No easy way to look at a subset of the data
- Works with absolute counts (beware of unequal depths or used normalized function)

Exploring biodiversity : visualisation

Customisation: plot_composition function :

- Works with relative abundances
- Subsets OTUs at a given taxonomic level

Taxonomic level to filter your data

Kingdom

ex: Kingdom, Phylum, Class, Order, Family, Genus, Species

Taxa (at the above taxonomic level) to keep in the dataset

Bacteria

ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation

Aggregates OTUs at another taxonomic level

Phylum

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.

Shows only a given number of OTUs

Number of most abundant taxa to keep

9

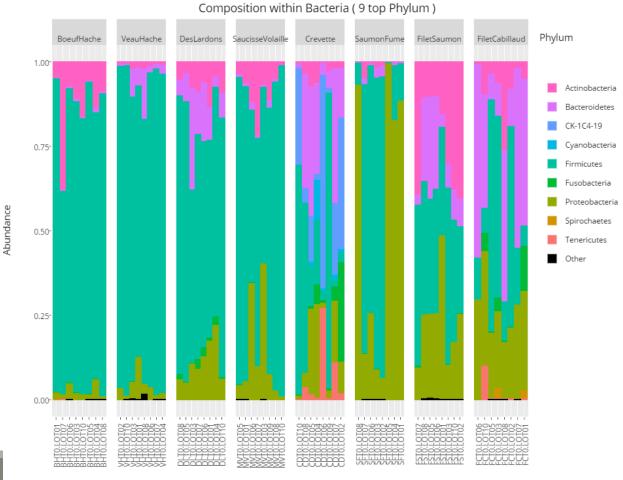
ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

FROGS Phyloseq: Visualize Data Composition

R code

Phyloseq 1.20.0

Bar plot


Composition plot

Exercise A-4

Look at the « Composition plot » tab

Based on these results what would be interesting to look into ?

- ➔ What are the composition of the 9 most abundant Families of Firmicutes ?
- ➔ What are the composition of the 9 most abundant Families of Proteobacteria ?

THE 9 MOST ABUNDANT FAMILIES OF FIRMICUTES

Taxonomic level to filter your data

Phylum

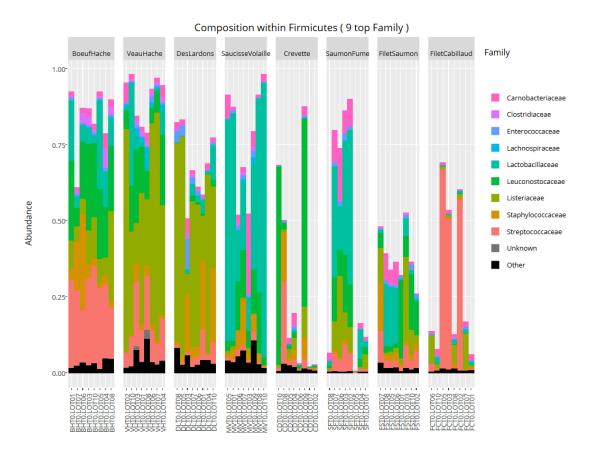
ex: Kingdom, Phylum, Class, Order, Family, Genus, Species

Taxa (at the above taxonomic level) to keep in the dataset

Firmicutes

ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation


Family

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.

Number of most abundant taxa to keep

9

ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

THE 9 MOST ABUNDANT FAMILIES OF PROTEOBACTERIA

Taxonomic level to filter your data

Phylum

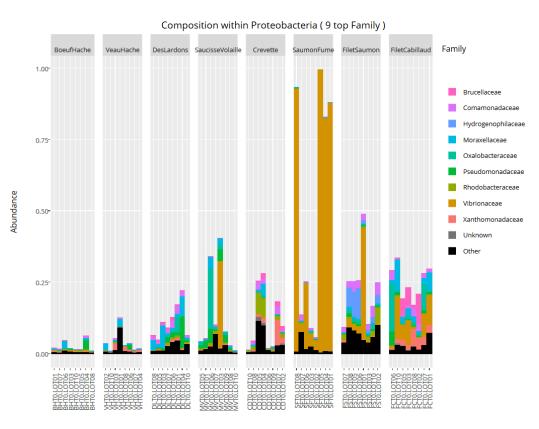
ex: Kingdom, Phylum, Class, Order, Family, Genus, Species

Taxa (at the above taxonomic level) to keep in the dataset

Proteobacteria

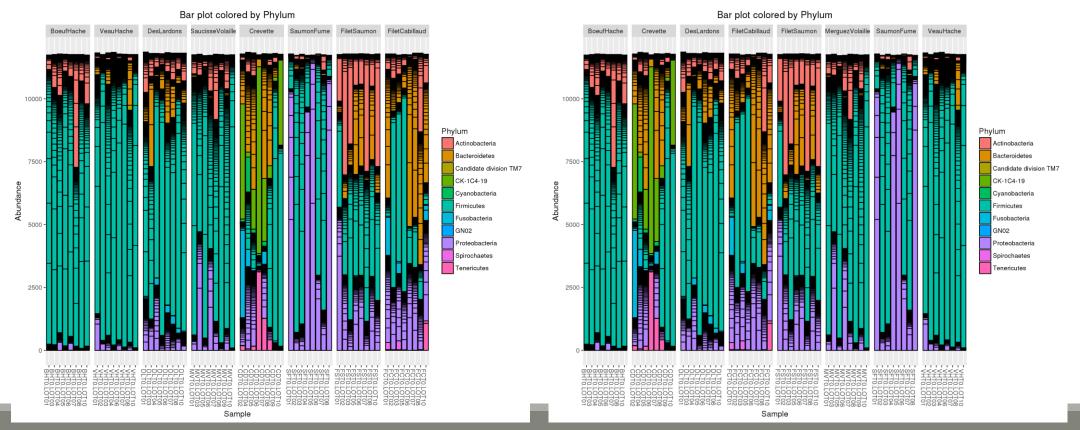
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation

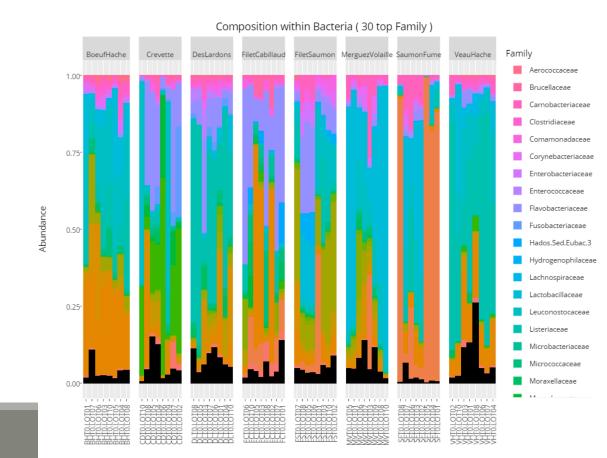

Family

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.

Number of most abundant taxa to keep


9

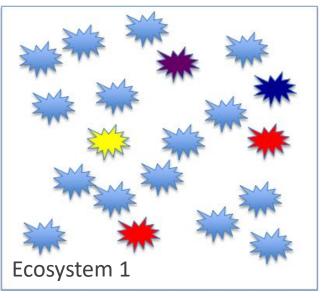
ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

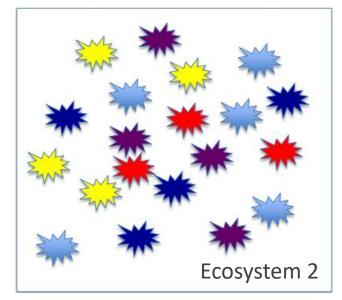

Exploring biodiversity : visualisation

Remark 1 : An example of what happens when sample_metadata file is not sorted in a meaning full way

Exploring biodiversity : visualisation

Remark 2 : Keep in mind that human eye cannot distinguish more than 12 colours at the same time. Example of the 30 most abundant Families among Bacteria

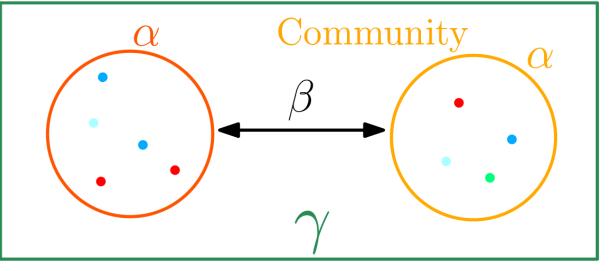



II. Biodiversity analysis

DIVERSITY INDICES

Exploring biodiversity : descriptors

- The richness corresponds to the number of OTUs or functional groups present in communities. It caracterises the composition.
- The **diversity** takes into account the relative abundancy of species. It caracterises the **structure**



Richness : Eco1 = Eco2 Diversity: Eco2 > Eco1

Exploring biodiversity : statistical indices

Compute and compare diversity indices. 3 levels of diversity:

- **α-diversity**: diversity within a community;
- β-diversity: diversity between communities;
 - β-dissimilarities/distances
 - dissimilarities between pairs of communities
 - often used as a first step to compute diversity
- γ-diversity: diversity at the landscape scale (blurry for bacterial communities);

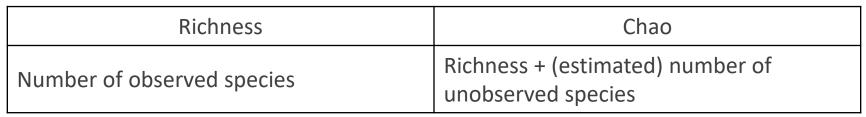
Landscape

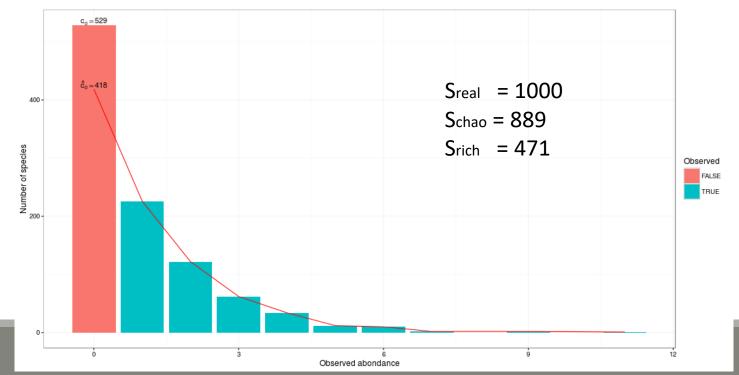
Exploring biodiversity : statistical indices

Qualitative (Presence/Absence) vs. Quantitative (Abundance)

- Qualitative gives less weight to dominant species;
- Qualitative is more sensitive to differences in sampling depths;
- Qualitative indices emphasize differences in taxa diversity while quantitative are more sensitive to raise differences in composition.

