Les mardis de la grenouille

January 2024 - Webinar

FROGSSTAT Tools

LuCAS Auer, MARIA Bernard, LAURENT Cauquil, MAHENDRA Mariadassou, Géraldine Pascal
(8) © Bioinfo SIGEIAE GenPhySE moMaiAGE GABI misialle LAMA

FROGSSTAT with Phyloseq R package

- R package (McMurdie and Holmes, 2013) to analyse community composition data in a phylogenetic framework

It uses other R packages:

- Community ecology functions from vegan, ade4
- Tree manipulation from ape
- Graphics from ggplot2
- Differential analysis from DESeq2

Exercise 1

\rightarrow At the end of FROGS pipeline, what kind of data do we have?

Exercise 1

\rightarrow At the end of FROGS pipeline, what kind of data do we have ?
FROGS biom containing:

- ASV count tables (required)
- ASV description : taxonomy

Phylogenetic tree in Newick format

Metadata: sample description in TSV file

Exercise 1

\rightarrow Take a look at the metadata

Phyloseq Import Data tool

PHYLOSEQ OBJECT CREATION

Phyloseq : Data import

1. Statistical analysis is done in R, so an R object called Rdata must be created.
2. Run PhyloSeq Data import

The FROGS biom format contains:

- ASV count tables (required)
- ASV description : taxonomy

Others information used in FROGSSTAT are:

- sample description in TSV file
- phylogenetic tree in Newick format
(nwk or nhx)

3. Create 2 phyloseq objects, with and without normalization (rename them)

Metadata associated to samples (format: TSV)

cac a

The file contains the metadata that characterise each sample. (--samplefile)
Taxonomic tree file (format: Newick)
[1 ■ ロ 2: FROGS Tree: tree.nw
The file contains the taxonomic tree information from FROGS Tree tool (optional) (--treefile)

Names of taxonomic levels

Kingdom Phylum Class Order Family Genus Specie
The ordered taxonomic levels stored in BIOM. Each level is separated by one space (--ranks)
Do you want to normalise your data ?

() No, keep abundance as it is

O Yes, subsample abundances to the smallest sample size.
To normalise data before statistical analysis (default : No) (--normalisation)
Email notification
No
Send an email notification when the job completes

Exercise 2

1. What are the resulting datasets ?
2. What is the difference between the resulting objects with and without normalization ?
3. Explore the HTML results

Exercise 2

1. What are the resulting datasets ?
\rightarrow asv_data.Rdata file: R object used by phyloseq package for statistics
\rightarrow HTML report: summary of the phyloseq object

Exercise 2

2. What is the difference between the resulting objects with and without normalization ?

Without normalization
Summary Ranks Names Sample metadata Plot tree

```
phyloseq-class experiment-level object
otu_table() OTU Table: [ 495 taxa and 64 samples ]
sample_data() Sample Data: [ }64\mathrm{ samples by 4 sample variables ]
tax_table() Taxonomy Table: [ 495 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 495 tips and 494 internal nodes ]
```


ASV are still called OTU in phyloseq functions

Exercise 2

2. What is the difference between the resulting objects with and without normalization ?

Summary	Ranks Names	Sample metadata	Plot tree	
				Code
phyloseq-class experiment-level object				
otu_table()	OTU Table: [495 taxa and 64 samples]			
sample_data()	Sample Data:	[64 samples by 4 sample variables]		
tax_table()	Taxonomy Tab	[495 taxa by 7 taxonomic ranks]		
phy_tree()	Phylogenetic Tree: [495 tips and 494 internal nodes]			

Minimum number of sequences
kept in each sample
Number of sequences in each sample after normalization: 7638

Exercise 2

2. What is the difference between the resulting objects with and without normalization?

Summary	Ranks Names	Sample metadata	Plot tree	
				Code
phyloseq-class experiment-level object				
otu_table()	OTU Table:	[495 taxa and 64 samples		
sample_data()	Sample Data:	[64 samples by 4 sample variables]		
tax_table()	Taxonomy Table	[495 taxa by 7 taxonomic ranks]		
phy_tree()	Phylogenetic T	: [495 tips and 494 internal nodes]		

With normalization (rarefaction)

```
otu_table() OTU Table: [ 495 taxa and 64 samples ]
sample_data() Sample Data: [ 64 samples by 4 sample variables ]
tax_table() Taxonomy Table: [ 495 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 495 tips and 494 internal nodes ]
```

Be aware that the number of taxa may decrease due to normalization

Exercise 2

3. Explore the HTML results

Exercise 2

Exercise 2

Phylogenetic tree colored by Phylum
3. Explore the HTML results

Summary
Ranks Names
Sample metadata

- Campylobacter
- Cyanobacteria
- Desulfobacterota
- Firmicutes
- Fusobacteriota
- Patescibacteria
- Proteobacteria
- Spirochaetota

Exercise 2

Phylogenetic tree colored by Phylum
3. Explore the HTML results

Summary
 Ranks Names
 Sample metadata
 Plot tree

\rightarrow Information: Most represented phylum (in ASVs count)

- Bacteroidota
- Firmicutes
- Actinobacteriota
- Proteobacteria

Phylum

- Actinobacteriota
- Bacteroidota
- Campylobactero
- Cyanobacteria
- Desulfobacterota
- Firmicutes
- Fusobacteriota
- Patescibacteria
- Proteobacteria
- Spirochaetota

Biodiversity analysis

The points we will cover on biodiversity analysis

1. Exploring sample composition
2. Notions of biodiversity
3. α-diversity analysis
4. β-diversity analysis

I. Biodiversity analysis

COMPOSITION VISUALIZATION

Exploring biodiversity : visualization

This is the result of FROGS Phyloseq Import Data tool.

Grouping variable
 specified, i.e. Firmicutes Proteobacteria (--taxaSet1)
Taxonomic level used for aggregation

Phylum

Ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering lev Number of most abundant taxa to keep

At what taxonomic rank do we want to study?

Inside this taxonomic rank, what are the target group?

On which rank do we want to group the ASVs?

Explore the sample RAW or NORMALISED count
Choose a sample variable to organize graphics: either EnvType or FoodType

For the first usage, let the default parameters

Exercise 3

1. What are the resulting datasets ?
2. What is the difference between Bar plot and Plot composition ?
3. What biological information could you extract ?
4. What are the perspectives for going further?

Exercise 3

1. What are the resulting datasets ?
\rightarrow HTML report: summary of the phyloseq object

- Bar plot
- Composition plot

Bar plot
Composition plot

Exercise 3

2. What is the difference between Bar plot and Plot composition ?

- one rectangle is one ASV
- one color is one phylum
- y axis: number of sequences - these are absolute counts
- size of rectangle depends on number of sequences

Exercise 3

2. What is the difference between Bar plot and Plot composition ?

Limitations:

- Plot bar works at the ASV-level and displays all the ASV at the specified rank
- This may lead to cluttered graphics and unnecessary legends
- No easy way to look at a subset of the data
- Works with absolute counts (beware of unequal depths or used normalized function)

Exploring biodiversity : visualization

Another graph: plot_composition function :

- Works with relative abundances
- Subsets ASVs at a given taxonomic level
- Aggregates ASVs at another taxonomic level

Taxonomic level used for aggregation

Phylum

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.

- Shows only a given number of taxa

Taxonomic level to filter your data
Kingdom
ex: Kingdom, Phylum, Class, Order, Family, Genus, Species
Taxa (at the above taxonomic level) to keep in the dataset
Bacteria
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Number of most abundant taxa to keep
ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

Exercise 3

2. What is the difference between Bar plot and Plot composition ?

- one rectangle is one phylum (no borderline) (or any other specified taxonomy rank)
- one color is one phylum
- y axis: counts are reduced to 1, so, here, we have relative counts

Exercise 3

3. What biological information could you extract ?

Exercise 3

3. What biological information could you extract ?

- Meat types on the left share common Phylum composition, with a majority of Firmicutes
(easy to remark thanks of ordered levels)
- Seafoods seem to be much more variable
- Firmicutes and Proteobacteria are present in all samples, but with a wide range of abundance

Exercise 3

4. What are the perspectives for going further?

Exercise 3

4. What are the perspectives for going further?
\rightarrow What is the composition of the 9 most abundant Families of Firmicutes ?
\rightarrow What is the composition of the 9 most abundant Families of Proteobacteria?

Exercise 4

1. What is the composition of the 9 most abundant Families of Firmicutes?
2. What is the composition of the 9 most abundant Families of Proteobacteria ?

Exercise 4

1. What is the composition of the 9 most abundant Families of Firmicutes?

Taxonomic level to filter your data

$$
\begin{aligned}
& \text { Phylum } \\
& \text { ex: Kingdom, Phylum, Class, Order, Family, Genus, Species }
\end{aligned}
$$

Taxa (at the above taxonomic level) to keep in the dataset

Firmicutes
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level) Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation

Family

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.
Number of most abundant taxa to keep

9

ex: 9 , i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

Exercise 4

1. What is the composition of the 9 most abundant Families of Firmicutes?

- Abundance does not reach 1 because only Phylum Firmicutes is displayed, the "missing" abundance is carried by other Phyla.
- As seen at the Phylum level, Firmicutes are more represented in meat types than in seafoods
- Dominant Firmicutes families are not the same in each food type

Carnobacteriaceae
Enterococcaceae Erysipelotrichaceae Lachnospiraceae Lactobacillaceae Listeriaceae
Mycoplasmataceae Staphylococcaceae
Streptococcaceae
other

Exercise 4

2. What is the composition of the 9 most abundant

 Families of Proteobacteria?
Taxonomic level to filter your data

Phylum

ex: Kingdom, Phylum, Class, Order, Family, Genus, Species

Taxa (at the above taxonomic level) to keep in the dataset

Proteobacteria
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation

Family

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level Number of most abundant taxa to keep

9
ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'
 Composition within Proteobacteria (9 top Family)

Exercise 4

2. What is the composition of the 9 most abundant Families of Proteobacteria ?

- As seen at the Phylum level, Proteobacteria are particularly present in seafood samples
- SaumonFume samples with extremely high levels of Proteobacteria are dominated by Vibrionaceae family, while other food types are balanced between several families

Exploring biodiversity : visualization

Remark 1: An example of what happens when sample metadata file is not sorted in a meaningful way

[^0]disordered

Exploring biodiversity : visualisation

Remark 2: Keep in mind that human eye cannot distinguish more than 12 colors at the same time.

Example of the 30 most abundant Families among Bacteria

II. Biodiversity analysis

DIVERSITY INDICES

Exploring biodiversity : descriptors

- The richness corresponds to the number of ASVs or functional groups present in communities. It characterizes the composition.
- The diversity takes into account the relative abundancy of species. It characterizes the structure

Exploring biodiversity : descriptors

- The richness corresponds to the number of ASVs or functional groups present in communities. It characterizes the composition.
- The diversity takes into account the relative abundancy of species. It characterizes the structure

Richness: Eco1 = Eco2
Diversity: Eco2 > Eco1

Exploring biodiversity : statistical indices

3 levels of diversity:

- α-diversity: diversity within a community
- β-diversity: diversity between communities
- β-dissimilarities/distances
- dissimilarities between pairs of communities
- often used as a first step to compute diversity
- γ-diversity: diversity at the landscape scale (blurry for bacterial communities)

Exploring biodiversity : statistical indices

There are qualitative, quantitative and phylogenetic indices:
Qualitative (Presence/Absence) vs. Quantitative (Abundance)

- Qualitative indices give equal weight to all species, dominant or rare
- Qualitative indices are more sensitive to differences in sampling depths
- Qualitative indices emphasize differences in taxa diversity while quantitative are more sensitive to increases in composition differences

Phylogenetic indices

- Require a phylogenetic tree
- phylogeny allows to attenuate clustering errors because 2 different ASVs can be phylogenetically close

III. Biodiversity analysis

α-DIVERSITY INDICES

4 a-diversity indices

1. Richness
2. Chao
3. Shannon
4. Inv-Simpson

Richness

Richness : Eco1 = Eco2

Richness
Number of observed species

a-diversity: Chao1

Richness	Chao
Number of observed species	Richness + (estimated) number of unobserved species

a-diversity: Chao1

Chao1 is an abundance-based estimator. This means that the data it needs relate to the abundance of taxa in the sample.
This index estimates the number of unobserved species from those that have only been observed once or twice. This diversity index is a minimum estimator. In order for it to fit the dataset, it is necessary that singletons and duplicates represent a significant part of the information

Many taxa, species, are represented by a few individuals (rare species) and others can be represented by many individuals (abundant species).