Compositional vs. Phylogenetic

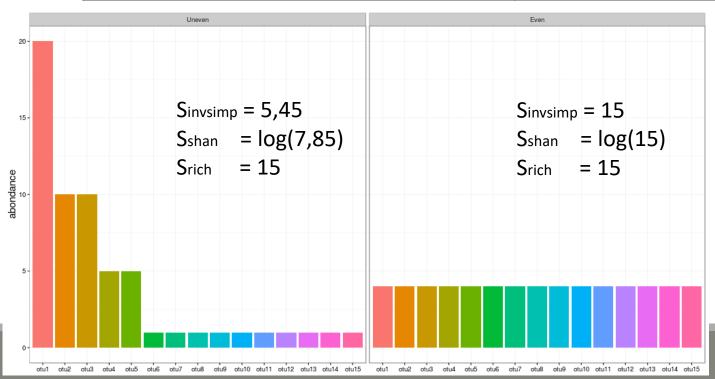

- Compositional does not require a phylogenetic tree;
- Compositional is more sensitive to erroneous OTU picking;
- Compositional gives the same importance to all OTUs.


III. Biodiversity analysis

 α -DIVERSITY INDICES

Exploring biodiversity : α -diversity

 α -diversity is equivalent to the richness : number of species



Exploring biodiversity : α -diversity

 α -diversity is equivalent to the richness : number of species

Shannon		Inv-Simpson		
Evenness of the species at distribution		Inverse probability that two sequences sampled at random come from the same species		

Interpretation :

15 observed species, but according to Shannon, the left example acts like there is 7.85 equally abundant species (5.45 for invSimp) It is called effective diversities

Exploring biodiversity : α -diversity

 α -diversity indices available in phyloseq :

- Species richness : number of observed OTU
- **Chao1** : number of observed OTU + estimation of the number of unobserved OTU
- Shannon entropy / Jensen : the width of the OTU relative abundance distribution. Roughly, it reflects our (in)ability to predict OTU of a randomly picked bacteria.
- Simpson : 1 probability that two bacteria picked at random in the community belong to different OTU.
- Inverse Simpson : inverse of the probability that two bacteria picked at random belong to the same OTU.

Exploring biodiversity : α-diversity

FROGSSTAT Phyloseq Alpha Diversity with richness plot (Galaxy Version 1.0.0)	▼ Options	
Phyloseq object (format rdata) 	•	Select R workspace including phyloseq object
Experiment variable EnvType The experiment variable that you want to analyse.		Choose a sample variable to organise graphics
The alpha diversity indices to compute Select/Unselect all		7
 ✓ Observed ✓ Chao1 ✓ Shannon ✓ InvSimpson □ Simpson □ ACE □ Fisher 		Choose which α-diversity indices you want to compute
✓ Execute		

Test it on EnvType

- → What are the resulting datasets ?
- → Which interpretation could you make on the boxplot results ?
- \rightarrow Have EnvType got an impact on α -diversity indice ?

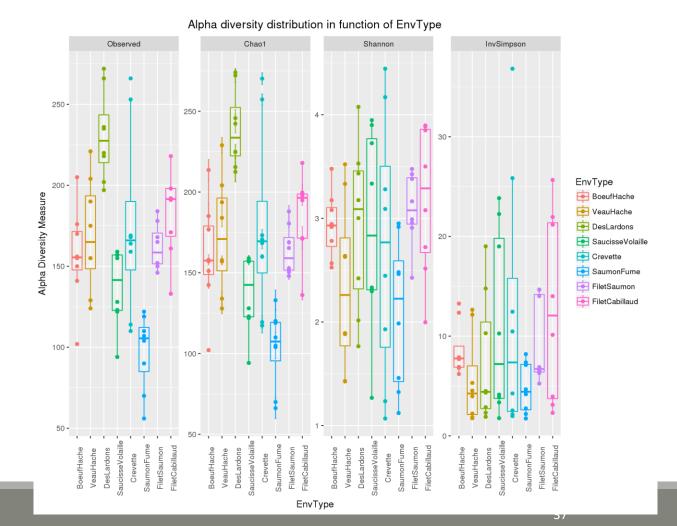
→ What are the resulting datasets ?

Report HTML file with graphical and statistical results

Tabular file containing the detailed value of each indice in each sample

14: EnvType: alpha_diversity.html 🛛 🕑 🖋 🗙

 13: EnvType : alpha_diversity.tsv


 2
 3
 4
 5
 6

 Observed
 Chao1
 se chao1
 Shannon

1	2	3	4	5	6
	Observed	Chao1	se.chao1	Shannon	InvSimpson
DLT0.LOT08	205	215.344827586207	5.63455654866184	2.01591714100393	2.31393432719116
DLT0.LOT05	197	215.454545454545	9.04924368908291	1.76545015179311	1.90925718747888
DLT0.LOT03	219	226.916666666667	4.86003372343409	3.4340155003954	14.786255213252
DLT0.LOT07	220	224.714285714286	3.77924481885382	3.00227529842681	4.33279579199353

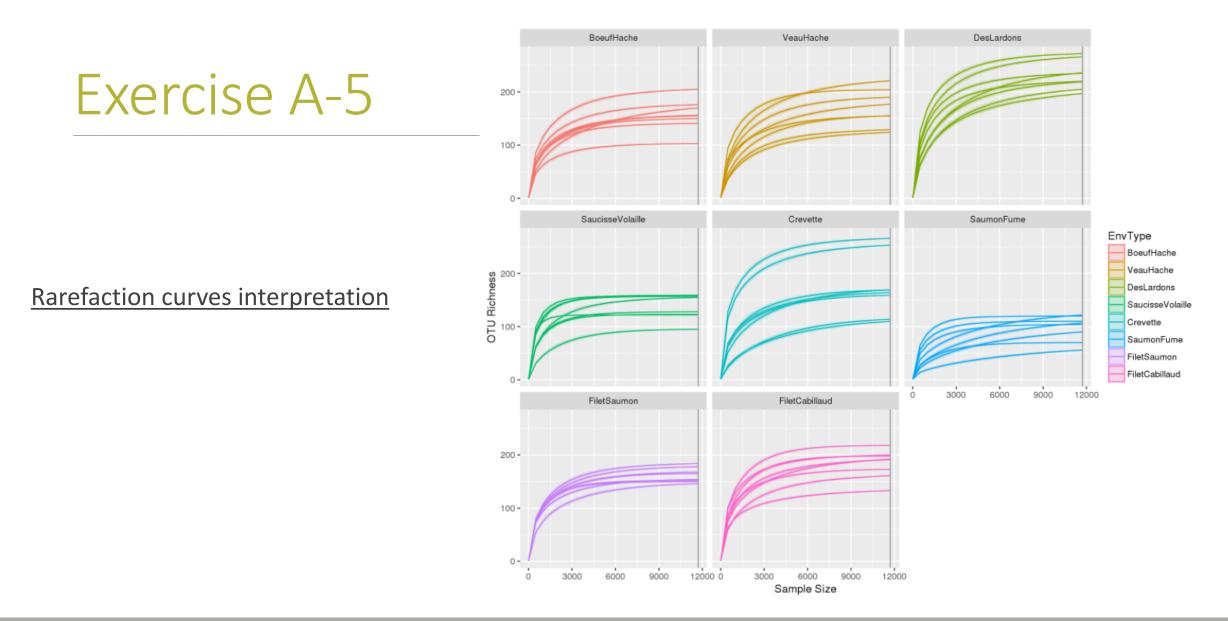
Boxplot interpretations

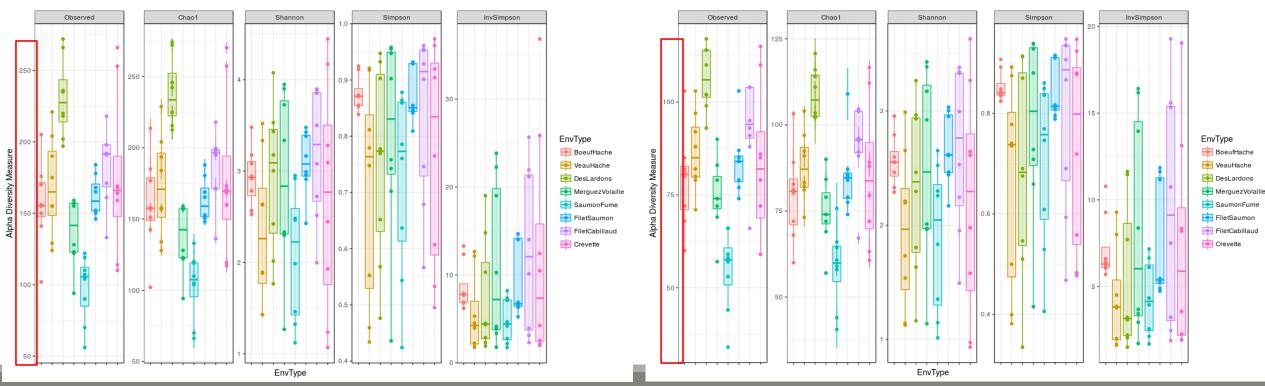
- Observed and Chao1 are very similar
 All species have been detected
- Many taxa observed in Deslardons (high Chao1, high Observed)...
- ...but low Shannon and Inverse-Simpson
 communities are dominated by few abundant taxa

Anova interpretations

- Environments differ a lot in terms of richness...
- ...but not so much in terms of Shannon diversity

#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType, anova_data) summary(anova.Observed)


	Sum Sq Me							
EnvType 7	82142	11735	11.64 5	.02e-09	***			
Residuals 56	56472	1008						
Signif. codes:	0 '***'	0.001 ''	**' 0.01	'*' 0.0	5 '.'	0.1 '	•	1


→ Effective diversities are quite similar

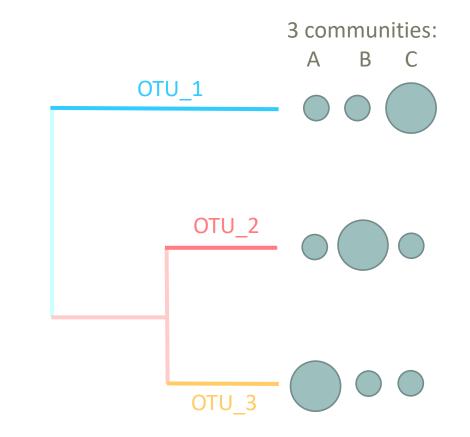
#Perform ANOVA on Shannon, which effects are significant anova.Shannon <-aov(Shannon ~ Depth + EnvType, anova_data) summary(anova.Shannon)

	DÍ	Sum	Sq	Mean	Sq	F.	value	P	r(>F)
EnvType	7	7.	91	1.13	300		1.771		0.111
Residuals	56	35.	72	0.63	379				

WARNING : Many diversity indices (richness, Chao) depend a lot on rare OTUs. Do not trim rare OTUs before computing them as it can drastically alter the result.