Well, chao1 is based on the rare species.
So we need to know how many species are represented by 1 individual (singleton) and how many species are represented by 2 individuals (doubletons):
$S_{\text {est }}=S_{\text {obs }}+F 2 / 2 G$
$\mathrm{S}_{\text {est }}$ (nb of species we want to estimate), $\mathrm{S}_{\mathrm{obs}}$ (nb of species observed), F (nb of singletons) and G (nb of doubletons)
If the chao1 is close to the richness \rightarrow the part of the missed ASVs is low \rightarrow the sequencing depth is good.

a-diversity: Chao1

Example of a abundance table, after FROGS processing, with ASVs filtering with 0.005% threshold:

observation_name	observation_sum	complexe-ADN-1	echantillon1-1	echantillon1-2	echantillon1-3	echantillon2-1	echantillon2-2	echantillon2-3
Cluster_1	298637	56	227	234	120	36754	59089	56534
Cluster_2	155012	688	20604	38077	45508	8417	10464	10655
Cluster_3	52753	2469	14	76	68	37	8	19
Cluster_4	34062	3459	5041	11458	12799	0	37	84
Cluster_5	30263	3	10	13	13	570	806	800
Cluster_6	26805	1301	7	51	35	21	6	16
Cluster_7	25237	1015	7	30	34	16	5	14
Cluster_8	20483	893	6	34	19	18	1	16
Cluster_9	26069	2504	32	60	87	26	7	22
Cluster_10	17383	712	5	23	17	19	8	13
Cluster_11	16674	715	6	27	25	26	2	7
Cluster_12	11420	0	37	76	79	19	24	13
Cluster_13	9414	189	0	24	12	6	0	8
Cluster_14	7972	498	3	7	11	7	3	5
Cluster_15	7267	13	0	19	12	11	2	7
Cluster_16	7131	150	3	8	15	11	0	2
Cluster_17	6407	4953	22	7	1	0	13	4
Cluster_18	6538	28	1	10	18	16	0	6
Cluster_19	5633	3	12	12	45	24	0	3
Cluster_20	5223	183	0	5	12	8	1	1
Cluster_21	4078	12	0	6	9	6	0	4
Cluster_22	4507	0	10	13	20	13	0	2
Cluster_23	4232	3	0	10	8	9	0	4
Cluster_24	3404	160	1	4	6	4	1	0
Cluster_25	3857	1	0	3	6	${ }^{10}$	0	2
Cluster_26	2616	1926	16	12	9	2	8	9
Cluster_27	2781	2182	7	2	0	0	6	1

singletons
and doubletons
\rightarrow Chao1 computation possible

α-diversity: Shannon and Inv-Simpson

α-diversity is equivalent to the richness : number of species

Shannon	Inv-Simpson
Evenness of the species abundance distribution	Inverse probability that two sequences sampled at random come from the same species

Interpretation :
15 observed species, but according to Shannon, the uneven community acts like there is 7.85 equally abundant species (5.45 for invSimp)

a-diversity indices

1. Chao1 close to Richness \rightarrow all species have been detected
2. higher Shannon index \rightarrow higher homogeneity \rightarrow greater diversity
3. greater invsimpson index \rightarrow greater diversity

Exploring biodiversity : α-diversity

α-diversity indices available in phyloseq :

- Species richness : number of observed ASV
- Chao1 : number of observed ASV + estimation of the number of unobserved ASV
- Shannon entropy / Jensen : the width of the ASV relative abundance distribution. Roughly, it reflects our (in)ability to predict ASV of a randomly picked bacteria.
- Simpson : 1 - probability that two bacteria picked at random in the community belong to different ASV
- Inverse Simpson : inverse of the probability that two bacteria picked at random belong to the same ASV
- Other estimators of alpha diversity exist (Chao2, ACE, ICE,...), however the indices presented above allow us to understand alpha diversity with sufficient precision

Exploring biodiversity : α-diversity

This file is the result of FROGS Phyloseq Import Data tool
Experiment variable

The experiment variable that you want to analyse. (--varExp)
The alpha diversity indices to compute
\square Select/Unselect all
Choose a sample variable to organize graphics test on EnvType
\square Observed
\square Chao1
\square Shannon
\square InvSimpson
\square Simpson
\square ACE
\square Fisher

Choose which α-diversity indices you want to compute

[^1]
Exercise 5

1. What are the output files?
2. Which interpretation could you make on the boxplot results ?
3. Does EnvType has an impact on α-diversity indices?

Exercise 5

1. What are the output files?
\rightarrow Tabular file: contains the detailed value of indices in each sample
\rightarrow HTML report: graphical and statistical results

Exercise 5

1. What are the output files?
\rightarrow Tabular file: contains the detailed value of indices in each sample

1	2	3	4	5	6
	Observed	Chaol	se.chaol	Shannon	InvSimpson
BHTO.LOT01	89	90.875	2.25640704112416	2.46283438240559	6.4374614755645
BHTO.LOT03	129	134.2	3.98819923457003	3.01399812576966	11.6378947553209
BHTO.LOT04	137	152	8.65612088483201	2.77419314445453	7.04904738429417
BHTO.LOT05	127	132.526315789474	3.97261840192821	2.82922278153272	7.54330476122993
BHTO.LOT06	135	136	1.30982775947977	2.6365904270666	6.30810073317464
BHTO.LOT07	126	141.260869565217	7.7960250320146	2.36922299088995	5.65591172677601
BHTO.LOT08	172	189.652173913043	8.66767047151361	3.32220303923076	11.229239617499
BHTO.LOT10	155	173.9	9.42281349646639	2.96129964607031	7.55645792419119
CDTO.LOT02	73	87.5263157894737	7.85749286229502	0.968874997875041	1.93691052993399
CDTO.LOT04	145	168.25	10.9999446485673	3.1208274916296	11.0298385276267