 α -diversity: without (left) and with (right) trimming on rare OTU (total abundance < 500)

IV. Biodiversity analysis

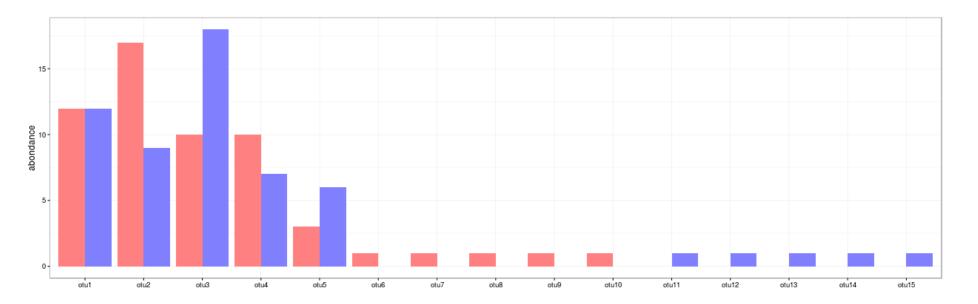

 β -DIVERSITY INDICES

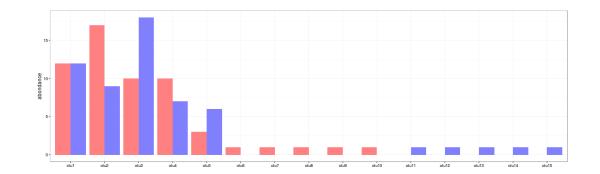
Many diversity indices (both compositional and phylogenetic) are available with the Phyloseq package through the generic distance function.

Different dissimilarities capture different features of the communities.

In this example :

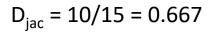
- qualitatively, communities are very similar
- quantitatively, communities are very different
- phylogenetically, two communities seem to be closer than the third one.

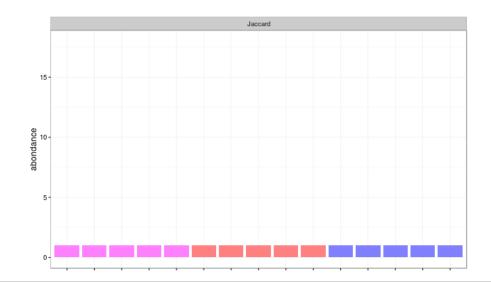

Jaccard:

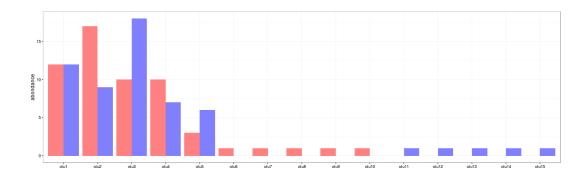

Fraction of <u>species</u> specific to either 1 or 2

Bray-Curtis:

Fraction of the <u>community</u> specific to either 1 or 2

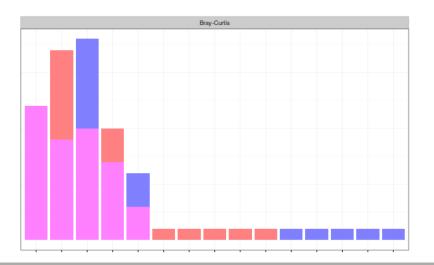

- 2 communities
- 15 OTUs

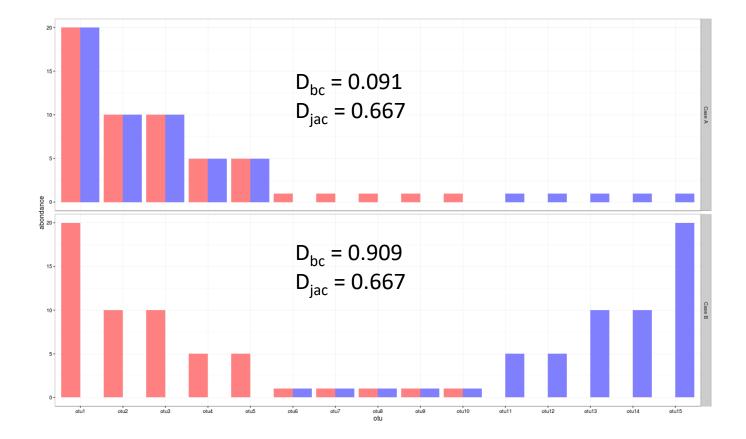




Jaccard:

Fraction of <u>species</u> specific to either 1 or 2

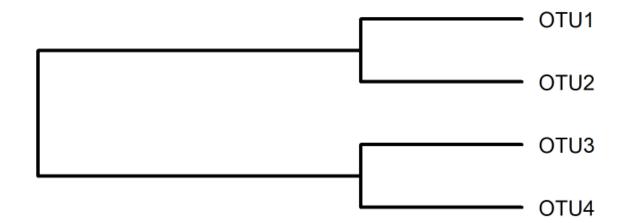




Bray-Curtis:

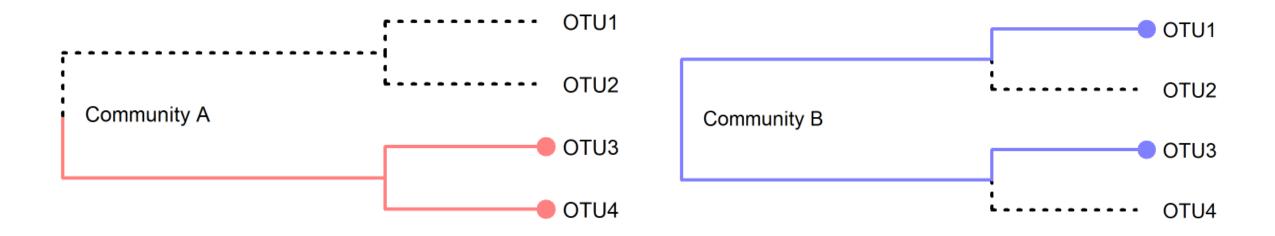
Fraction of the <u>community</u> specific to either 1 or 2

 $D_{bc} = (8+8+3+3+10) / (24+26+28+17+9+10) = 0.281$



Unifrac:

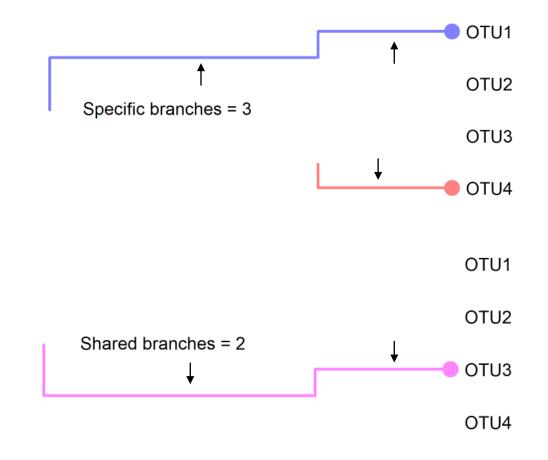
Fraction of <u>the tree</u> specific to either 1 or 2


Weigthed-Unifrac :

Unifrac:

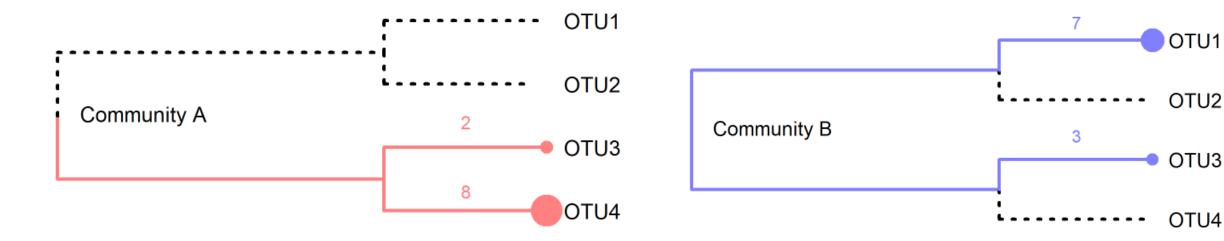
Fraction of <u>the tree</u> specific to either 1 or 2

$$Unifrac = \frac{\sum specific_branch_length}{\sum all_branch_length}$$

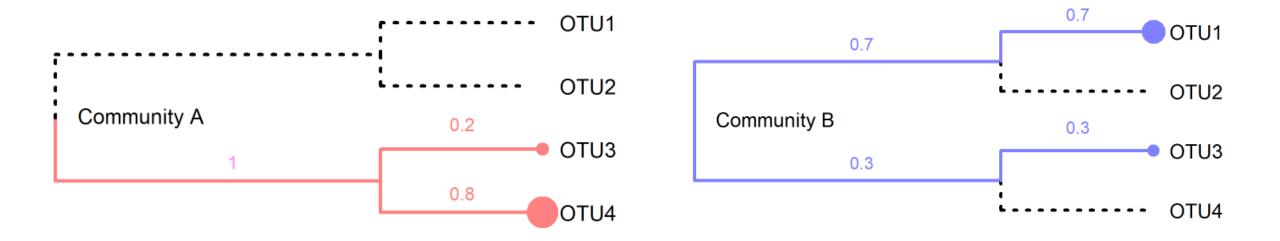


Unifrac:

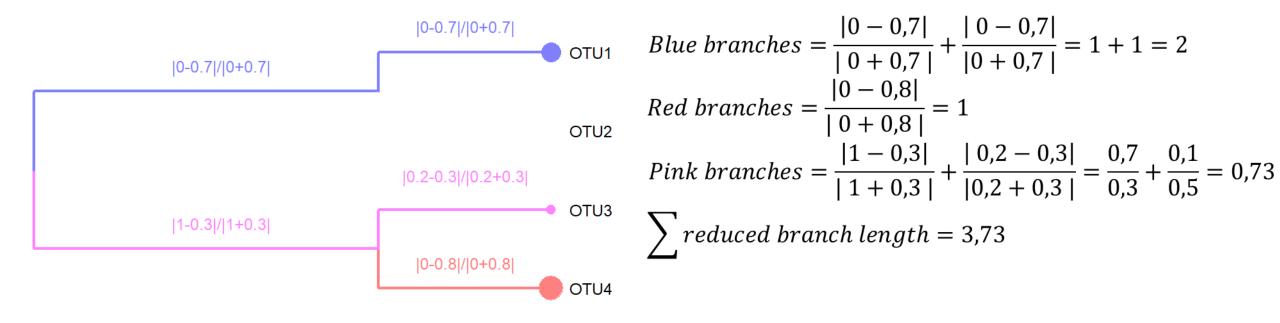
Fraction of <u>the tree</u> specific to either 1 or 2


If all branch lengths are equal to 1, only branches present in at least one community are taken into account :

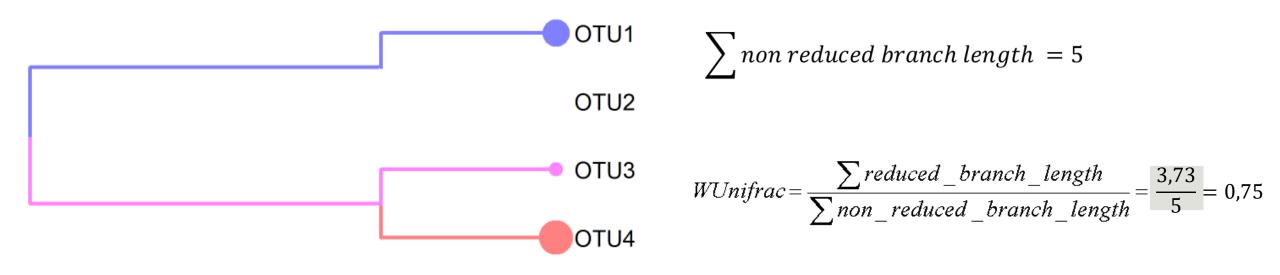
$$Unifrac = \frac{\sum specific_branch_length}{\sum all_branch_length} = 0.6$$


Weigthed-Unifrac :

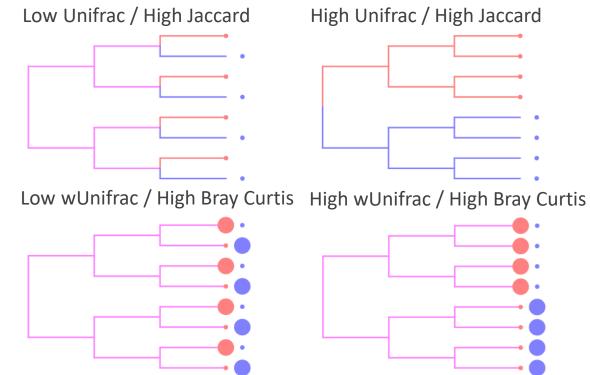
$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$


Weigthed-Unifrac :

$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$


Weigthed-Unifrac :

$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$



Weigthed-Unifrac :

$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$

→ What do you conclude in terme of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

Phyloseq supports currently 43 beta diversity distance methods, see <u>phyloseq distanceMethodList</u> <u>documentation</u> :

```
"unifrac" "wunifrac"
"dpcoa"
"jsd"
"manhattan" "euclidean" "canberra" "bray" "kulczynski " "jaccard" "gower" "altGower" "morisita"
"horn" "mountford" "raup" "binomial" "chao" "cao"
"w" "-1" "c" "wb" "r" "I" "e" "t" "me" "j" "sor" ...
```

FROGSSTAT Phyloseq Beta Diversity distance matrix (Galaxy Version 1.0.0)	s
Phyloseq object (format rdata) Phyloseq object (format rdata) 8: food_normalized.Rdata This is the result of FROGS Phyloseq Import Data tool.	Explore the sample normalised count
Experiment variable EnvType The experiment variable used to organize plots. The methods of beta diversity	Choose a sample variable to organise graphics.
Select/Unselect all	
 Unifrac Weighted Unifrac Bray-Curtis Jaccard 	Choose which beta diversity distance
N.B. if the tree is not available in your RData, you cannot choose Unifrac or Weighted Unifrac Other method	you want to compute
The other methods of beta diversity that you want to use. c.f. details below.	

Try it with the 4 most commonly used distance methods

- → What are the output datasets ?
- → A priori, abundant OTU are they shared among samples?
- Considering that Jaccard is higher than Unifrac, what can you conclude ?
- → Considering that Unifrac is higher than weighted Unifrac, what can you conclude ?

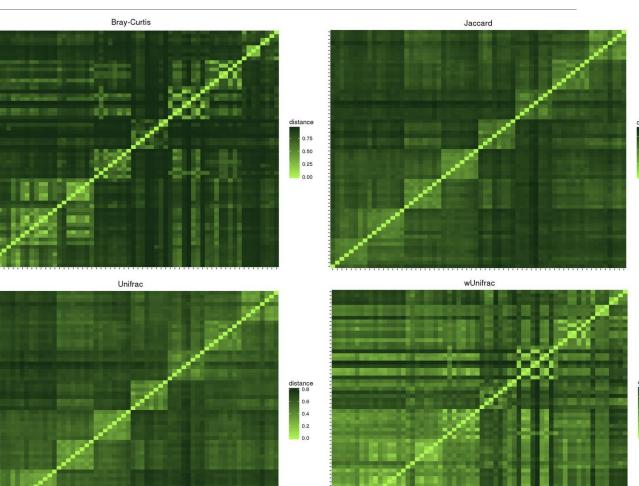
 \rightarrow What are the output datasets ?

Report HTML file with graphical and statistical results

One tabular file per distance method containing the all samples againt all beta diversity distance : a matrix

17: FROGSSTAT Phyloseq Beta Diversity: beta	۲		×	
diversity		-		
947.7 KB				
format: html , database: <u>?</u>				

21: FROGSSTA diversity (wt	<u>T Phyloseg Beta Inifrac.tsv)</u>	<u>Diversity: beta</u>	۲	×
20: FROGSSTA 	<u>T Phyloseq Beta</u> ifrac.tsv)	<u>Diversity: beta</u>	۲	×
19: FROGSSTA diversity (Jac	<u>T Phyloseq Beta</u> :card.tsv)	<u>Diversity: beta</u>	۲	×
18: FROGSSTA 	<u>T Phyloseq Beta</u> ay Curtis.tsv)	<u>Diversity: beta</u>	۲	×


DLT0.LOT08 DLT0.LOT08 0 DLT0.LOT05 0.239033964840416 DLT0.LOT03 0.724185014507595

DLT0.LOT05 0.239033964840416 4840416 4507595 0.817716333845366

DLT0.LOT03 0.724185014507595 0.817716333845366

0

- Jaccard lower than Bray-Curtis
 abundant taxa are not shared
- Jaccard higher than Unifrac
- communities' taxa are distinct but phylogenetically related
- Unifrac higher than weighted Unifrac
- abondant taxa in both communities are phylogenetically closed.

0.75 0.50 0.25

In general, qualitative diversities are more sensitive to factors that affect presence/absence of organisms (such as pH, salinity, depth, etc) and therefore useful to study and define bioregions (regions with little of no flow between them)...

•... whereas quantitative distances focus on factors that affect relative changes (seasonal changes, nutrient availability, concentration of oxygen, depth, etc) and therefore useful to monitor communities over time or along an environmental gradient.

Different distances capture different features of the samples.

There is no "one size fits all"

Exploring the structure

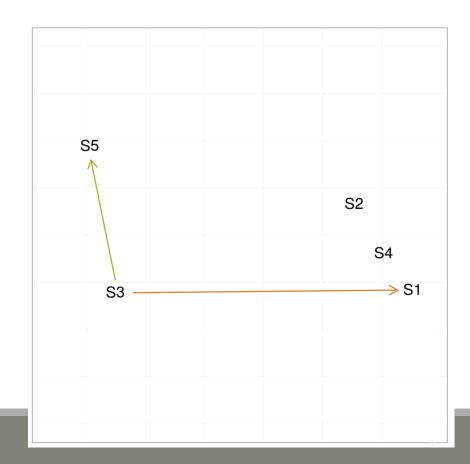
I. Exploring the structure

ORDINATION AND HEATMAP PLOTS

Exploring the structure : Ordination plot

- Each community is described by OTU abundances
- OTU abundances may be correlated
- PCA finds linear combinations of OTUs that
 - are uncorrelated
 - capture well the variance of community composition

But variance is not a very good measure of β -diversity


Exploring the structure : Ordination plot

The Multidimensional Scaling (MDS or PCoA) is equivalent to a Principal Component Analysis (PCA) but preserves the β -diversity instead of the variance.

The MDS tries to represent samples in two dimensions

→ The samples ordination.

	Distance Matrix							
	S1	S2	S4	S5				
S1	0.00	2.21	6.31	0.99	7.50			
S2	2.21	0.00	5.40	1.22	5.74			
S3	6.31	5.40	0.00	5.75	3.16			
S4	0.99	1.22	5.75	0.00	6.64			
S5	7.50	5.74	3.16	6.64	0.00			

Exploring the structure : Heatmap

- Heatmap is an other representation of the abundance table.
- It tries to reveal if there is a structure between a group of OTUs and a group of samples.

It It

- Finds a meaningful order of the samples and the OTUs
- Allows the user to choose a custom order (in R)
- Allows the user to change the colour scale (in R)
- Produces a ggplot2 object, easy to manipulate and customize

Exploring the structure : Ordination plot and Heatmap

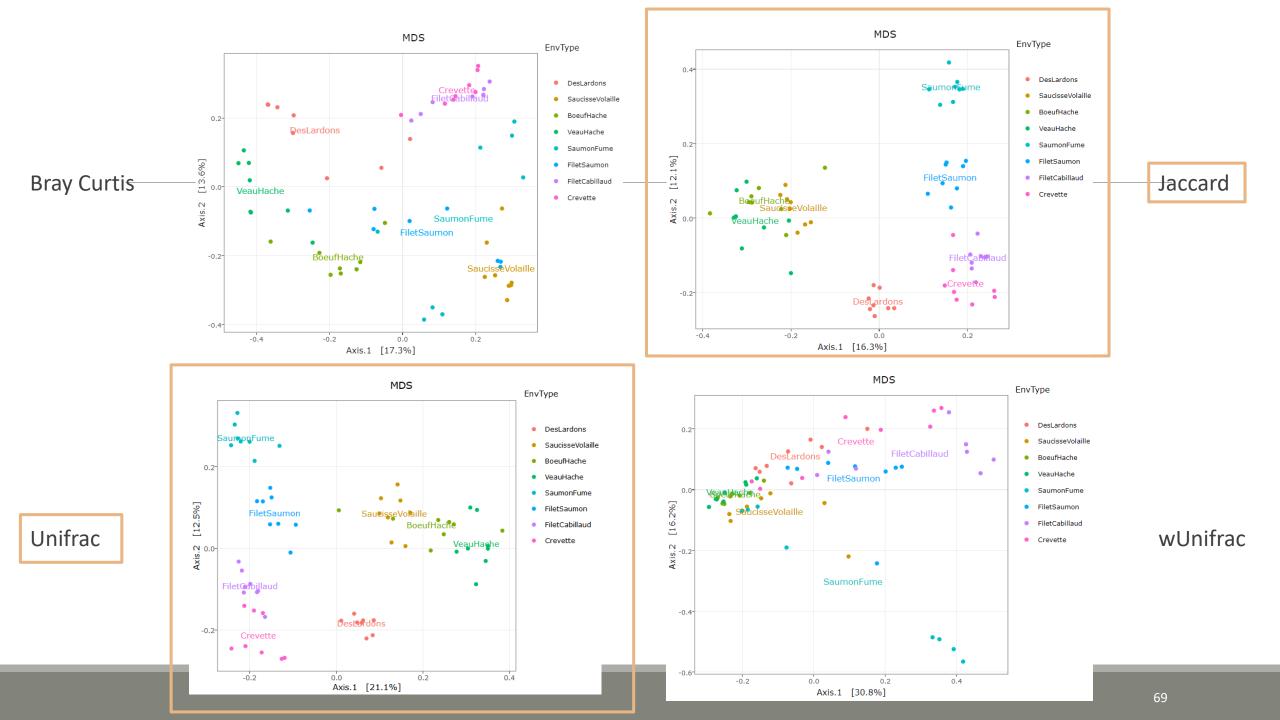
FROGSSTAT Phyloseq Structure Visualisation with heatmap plot and ordination plot (Galaxy Version 1.0.0)	▼ Options
Phyloseq object (format rdata)	
🕒 🔁 🗅 8: food_normalized.Rdata	•
This is the result of FROGS Phyloseq Import Data Tool.	
The beta diversity distance matrix file	
21: FROGSSTAT Phyloseq Beta Diversity: beta_diversity (wUnifrac.tsv)	-
These file is the result of FROGS Phyloseq Beta Diversity tool.	
Experiment variable	
EnvType	
The experiment variable that you want to analyse.	
Ordination method	
MDS/PCoA	•
✓ Execute	

Explore the sample normalised count

Choose the beta diversity distance matrix

Choose a sample variable to organise graphics.