Exercise 5

1. What are the output files?
\rightarrow HTML report: graphical and statistical results

Alpha diversity distribution in function of EnvType

Exercise 5

- FiletSaumon
- FiletCabillaud

Exercise 5

more readable thanks to boxplots

Same legend for all indices
Exercise 5

1 Scales in y axis are different (\neq values for each alpha index)
x axis: 8 boxplots for each indices (4 indices, 8 EnvTypes)

Exercise 5

2. Which interpretation could you make on the boxplot results ?

EnvType

DesLardons
MerguezVolaille
BoeufHache
VeauHache
SaumonFume
FiletSaumon
FiletCabillaud
Crevette

Exercise 5

2. Which interpretation could you make on the boxplot results ?

- Same image in same scale for Richness and Chao1 \rightarrow most species have been detected
- High variability in the number of ASVs per EivType
- Many taxa observed in DesLardons (highest observed richness)
- Most foods have low effective diversities (Shannon \& InvSimpson)
\rightarrow communities are dominated by few abundant taxa

Exercise 5

3. Does EnvType has an impact on α-diversity indices ?

- What is an ANOVA used for?
\rightarrow Test the significance of the previous observations by performing an ANOVA of alpha-diversity indices against the covariate of interest (EnvType)

Exercise 5

3. Does EnvType has an impact on α-diversity indices ?

Anova interpretations

```
################################################################
#Perform ANOVA on Observed, which effects are significant
anova.Observed <-aov( Observed ~ Depth + EnvType, anova_data)
summary(anova.Observed)
    Df Sum Sq Mean Sq F value Pr(>F)
EnvType \(\quad 7 \quad 57656 \quad 8237 \quad 7.7051 .68 \mathrm{e}-06\) **
Residuals 56 59864 1069
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


\#

\#Perform ANOVA on Chaol, which effects are significant

anova.Chao1 <-aov(Chao1 ~ Depth + EnvType, anova_data)
summary(anova.Chaol)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
EnvType $\quad 7656919384$ 8.482 4.85e-07 ***
Residuals $\quad 56 \quad 61954 \quad 1106$

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

\#

\#Perform ANOVA on Shannon, which effects are significant
anova.Shannon <-aov(Shannon ~ Depth + EnvType, anova_data)
summary (anova.Shannon)

	Df	Sum Sq Mean Sq	value	$\operatorname{Pr}(>F)$	
EnvType	7	7.61	1.0866	1.695	0.129
Residuals	56	35.89	0.6409		

\#

\#Perform ANOVA on InvSimpson, which effects are significant
anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_data) summary(anova.InvSimpson)

Residuals $56 \quad 2492.7 \quad 44.5$
\# \#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType, anova_data) summary(anova.Observed)

Exercise 5

3. Does EnvType has an impact on α-diversity indices ?

Anova interpretations

Does the EnvType have an effect on Observed indice ?
\#

\#Perform ANOVA on Chao1, which effects are significant

anova.Chao1 <-aov(Chao1 ~ Depth + EnvType, anova_data)
summary(anova.Chao1)
summary(anova.Chao1)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

\#
\#Perform ANOVA on Shannon, which effects are significant
anova.Shannon<-aov(Shannon ~ Depth + EnvType, anova_data) summary(anova.Shannon)

| Df | Sum Sq Mean Sq F value | $\operatorname{Pr}(>F)$ | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 7 | 7.61 | 1.0866 | 1.695 | 0.129 |
| 56 | 35.89 | 0.6409 | | |

\#
\#Perform ANOVA on InvSimpson, which effects are significant
anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_de summary(anova.InvSimpson)

Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

EnvType	7	392.8	56.12	1.261	0.286

Residuals 562492.744 .51
\# \#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType, anova_data) summary(anova.Observed)

3. Does EnvType has an impact on α-diversity indices ? Anova interpretations

- Environments differ in terms of richness but not in terms of Shannon and InvSimpson diversity
-This means that all EnvTypes have similar structures (equivalent distributions between several minor ASVs and few dominant ASVs). Even if 2 samples of "Crevette" displayed very high invSimpson (their bacteria were thus more homogeneously distributed), these two samples were not sufficient to make "Crevette" significantly different from the others EnvType.
\Rightarrow There is no significant difference between the
EnvType
\#
\#Perform ANOVA on Chaol, which effects are significant
anova.Chao1 <-aov(Chao1 ~ Depth + EnvType, anova_data)
summary(anova.Chao1)

\#
\#Perform ANOVA on Shannon, which effects are significant
anova.Shannon<-aov(Shannon ~ Depth + EnvType, anova_data) summary(anova.Shannon)

| | Df | Sum Sq Mean Sq F | value $\operatorname{Pr}(>F)$ | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| EnvType | 7 | 7.61 | 1.0866 | 1.695 | 0.129 |
| Residuals | 56 | 35.89 | 0.6409 | | |

\#

\#Perform ANOVA on InvSimpson, which effects are significant
anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_de summary(anova.InvSimpson)

Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

EnvType	7	392.8	56.12	1.261	0.286

Residuals $562492.7 \quad 44.51$
\# \#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType anova_data) summary(anova.Observed)

EnvType Residuals	Df Sum Sq Mean Sq F value Pr ($>$ F)					
	7	57656	8237	7.705	$1.68 \mathrm{e}-06$	***
	56	59864	1069			

3. Does EnvType has an impact on α-diversity indices ?

Anova interpretations

- Depth does not appear in the results, so there is no effect of depth.
-This is expected as the sequencing depth is equivalent between samples
-If Depth appears as a significant effect, you should normalize
\#
\#Perform ANOVA on Chao1, which effects are significant
anova.Chao1 <-aov(Chao1 ~ Depth + EnvType, anova_data)
summary (anova.Chao1)

\#

\#

\#Perform ANOVA on InvSimpson, which effects are sianificant
anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_de summary(anova.InvSimpson)

Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

EnvType	7	392.8	56.12	1.261	0.286

Residuals $562492.7 \quad 44.51$

Exercise 5

Rarefaction curve interpretations

Exercise 5

Rarefaction curve interpretations

- Most of the curves reach a plateau
- A deeper sequencing doesn't add more ASVs
"DesLardons reach the plateau later which correspond to a higher Observed

IV. Biodiversity analysis

β-DIVERSITY INDICES

Exploring biodiversity : β-diversity

Many diversity indices are available with the Phyloseq package through the generic distance function.

Different dissimilarities capture different features of the communities.

Exploring biodiversity : β-diversity

There are different ways to measure beta diversity on a dataset, which give different results.

In this example, 3 ways :

- qualitatively, communities are very similar
- quantitatively, communities are very different
- phylogenetically, two communities seem to be closer than the third one.

Which distance to choose?

- No wrong answer. Each beta-diversity indices will characterize communities differently

Exploring biodiversity : β-diversity

If we compare 2 communities A and B :
Jaccard index:

- Fraction of species specific to either A or $B \rightarrow$ qualitative index

Bray-Curtis index:

- Fraction of the community specific to either A or $\mathrm{B} \rightarrow$ quantitative index

Exploring biodiversity : β-diversity