Choose the ordination method (most commonly used is MDS/Pcoa)



Try it with one distance method matrix

→ Are you satisfied of your ordination plot ?

Try with the other distance matrix

- → What is the best distance matrix to use to better separate samples ?
- → Guess why Lardon are somewhere between Meat and Seafood ?
- → Based on your preferred distance matrix, what can you conclude on the heatmap ?

- Qualitative distances (Unifrac, Jaccard) separate meat products from seafood ones
- → detected taxa segregate by origin.
- DesLardons is somewhere in between
- → contamination induced by sea salt.
- Quantitative distances (weighted Unifrac) exhibit a gradient meat seafood (on axis 1) with DesLardons in the middle and a gradient SaumonFume - everything else on axis 2.
- Note the difference between weighted UniFrac and Bray-Curtis for the distances between BoeufHache and VeauHache
- Warning
 - The 2-D representation captures only part of the original distances.
 - Ellipse are not always an advantage for visualisation

Heatmap plot with EnvType

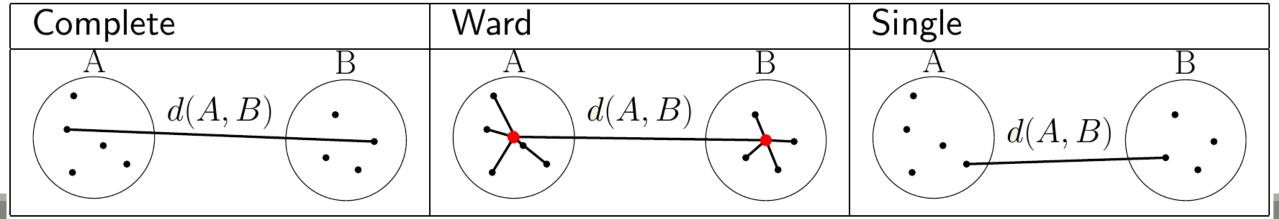
N.	BoeufHache	VeauHache	DesLardons	SaucisseVolaille	Crevette	SaumonFume	FiletSaumon	FiletCabillaud	
									Abundance
									4096
5									256
									- 16
									1
						I			
						_			
		-				=			
N	BHT0. B								
		VHT0.LOT02 VHT0.LOT10 VHT0.LOT08 VHT0.LOT03 VHT0.LOT07 VHT0.LOT07 VHT0.LOT06 VHT0.LOT06		- MVT0.LOT03 - MVT0.LOT01 - MVT0.LOT08 - MVT0.LOT10 - MVT0.LOT07 - MVT0.LOT07 - MVT0.LOT05	- CDT0.LOT08 - CDT0.LOT06 - CDT0.LOT09 - CDT0.LOT10 - CDT0.LOT05 - CDT0.LOT07 - CDT0.LOT07 - CDT0.LOT07	- SFT0.LOT05 - SFT0.LOT08 - SFT0.LOT04 - SFT0.LOT07 - SFT0.LOT07 - SFT0.LOT07 - SFT0.LOT07 - SFT0.LOT07	ST0.L0 ST0.L0 ST0.L0 ST0.L0 ST0.L0 ST0.L0 ST0.L0	FCT0.LOT02 FCT0.LOT07 FCT0.LOT07 FCT0.LOT010 FCT0.LOT010 FCT0.LOT05	
	LOT01 LOT05 LOT05 LOT03 LOT04 LOT04	_OT102 _OT108 _OT103 _OT104 _OT104	LOT10 LOT03 LOT07 LOT08 LOT05 LOT04 LOT04 LOT01	.0T01 .0T01 .0T108 .0T108 .0T07 .0T09 .0T05	07108 07109 07109 07109 07109 07105 07105 07107 07102	LOT05 LOT08 LOT04 LOT03 LOT07 LOT07 LOT02 LOT02	LOT10 LOT02 LOT07 LOT01 LOT05 LOT05 LOT06 LOT08	LOT02 LOT06 LOT10 LOT03 LOT03 LOT05	

OTU

Block-like structure of the abundance table

Interaction between (groups of) taxa and (groups of) samples

- Core and condition-specific microbiota
- \rightarrow Classification of taxa and use of custom taxa order to highlight structure


II. Exploring the structure

HIERARCHICAL CLUSTERING

Exploring the structure : clustering

Clustering aims to represent samples in a tree based on a distance matrix and a linkage function:

- Complete linkage: tends to produce compact, spherical clusters and guarantees that all samples in a cluster are similar to each other.
- Ward: tends to also produce spherical clusters but has better theoretical properties than complete linkage.
- single: friend of friend approach, tends to produce banana-shaped or chains-like clusters.

Exploring the structure : clustering

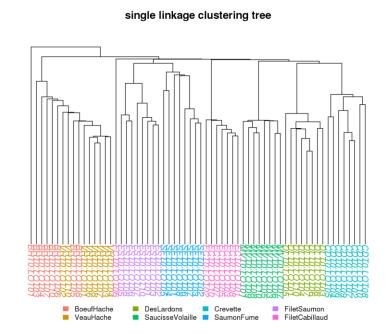
FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods	▼ Options
(Galaxy Version 1.0.0)	
Phyloseq object (format rdata)	
8: food_normalized.Rdata	-
This is the result of FROGS Phyloseq Import Data tool.	
The beta diversity distance matrix file	
20: FROGSSTAT Phyloseq Beta Diversity: beta_diversity (Unifrac.tsv)	•
This file is the result of FROGS Phyloseq Beta Diversity tool.	
Experiment variable	
EnvType	
The experiment variable that you want to analyse.	
✓ Execute	

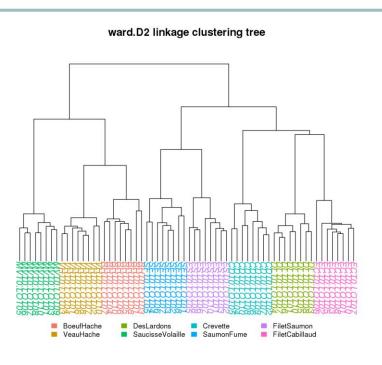
Explore the sample normalised count

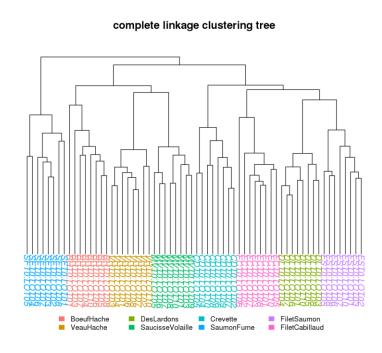
Choose the beta diversity distance matrix

Choose a sample variable to organise graphics.

The tree different linkage functions will be used, generating three different trees

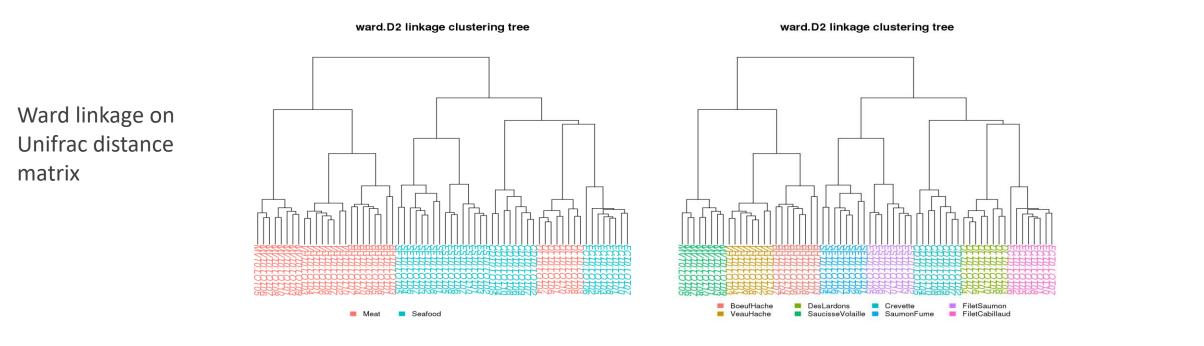

Try it with « a good » distance method matrix on EnvType and on FoodType


→ Which linkage method seems better to fit the data ?


Try with « a bad » distance matrix

 \rightarrow Is there a big difference ?

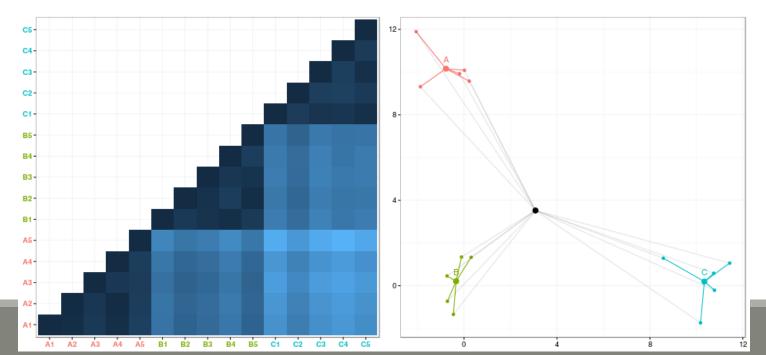
Exercise A-8



Remarks

- Consistent with the ordination plots, clustering works quite well for the UniFrac distance for some linkage (Ward)
 - → DesLardons seems to be much closer to Seafood than Meat.
- Clustering is based on the whole distance whereas ordination represents parts of the distance (the most it can with 2 dimensions)

Exercise A-8

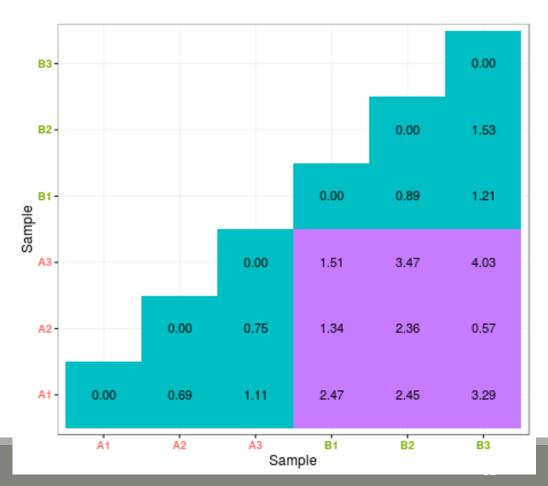

Diversity partitioning

Diversity partitioning

Are the structures seen linked to metadata ? Have the metadata got an effect on our communities composition ?