- 2 communities, Red and Blue
- 15 ASVs with different abundances in Red community and Blue community

Exploring biodiversity : β-diversity

Jaccard index:

- Proportion of species/ASVs specific to either Red or Blue \rightarrow qualitative index

- Pink = common ASVs between the 2 communities (5)
- Red= ASVs specific to Red community (5)
- Blue= ASVs specific to Blue community (5)

$$
D_{\mathrm{jac}}=10 / 15=0.667
$$

Exploring biodiversity : β-diversity

Bray-Curtis index:

- Proportion of the abundance specific to either Red or Blue \rightarrow quantitative index
- Ration (sum of specific abundances)/ (total abundances)
- $1^{\text {st }}$ ASV does not contribute (same abundance for Red and Blue communities)
- ASV 2, 3, 4 and 5 contribute up to the excess in one of the communities $(8+8+3+3+10)$ in the sum of specific abundances
(Pink is not taken into account in this sum)

$$
D_{b c}=(8+8+3+3+10) /(24+26+28+17+9+10)=0.281
$$

Exploring biodiversity : β-diversity

Indices comparison with different distributions:

- between Red \& Blue1 communities
- between Red \& Blue2 communities

Exploring biodiversity : β-diversity

Jaccard and Bray-Curtis indices are calculated by pairs (in french "deux-àdeux") so we here compare pair X indices with pair Y indices

Exploring biodiversity : β-diversity

1. Jaccard indices of X an Y are identical \rightarrow same specific fraction (there are as many ASVs specific to Red or Blue1 in X, as there are ASVs specific to Red or Blue2 in Y).
2. Pair X: Bray-Curtis index is low because shared ASVs between Red and Blue1 communities are abundant and specific ASVs are at low abundance.
3. Pair Y: Bray-Curtis index is high because ASVs specific to Red or Blue2 are abundant and shared ASVs are at low abundance

Exploring biodiversity : β-diversity

3 ways to measure beta diversity with the same data set $\rightarrow 3$ different results.

In this example :
\checkmark qualitatively, communities are very similar
\checkmark quantitatively, communities are very different

- phylogenetically, two communities seem to be closer than the third one.

Exploring biodiversity : β-diversity

Unifrac index:

- Fraction of the tree specific to either A or B

Weighted-Unifrac index :

- Fraction of the diversity specific to either A or B

Exploring biodiversity : β-diversity

Unifrac index:

- Fraction of the tree specific to either A or B

$$
\text { Unifrac }=\frac{\sum \text { specific_branch_length }}{\sum \text { all_branch_length }}
$$

3 ASVs identified by sequencing: ASV3, ASV4 in community A and ASV1, ASV3 in community B

Exploring biodiversity : β-diversity

Unifrac index:

- Fraction of the tree specific to either A or B

$$
\text { Unifrac }=\frac{\sum \text { specific_branch_length }}{\sum \text { all_branch_length }}
$$

ASV1 and ASV4 are specific, ASV3 is shared in the 2 communities and ASV2 are absent in the 2 communities

Exploring biodiversity : β-diversity

Unifrac index:

- Fraction of the tree specific to either A or B

ASV3
If all branch lengths are equal to 1 , only branches present in at least one community are taken into account :

Unifrac $=\frac{\sum \text { specific_branch_length }}{\sum \text { all_branch_length }}=3 / 5=0.6$

- Pink = common ASVs between the 2 communities
- Red= tree branch specific to A
- Blue= tree branch specific to B

Weighted-Unifrac index:

- Fraction of the diversity specific to either A or B

$$
\text { WUnifrac }=\frac{\sum \text { reduced_branch_length }}{\sum \text { non_reduced_branch_length }}
$$

Exploring biodiversity : β-diversity

Weighted-Unifrac index:

- Fraction of the diversity specific to either A or B

$$
\text { WUnifrac }=\frac{\sum_{\text {reduced_branch_length }}}{\sum \text { non_reduced_branch_length }}
$$

Here the specific ASVs (ASV1 and ASV4) are the most abundant and are also the most phylogenetically distant.

Exploring biodiversity : β-diversity

Weighted-Unifrac index:

- Fraction of the diversity specific to either A or B

ASV1
ASV2
Community A
ASV3
ASV4

ratio of the abundance of each branch whose distance is weighted by the relative abundance of the ASV

Exploring biodiversity : β-diversity

Weighted-Unifrac index:

- Fraction of the diversity specific to either A or B

$$
\text { WUnifrac }=\frac{\sum \text { reduced_branch_length }}{\sum \text { non_reduced_branch_length }}
$$

$|0-0.7||0+0.7|$
$|0.2-0.3||0.2+0.3|$
$|1-0.3||11+0.3|$

ASV1 Blue branches $=\frac{|0-0,7|}{|0+0,7|}+\frac{|0-0,7|}{|0+0,7|}=1+1=2$
ASV2 Red branches $=\frac{|0-0,8|}{|0+0,8|}=1$
Pink branches $=\frac{|1-0,3|}{|1+0,3|}+\frac{|0,2-0,3|}{|0,2+0,3|}=\frac{0,7}{0,3}+\frac{0,1}{0,5}=0,73$
ASV3
\sum reduced branch length $=3,73$

ASV4

Exploring biodiversity : β-diversity

Weighted-Unifrac index:

- Fraction of the diversity specific to either A or B

$$
\text { WUnifrac }=\frac{\sum_{\text {reduced_branch_length }}}{\sum \text { non_reduced_branch_length }}
$$

ASV1

$$
\sum \text { non reduced branch length }=5
$$

ASV3
WUnifrac $=\frac{\sum_{\text {reduced_branch_length }}}{\sum \text { non_reduced_branch_length }}=\frac{3,73}{5}=0,75$

Exploring biodiversity : β-diversity in brief

qualitative indices: presence/absence regardless of abundance
quantitative indices: compare differences in abundance of ASVs
phylogenetic indices: integrate phylogenetic information to qualitative or quantitative indices (weighted or unweighted indices)

Bray-Curtis index : to evaluate the dissimilarity between two given samples, in terms of abundance of ASVs present in each sample. When Bray-Curtis index close to 0 means abundant ASVs are shared and in the same quantities between communities.

Jaccard index: beta diversity index, qualitative, takes into account the fraction of specific ASVs
Unifrac index: beta diversity index, qualitative, takes into account the fraction of specific phylogenetic branches

Weighted-Unifrac index: beta diversity index, quantitative, takes into account the relative abundance of ASVs shared between samples

Exploring biodiversity : β-diversity

\rightarrow What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values for these 4 pairs of communities?
: in common
: specific to A
: specific to B

Exploring biodiversity : β-diversity

\rightarrow What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

High Jaccard: same amount of specific ASVs
Low Unifrac: small distance between specific branches

Exploring biodiversity : β-diversity

\rightarrow What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

High Unifrac / High Jaccard

Exploring biodiversity : β-diversity

\rightarrow What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

High Unifrac / High Jaccard

High Bray-Curtis: ASVs are shared but abundant ASVs are not the same in each community
Low weighted-Unifrac: abundant ASVs in a community have a phylogenetically close relative in the other community

Exploring biodiversity : β-diversity

\rightarrow What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

High Unifrac / High Jaccard

High Bray-Curtis: ASVs are shared but abundant ASVs are not the same in each community
High weighted-Unifrac: abundant ASVs in a community are phylogenetically distant to any ASV in the other community

Exploring biodiversity : β-diversity