To answer these questions, **multivariate analyses** that :

- tests composition differences of communities from different groups using a distance matrix
- compares within group to between group distances



Diversity partitioning : Multivariate ANOVA

Idea : Test differences in the community composition from different groups using a distance matrix.

How it works ?

- Computes sum of square distance
- Variance analysis

Diversity partitioning : Multivariate ANOVA

FROGSSTAT Phyloseq Multivariate Analysis Of Variance (Galaxy Version 1.0.0) • Options						
Phyloseq object (format rdata)						
8: food_normalized.Rdata						
This is the result of FROGS Phyloseq Import Data tool.						
The beta diversity distance matrix file						
20: FROGSSTAT Phyloseq Beta Diversity: beta_diversity (Unifrac.tsv)						
This file is the result of FROGS Phyloseq Beta Diversity tool.						
Experiment variable						
EnvType						
The experiment variable that you want to analyse.						
✓ Execute						

Explore the sample normalised count

Choose the beta diversity distance matrix

Choose a sample variable to organise graphics.

Try it with a good beta distance matrix with EnvType and FoodType

→ Does EnvType have an influence on the beta diversity variance ?

➔ What about FoodType ?

Environment type explains roughly **62%** of the total variation

Call:

adonis(formula = dist ~ EnvType, data = metadata, permutations = 9999)

With Unifrac distance Number of permutations: 9999

Terms added sequentially (first to last)

 Df SumsOfSqs MeanSqs F.Model
 R2 Pr(>F)

 EnvType
 7
 7.6445 1.09207 12.858 0.61645 1e-04 ***

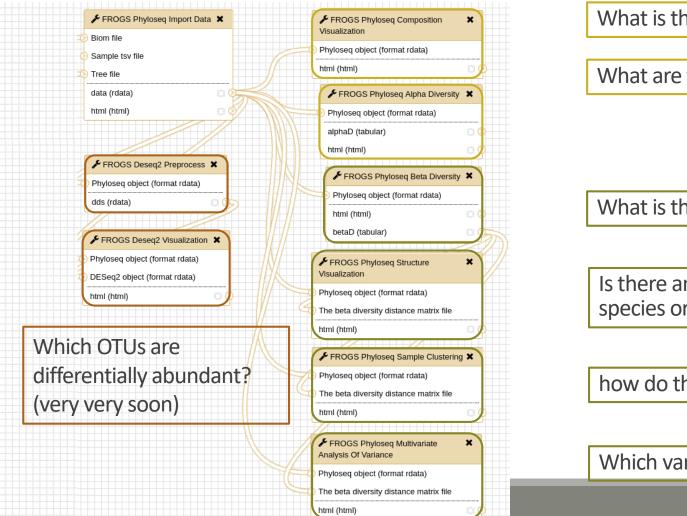
 Residuals 56
 4.7564 0.08494
 0.38355

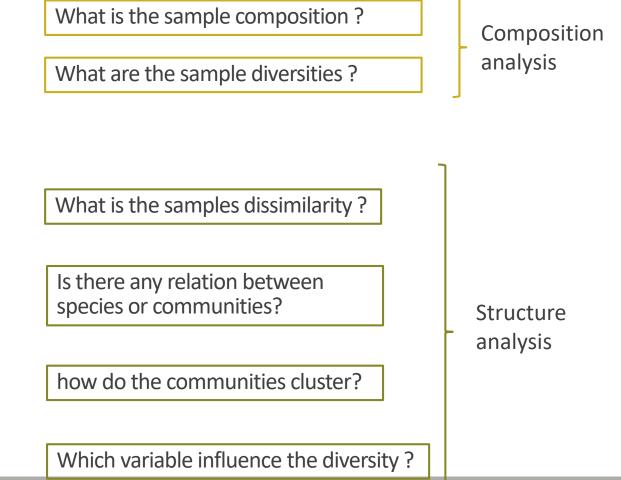
 Total
 63
 12.4009
 1.00000

 -- Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Food type explains only **18 %** of the total variation

Call:


adonis(formula = dist ~ FoodType, data = metadata, permutations = 9999)


Permutation: free Number of permutations: 9999

Terms added sequentially (first to last)

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)			
FoodType	1	2.2609	2.26092	13.824	0.18232	1e-04	***		
Residuals	62	10.1400	0.16355		0.81768				
Total	63	12.4009			1.00000				
Signif. c	odes	5: 0 '***	0.001	'**' 0.01	L'*'0.0	05 '.' 0).1 '	1	1

FROGSStat Summary

Conclusion and advices reminder

FROGSTAT advices

- Before starting, check taxonomy format : how many levels? Possibly level name ?
- Well construct your sample_metadata TSV file, after import check that variable order is meaning full
- Keep in mind that :
 - Phyloseq composition and structure analysis need to be perform on normalised/rarefied counts
 - Different indices or distance methods will give different information
 - Test different distances or choose which one fits better our data
 - Richness indices depend lot on rare OTUs

PART B. Your turn !

Training Data2

A real analysis provided by Núria Mach et al.

16S survey of gut microbiomes from early life swines. Used (among others) to study the impact of weaning (Time and Weaned) on bacterial communities.

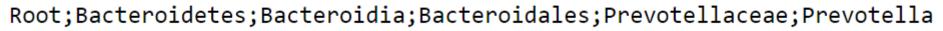
Along a kinetic of time 31 samples are analysed:

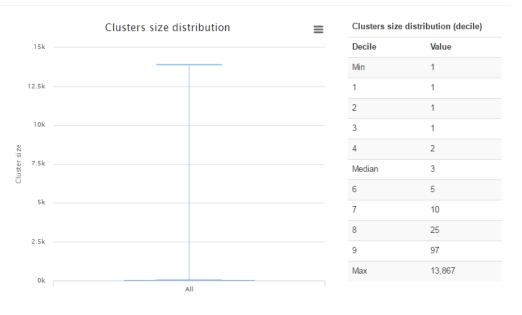
- Time : D14 (before weaning), D36, D48, D60, D70
- Weaned : TRUE, FALSE (Weaned is TRUE for TIME D14, else FALSE)
- sex : 1 (male), 2 (female)

155 samples of 16S V3-V4, and taxonomic affiliations was made with the Greengenes database

Mach N. et al (2015). Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environmental Microbiology Reports (2015) 7(3), 554–569.

Upload this new dataset:


- kinetic.biom
- kinetic_sample_metadata.tsv
- tree.nwk


→ How can you simply caracterise this dataset ?

 \rightarrow What is happening when you rarefy the counts ?

→ How can you simply caracterise this dataset ?

- Number of OTUs and size / sample distribution with FROGS Clusters Stat
- More than 30% of OTUs are composed of just 1 sequence.
- But a small number of OTUs is specific to each sample.
 - Number of taxonomic level, by converting biom to a tsv file with FROGS Biom to TSV
- ➔ Taxonomy are composed of 6 levels, from Kingdom to Genus

Clusters size summary

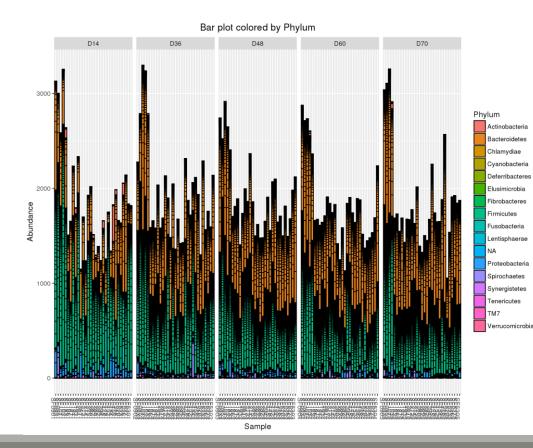
→ What is happening when you rarefy the counts ?

Import of raw counts

phyloseq-class experiment-level object						
otu_table()	OTU Table:	[4031 taxa and 155 samples]			
<pre>sample_data()</pre>	Sample Data:	[155 samples by 8 sample variables]			
<pre>tax_table()</pre>	Taxonomy Table:	[4031 taxa by 6 taxonomic ranks]			
<pre>phy_tree()</pre>	Phylogenetic Tree:	[4031 tips and 4030 internal nodes]			

Import of	rarefying	counts
-----------	-----------	--------

phyloseq-class experiment-level	object
otu_table() OTU Table:	[3002 taxa and 155 samples]
<pre>sample_data() Sample Data:</pre>	[155 samples by 8 sample variables]
<pre>tax_table() Taxonomy Table:</pre>	[3002 taxa by 6 taxonomic ranks]
phy_tree() Phylogenetic Tree	: [3002 tips and 3001 internal nodes]

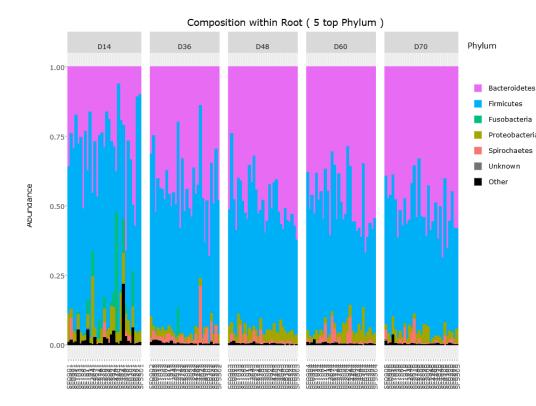

Number of sequences in each sample after normalization: 1056

→ 4031 – 3002 = 1029 OTUs have been deleted, probably most of the singleton OTU

→ What can you conclude with the composition plots ?

→ What can you tell about alpha diversity indices ?
 Try it on raw counts and on rarefied counts.

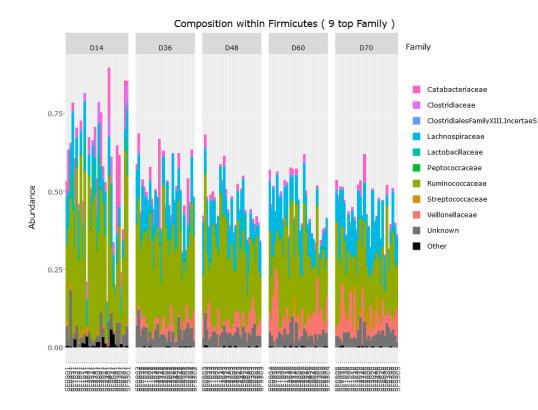
→ What can you conclude with the composition plots ?