Phyloseq supports currently 43 beta diversity distance methods, (see phyloseq distanceMethodList documentation)
unifrac, wunifrac, dpcoa, jsd, manhattan, euclidean, canberra, bray, kulczynski, jaccard, gower, altGower, morisita, horn, mountford, raup, binomial chao, cao...

Exploring biodiversity : β-diversity

FROGSSTAT Phyloseq Beta Diversity distance matrix (Galaxy Version 4.1.0+galaxy1)				W Favorite	Q Versions	- Option	
Phyloseq object (format: RData)							
\square	¢	\square	4: FROGSSTAT Phyloseq Import Data SUBSAM	ED: asv_data	data	\checkmark	B

This is the result of FROGS Phyloseq Import Data tool.
Grouping variable
EnvType

Experimental variable used to group samples (Treatment, Host type, etc) (--varExp)
The methods of beta diversity
\square Select/Unselect all

\square Unifrac

\square Weighted Unifrac
Bray-Curtis
\square Jaccard (as cc method in betadiver vegan funcion)
N.B. if the tree is not available in your RData, you cannot choose Unifrac or Weighted Unifrac (--distance-methods) Other method

Explore the sample NORMALISED count

Choose a sample variable to organize graphics.

Exercise 6

Try it with the 4 most commonly used distance methods

1. What are the output datasets ?
2. A priori, abundant ASVs are they shared among samples?
3. Comparing Jaccard and Unifrac, what can you conclude ?
4. Comparing Unifrac and weighted Unifrac, what can you conclude?

Exercise 6

1. What are the output files ?
\rightarrow Tabular file: a tabular file per distance method containing the "all samples against all" matrix of beta diversity distance
\rightarrow HTML report: heatmap representing the distance matrix computed

FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (wunifrac.tsv)
FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (unifrac.tsv)
FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (cc.tsv)
FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (bray.tsv)
FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html

Exercise 6

Heatmap plot of the beta distance : unifrac

Heatmap plot of the beta distance: cc

Heatmap plot of the beta distance : wunifrac

distance

0.25
0.00

Exercise 6

- Each square represents a comparison between 2 samples
- Lighter means more similar
- The diagonal represents the comparison of a sample with itself

Heatmap plot of the beta distance: : munifrac

Unifrac

Bray-Curtis

Heatmap plot of the beta distance : unirrac

Unifrac

Jaccard

Heatmap plot of the beta distance : wunifrac

Weighted-Unifrac

Exercise 6

Bray-Curtis

Heatmap plot of the beta distance : unirrac

Unifrac

Jaccard

Heatmap plot of the beta distance : wunifrac

Weighted-Unifrac

Exercise 6

3. Comparing Jaccard and Unifrac, what can you conclude ?

Bray-Curtis

Heatmap plot of the beta distance : unirrac

Unifrac

Jaccard

Heatmap plot of the beta distance : wunifrac

Weighted-Unifrac

Exercise 6

3. Comparing Jaccard and Unifrac, what can you conclude?

- Jaccard and Unifrac are close.

Heatmap plot of the beta distance : unirrac

Unifrac

Jaccard

Heatmap plot of the beta distance : wunifrac

Weighted-Unifrac

Exercise 6

4. Comparing Unifrac and weighted Unifrac, what can you conclude ?

Bray-Curtis

Heatmap plot of the beta distance : unirrac

Unifrac

Jaccard

Heatmap plot of the beta distance : wunifrac

Weighted-Unifrac

Exercise 6

4. Comparing Unifrac and weighted Unifrac, what can you conclude ?

- Unifrac higher/darker than weighted Unifrac so distance between samples are more important
- taking into account the abundances makes the samples less distant (lighter)
\Rightarrow abundant ASVs in both communities are phylogenetically closed.

Bray-Curtis

Heatmap plot of the beta distance : unirrac

Unifrac

Heatmap plot of the beta distance : wunifrac

Exploring biodiversity : β-diversity

- In general, qualitative diversities (Jaccard, Unifrac) are more sensitive to factors that affect presence/absence of organisms (such as pH , salinity, depth, etc) and therefore are useful to study and define bioregions (regions with little of no flow between them)...
"... whereas quantitative distances (Bray-Curtis, weighted-Unifrac) focus on factors that affect relative changes (seasonal changes, nutrient availability, concentration of oxygen, depth, etc.) and therefore useful to monitor communities over time or along an environmental gradient.

Different distances capture different features of the samples.
There is no "one size fits all"

Exploring the structure

We will try to identify structures, relationships between samples related to environmental factors

I. Structure Visualisation

ORDINATION AND HEATMAP PLOTS
We have calculated distances now, we will use ordination methods to explore them.

Structure visualization : with PCA ?

- Each community can be described by its ASV abundances, which could be used for a PCA, but high number of ASV make interpretations difficult
- Moreover, PCA maximizes variance and can therefore emphasize differences of rare ASVs between samples instead of giving a good representation of resemblances.
Variance is not a very good measure of β-diversity.
- PCA is not design to use diversity indices and/or distances as it requires independency between variables and does not fit to distance matrix, which is not constructed with samples and variables.
β-diversity indices thus required dedicated PCA-like methods.
Purpose of the tool : ordinate samples based on β-diversity indices and offer tools to visualize it: produce ordination plots and heatmaps.

Structure visualization : Ordination plot

The Multidimensional Scaling (MDS or PCoA) is equivalent to a Principal Component Analysis (PCA) but preserves the β-diversity instead of the variance. The MDS tries to represent samples in two dimensions while preserving the distances

1- calculation of a distance matrix.

Distance Matrix					
	S1	S2	S3	S4	S5
S1	0.00	2.21	6.31	0.99	7.50
S2	2.21	0.00	5.40	1.22	5.74
S3	6.31	5.40	0.00	5.75	3.16
S4	0.99	1.22	5.75	0.00	6.64
S5	7.50	5.74	3.16	6.64	0.00

Structure visualization: Heatmap

- Heatmap is an other representation of the abundance table.
- It tries to reveal if there is a structure between a group of ASVs and a group of samples.
-Heatmap
- Finds a meaningful order of the samples and the ASVs
- Allows the user to choose a custom order (in R)
- Allows the user to change the colour scale (in R)
- Produces a ggplot2 object, easy to manipulate and customize

Structure visualization : Ordination plot and Heatmap

This is the result of FROGS Phyloseq Import Data Tool.

The beta diversity distance matrix file					
\square	\	\square	11: FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (cc.tsv)	-	\square

To see all, launch once per distance to ordinate (Bray, Jaccard, Unifrac and Weighted-Unifrac matrices)

This file is the result of FROGS Phyloseq Beta Diversity tool (--distance-matrix)

| Experiment variable |
| :--- | :--- |
| EnvType |

Choose a sample variable to organize graphics
The experiment variable that you want to analyse. (--varExp)
Ordination method
MDS/PCoA

Choose the ordination method (most commonly used is MDS/PCoA)

[^2]
Structure visualization : Ordination plot and Heatmap

Try it with the 4 distance matrices

1. What are the output datasets ?
2. What is the best distance matrix to use to better separate samples ?
3. Guess why Lardon are somewhere between Meat and Seafood?
4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

Structure visualization : Ordination plot and Heatmap

1. What are the output datasets ?
\rightarrow HTML report: ordination plot

Structure visualization : Ordination plot and Heatmap

2. What is the best distance matrix to use to better separate samples ?

- Qualitative distances (Unifrac, Jaccard) separate meat products from seafood ones
\Rightarrow detected taxa segregate by origin

Structure visualization : Ordination plot and Heatmap

3. Guess why Lardon are somewhere between Meat and Seafood?

UNIFRAC

Structure visualization : Ordination plot and Heatmap

3. Guess why Lardon are somewhere between Meat and Seafood?

"DesLardons is somewhere in between

UNIFRAC
\Rightarrow contamination induced by sea salt

Structure visualization : Ordination plot and Heatmap

Other conclusions?

1. Quantitative distances (weighted Unifrac) exhibit a 'meat - seafood' gradient (on axis 1) with DesLardons in the middle and a 'SaumonFume - everything else' gradient on axis 2.

Structure visualization : Ordination plot and Heatmap

Other conclusions ?

2. Note the difference between weighted-UniFrac and Bray-Curtis (2 quantitative indices) for the distances between BoeufHache and VeauHache.

Structure visualization : Ordination plot and Heatmap

Other conclusions ?

3. On Bray-Curtis, on axis 2, we can observe the distribution of Saumon Fumé samples. Axis 1 shows the distribution of MerguezdeVolaille samples

Structure visualization : Ordination plot and Heatmap

Other conclusions ?

The 2D representation captures only parts of the original distances
Ellipse are not always an advantage for visualization because it accentuates the 2D effect

Structure visualization : Ordination plot and Heatmap

4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

Try to identify:

- Block-like structure of the abundance table
- Interaction between (groups of) taxa and (groups of) samples
- Core and condition-specific microbiota

Exercise 7

4. Based on your favourite distance matrix, what can you conclude on the heatmap ?
matrix based on Jaccard distance (qualitative) which "sorts" the ASVs. Then a color is applied according to the abundance of ASVs (yellow to red).

Exercise 7

4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

Heatmap plot with EnvType

Exercise 7

4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

II. Exploring the structure

hierarchical clustering

Exploring the structure : clustering

Clustering aims to represent samples in a tree based on a distance matrix and a linkage function:
3 clustering algorithms:

- Complete linkage: tends to produce compact, spherical clusters and guarantees that all samples in a cluster are similar to each other.
- Ward: tends to also produce spherical clusters but has better theoretical properties than complete linkage.
- Single: friend of friend approach, tends to produce banana-shaped or chains-like clusters.

Exploring the structure : clustering

FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods (Galaxy Version 4.1.0+galaxy1)

- Options

Phyloseq object (format: RData)

\square	\square	\square	4: FROGSSTAT Phyloseq Import Data SUBSAMPLED: asv_data.Rdata

Explore the sample NORMALISED count

This is the result of FROGS Phyloseq Import Data tool.

$\left\lvert\,$| The beta diversity distance matrix file | | | | |
| :--- | :--- | :--- | :--- | :--- |
| \square \square 11: FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (cc.tsv) | | | | |$.$| (c) |
| :--- |\right.

Choose the beta diversity distance matrix: i.e. Jaccard

This file is the result of FROGS Phyloseq Beta Diversity tool. (--distance-matrix)

Experiment variable

EnvType

The experiment variable that you want to analyse. (--varExp)

Choose a sample variable to organize graphics: i.e. EnvType

The three different linkage functions will be used, generating three different dendrograms

Exercise 8

Try it with « a good » distance method matrix on EnvType and on FoodType
\Rightarrow Which linkage method seems to better fit the data ?

Exercise 8

single linkage clustering tree

complete linkage clustering tree

the Ward clustering allows to classify the communities according to the EnvType groups

Exercise 8

- Consistently, for these datasets, with the ordination plots, clustering works quite well for the UniFrac distance
- The method (Ward.D2) give almost a perfect separation between the different type of food

Remarks

Clustering is based on the whole distance whereas ordination represents parts of the distance (the most it can with 2 dimensions) - FiletSaumon

- FiletCabillaud Crevette

Exercise 8

- Not as well clustered with Jaccard indices
- DesLardons is in the middle of seafood.

Once again,
Different distances capture different features of the samples.
There is no "one solution fits all"

- SaumonFume FiletSaumon
- FiletCabillaud Crevette

Diversity partitioning

Diversity partitioning

Do the structures seem linked to metadata ? Does the metadata have an effect on the composition of our communities?

To answer these questions, multivariate analyses:

- test composition differences of communities from different groups using a distance matrix
- compare within-group to between-group distances

Diversity partitioning : Multivariate ANOVA

Idea : Test differences in the community composition from different groups using a distance matrix.

How it works ?

- Computes sum of square distance
- Variance analysis

Diversity partitioning : Multivariate ANOVA

FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform
Multivariate Analysis of Variance (MANOVA) (Galaxy Version 4.1.0+galaxy1)

This is the result of FROGS Phyloseq Import Data tool.

This file is the result of FROGS Phyloseq Beta Diversity tool (--distance-matrix)

Experiment variable
EnvType

The experiment variable that you want to analyse (--varExp)

Explore the sample NORMALISED count

Choose the beta diversity distance matrix: Unifrac

Choose the variable to explain the variability between samples: EnvType To simultaneously test several variables, you can use " + " symbol as "EnvType+FoodType" to test only additive effects or "*" symbol as "EnvType*FoodType" to test for additive effects and interactions between variables

Exercise 9

Try it with a good beta distance matrix with EnvType and FoodType

1. Does EnvType have an influence on the beta diversity variance ?
2. What about FoodType?

Exercise 9

1. Does EnvType have an influence on the beta diversity variance ?

With Unifrac distance	```Call: adonis(formula = dist ~ EnvType, data = metadata, permutations = 9999)```
	Permutation: free Number of permutations: 9999
	Terms added sequentially (first to last)
	Df Sumsofsqs Meansqs F.Model R2 Pr(PF)
	EnvType $7 \quad 6.18490 .8835611 .1640 .5825510-84 * * *$
	Residuals $56 \quad 4.43200 .079140 .41745$
	$\begin{array}{llll}\text { Total } & 63 & 10.6170 & 1.00000\end{array}$

	Signif. codes: 0 '***' 0.001 "**' 0.01 '*' 0.05 ". 0.1 ' ' 1

Exercise 9

1. Does EnvType have an influence on the beta diversity variance ?

Environment type explains roughly 58\% of the total variation, which is very high

With Unifrac distance