Plot bar coloured at the Phylum level on raw counts

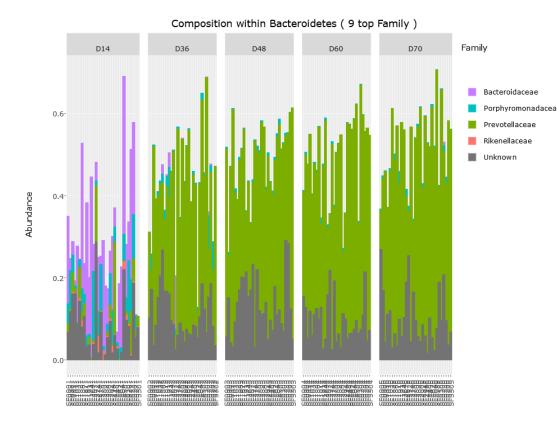
→ Clearly, samples are not sequenced at the same depth

→ Data have to be rarefied


→ What can you conclude with the composition plots ?

Composition plot of the 5 top Phylum coloured at the Phylum level on rarefied counts

➔ The 2 most abundant Phylum are the Firmicutes and the Bacteroidetes


→ What can you conclude with the composition plots ?

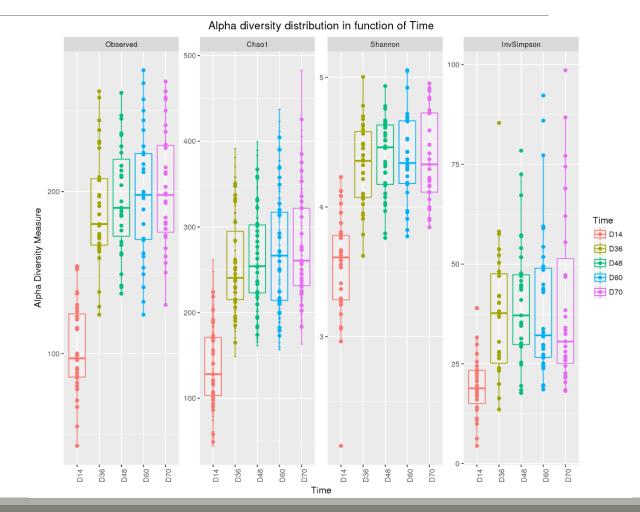
Composition plot of the 9 top Firmicutes families coloured at the Family level on rarefied counts

→ Veillonellaceae seems to rise after weaning, but the Firmicutes are not drastically change

→ What can you conclude with the composition plots ?

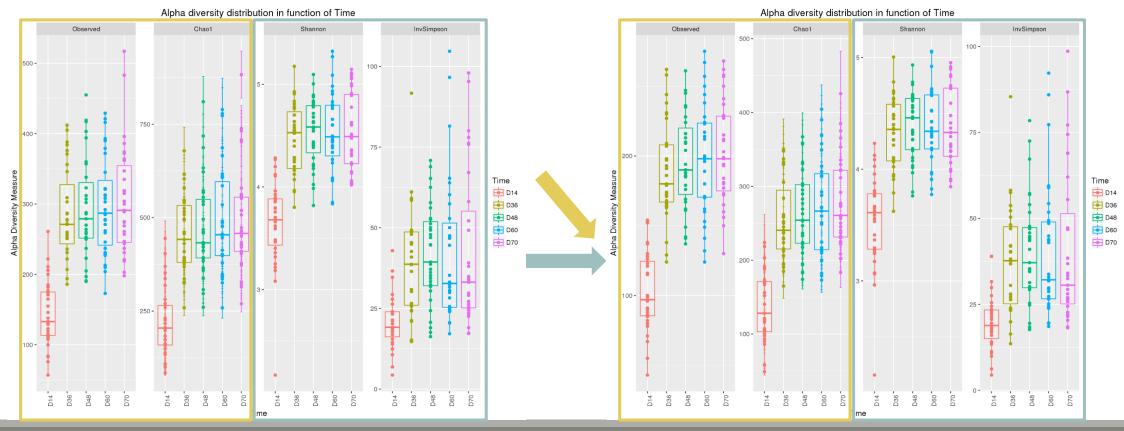
Composition plot of the 9 top Bacteroidetes families coloured at the Family level on rarefied counts

→ After weaning Bacteroidetes composition has clearly changed.


 \rightarrow What about alpha diversity indices ?

Interpretation

Diversity increases with time (with strong housing effect)


Low shannon/InvSimpson diversities compared to Observed, Chao1

communities are dominated by a moderate number of abundant taxa

Effective diversities are more robust to depth bias

→ Either correct for depth or perform rarefaction before comparing diversities

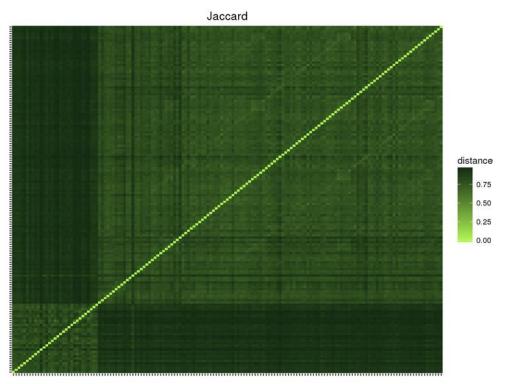
Alpha diversity indices on raw counts

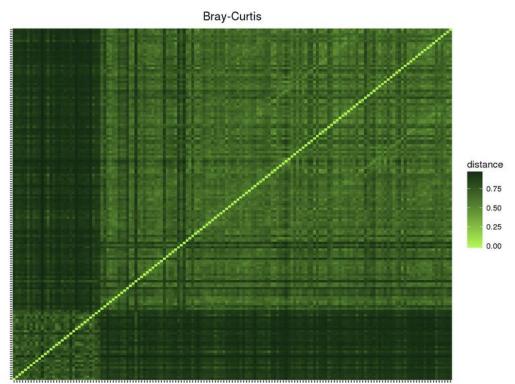
Alpha diversity indices on rarefied counts 98

→ Now, how to analyse the OTU/sample structure?

→ First step is to compute distance matrix : beta diversities also called dissimilarities

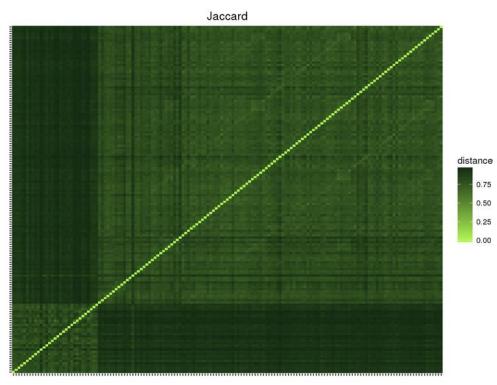
→Then use it to :

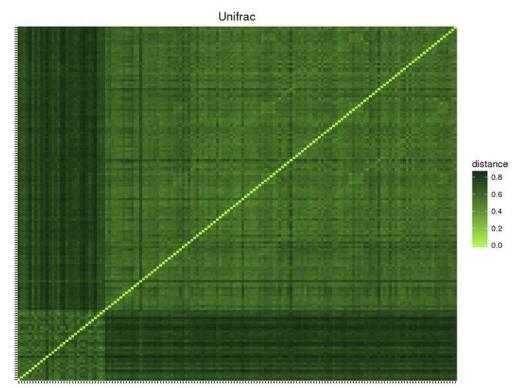

- represent samples in a 2D graphic that best respect this distance matrix.
- test that clustering samples based on dissimilarities looks like expected.
- construct heatmap to discover if samples/OTUs are connected.


Test the 4 most common distances.

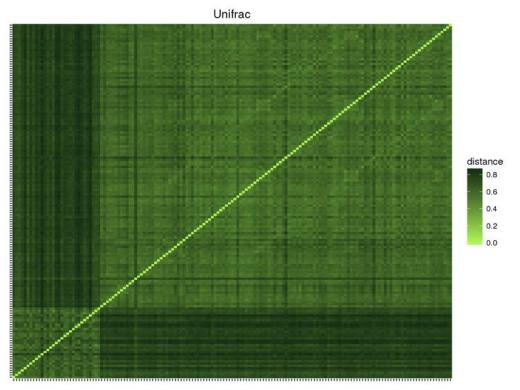
→ Can you conclude something based on distance matrix comparison

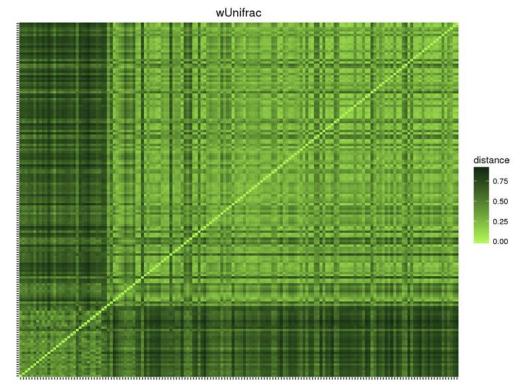
→ Can you conclude something based on the graphical representations of samples/OTUs, which type of distance fit the most our data ?


→ Can you conclude something based on distance matrix comparison

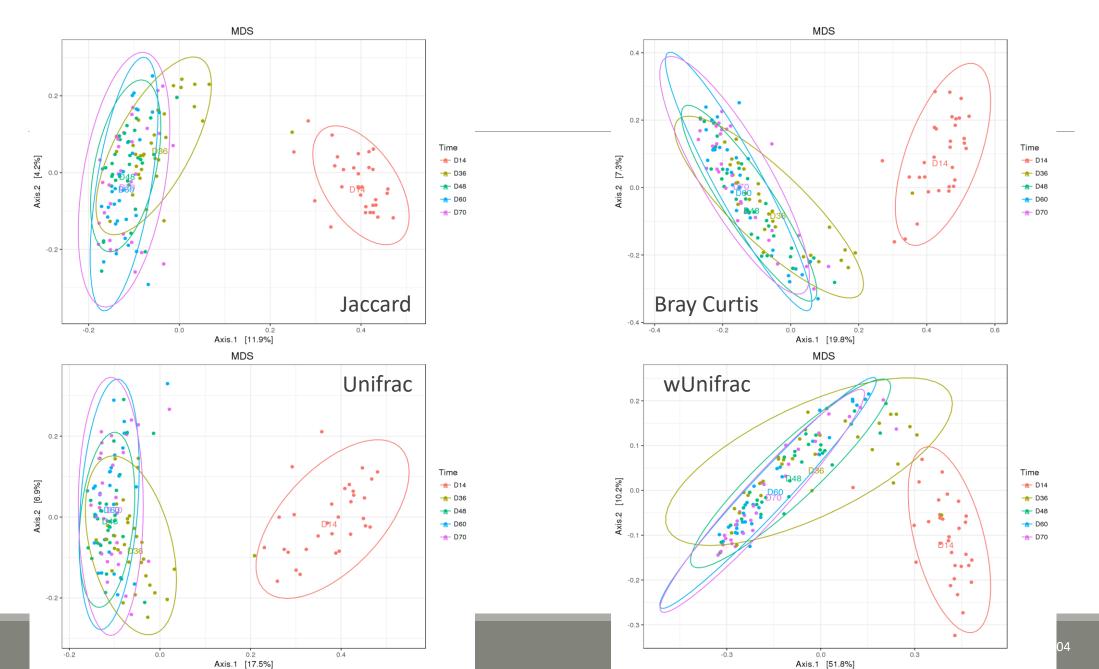


Jaccard higher than Bray-Curtis → abundant taxa are shared


→ Can you conclude something based on distance matrix comparison



Jaccard higher than Unifrac \rightarrow community taxa are distinct but phylogenetically related


→ Can you conclude something based on distance matrix comparison

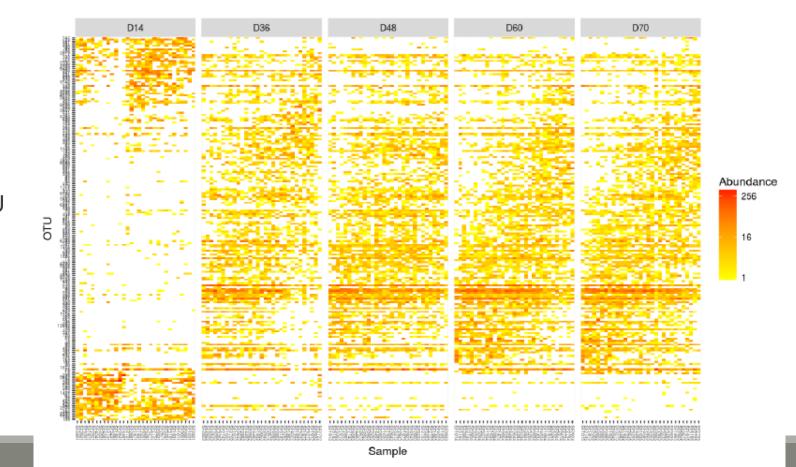
Unifrac higher than weighted Unifrac -> abundant taxa in communities are phylogenetically close

→ Based on the graphical representations of samples/OTUs, which type of distance fit the most our data ?

Based on the graphical representations of samples/OTUs, which type of distance fits the most our data ?

- Qualitative distances (Unifrac, Jaccard) separate D14 and the rest.
- weighted Unifrac mixes up some samples: the taxa separating D14 from the rest may be replaced by (phylogenetically) close siblings.
- All distances (weighted Unifrac) exhibit a high gradient corresponding to high heterogeneity of samples on axis 2.
- Distance between groups seems to be smaller with qualitative distances (Jaccard/Unifrac) than quantitative distance
 specific species before or after weaning must be pretty rare.
- Warning: The 2-D representation capture only part of the original distances.

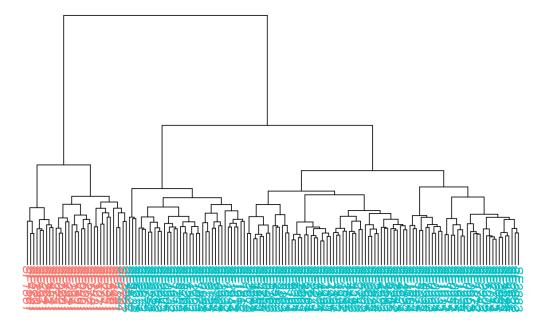
→ Based on the heatmap representation are samples/OTUs connected?



Sample

Heatmap plot with Time

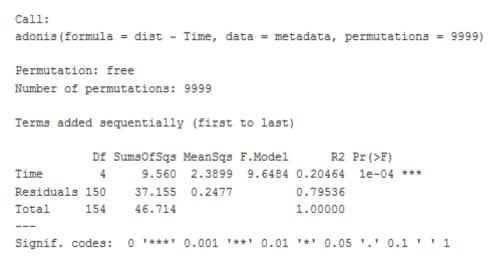
→ Based on the heatmap representation are samples/OTUs connected?


Heatmap on 200 most abundant OTU

→ Based on the graphical representations of samples/OTUs, which type of distance fit the most our data ?

Hierarchical clustering plots :

- Consistent with the ordination plots, clustering shows a good structure (D14 vs. rest or Weaned FALSE vs TRUE) for the Bray-Curtis distance for the Ward linkage
- Different distances would result (in this case) in similar results.
- Clustering is based on the whole distance whereas ordination represents parts of the distance (the most it can with 2 dimensions)


Sample Clustering with Ward.D2 linkage

We found that Time or Weaned seems to have an effect on sample diversities.

 \rightarrow How can we measure this effect ?

→ by performing a multivariate analysis of the variance

ROGSSTAT Phyloseq Multivariate Analysis Of Variance (Galaxy Version 1.0.0)
Phyloseq object (format rdata)
1 1 1 8: kinetic_normalized.Rdata •
This is the result of FROGS Phyloseq Import Data tool.
The beta diversity distance matrix file
23: FROGSSTAT Phyloseq Beta Diversity: beta_diversity (Bray_Curtis.tsv)
This file is the result of FROGS Phyloseq Beta Diversity tool.
Experiment variable
Time
The experiment variable that you want to analyse.
✓ Execute

Time explains significantly around 20% of the beta diversity variance

Comment:

You can use more complexe formula:

to analyse multiple variable at the same time

FROGSSTAT Phy	loseq Multivariate Analysis Of Variance (Galaxy Version 1.0.0)	▼ Options					
Phyloseq objec	t (format rdata)						
C 2 8: kinetic_normalized.Rdata							
This is the result	of FROGS Phyloseq Import Data tool.						
The beta divers	ity distance matrix file						
C 4 C	23: FROGSSTAT Phyloseq Beta Diversity: beta_diversity (Bray_Curtis.t	tsv) 🔻					
This file is the re	sult of FROGS Phyloseq Beta Diversity tool.						
Experiment va	iable						
Weaned + sex							
The experiment	variable that you want to analyse.						
✓ Execute							

```
Call:
```

adonis(formula = dist ~ Weaned + sex, data = metadata, permutations = 9999)

Permutation: free Number of permutations: 9999

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) 7.840 7.8397 30.9042 0.16782 0.0001 *** 1 Weaned 1 0.315 0.3155 1.2437 0.00675 0.1583 sex Residuals 152 38.559 0.2537 0.82542 154 46.714 1.00000 Total ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Only Weaned has an effect and it explains significantly around 17% of the beta diversity variance

Comment:

You can use more complexe formula:

- to analyse multiple variable at the same time
- to analyse variable interaction

FROGSSTAT Phyl	oseq Multivariate Analysis Of Variance (Galaxy Version 1.0.0)	ptions					
Phyloseq object (format rdata)							
C 2 C	8: kinetic_normalized.Rdata	-					
This is the result	of FROGS Phyloseq Import Data tool.						
The beta diversity distance matrix file							
C 2 C	23: FROGSSTAT Phyloseq Beta Diversity: beta_diversity (Bray_Curtis.tsv)	-					
This file is the result of FROGS Phyloseq Beta Diversity tool.							
Experiment vari	iable						
Time*Bande + s	ex						
The experiment variable that you want to analyse.							
✓ Execute							

Call: adonis(formula = dist ~ Time * Bande + sex, data = metadata, permutations = 9999)								
	Permutation: free Number of permutations: 9999							
Terms adde	d se	quentially	(first 1	to last)				
	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)		
Time	4	9.560	2.38988	10.3916	0.20464	0.0001	***	
Bande	5	2.804	0.56076	2.4383	0.06002	0.0001	***	
sex	1	0.302	0.30170	1.3118	0.00646	0.1233		
Time:Bande	20	5.531	0.27656	1.2025	0.11841	0.0116	*	
Residuals	124	28.518	0.22998		0.61048			
Total	154	46.714			1.00000			
Signif. co	des:	0 "***" (0.001 '**	*' 0.01	** 0.05	1.1 0.3		1

Time and Bande have independantly an effect as well as their combination which explains significantly around 37% of the beta diversity variance

PART C. Your turn !

Training Data3

Dataset from Ravel et al. (2011) used to study the vaginal microbiome of reproductive-age women.

They looked at (tabular sample_metadata file)

- Ethnic_Group : Asian, White, Black, Hispanic,
- pH,
- Nugent_Score and Nugent_Cat:

The Nugent score divides vaginal microbiome in 3 groups : category 1 (score between 0 and 3) : normal environment category 2 (score between 4 and 6) : intermediate/altered environment category 3 (score between 7 and 10) : bacterial vaginosis

- a score used to predict Bacterial Vaginosis (BV), with higher scores corresponding to higher likelihood of disease and
- a discrete traduction as low, intermediate and high values
- and created 5 phylotypes (CST).

394 samples of 16S V1-V2, and taxonomic affiliations was made with the Ribosomal Database Project

- \rightarrow Is there a correlation between pH, Nugent_Score, CST, Ethnic_Group and the α -diversity?
- → Do these covariates have an impact on community composition?
- → How do CST compare in terms of community composition?
- → Try to find how the groups were made. What is special about group IV ?
- → If you knew the group (CST) of a patient, how could you guess its status (BV or not)?

Annexes

References

 Chaillou, S., Chaulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Desmonts, M. H., Dousset, X., Feurer, C., Hamon, E., Joraud, J.-J., La Carbona, S., Leroi, F., Leroy, S., Lorre, S., Mace, S., Pilet, M.-F., Prevost, H., Rivollier, M., Roux, D., Talon, R., Zagorec, M., and Champomier-Verges, M.-C. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J, 9(5):1105{1118.

 Núria Mach, Mustapha Berri, Jordi Estellé, Florence Levenez, Gaëtan Lemonnier, Catherine Denis, Jean-Jacques Leplat, Claire Chevaleyre, Yvon Billon, Joël Doré, Claire Rogel-Gaillard and Patricia Lepage(2015). Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environmental Microbiology Reports (2015) 7(3), 554–569.

 Jacques Ravela, Pawel Gajera, Zaid Abdob, G. Maria Schneiderc, Sara S. K. Koeniga, Stacey L. McCullea, Shara Karlebachd, Reshma Gorlee, Jennifer Russellf, Carol O. Tacketf, Rebecca M. Brotmana, Catherine C. Davisg, Kevin Aultd, Ligia Peraltae, and Larry J. Forneyc (2011). Vaginal microbiome of reproductive-age women. PNAS Vol.108

McMurdie, P. J. and Holmes, S. (2013). phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4):e61217.

 Shade, A., Jones, S. E., Caporaso, J. G., Handelsman, J., Knight, R., Fierer, N., and Gilbert, J. A. (2014). Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio, 5(4):e01371{e01314.