```
Call:
adonis(formula = dist ~ EnvType, data = metadata, permutations = 9999)
Permutation: free
Number of permutations: 9999
Terms added sequentially (first to last)
    Df SumsOfSqs Meansqs F.Model R2 Pr(>F)
EnvType }\begin{array}{c}{7}\\{7}
Residuals 56 4.4320 0.07914 0.41745
Total 63 10.6170 1.00000
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Exercise 9

2. What about FoodType?

Call:
adonis(formula $=$ dist \sim FoodType, data $=$ metadata, permutations $=999$)

Permutation: free
Number of permutations: 9999
With Unifrac distance
Terms added sequentially (first to last)

	Df	Sumsofsqs	Meansqs	F.Model		$\mathrm{Pr}(>F)$
Foodtype	1	1.7858	1.78579	12.537	0.1682	1e-84 ***
Residuals	62	8.8312	0.14244		0.8318	
Total	63	10.6170			1.0000	

Exercise 9

2. What about FoodType?

Food type explains only $\mathbf{1 7} \%$ of the total variation

With Unifrac distance Call:
adonis(formula $=$ dist \sim FoodType, data $=$ metadata, permutations $=9999$)
Permutation: free
Number of permutations: 9999
Terms added sequentially (first to last)
$\begin{array}{lllllllll}\text { FoodType } & 1 & 1.7858 & 1.78579 & 12.537 & 0.1682 & 1 \mathrm{e}-044^{38 *}\end{array}$ $\begin{array}{lllll}\text { Residuals } 62 & 8.8312 & 0.14244 & 0.8318\end{array}$ $\begin{array}{llll}\text { Total } 63 & 10.6170 & 1.0000\end{array}$

Signif. codes: 0 '***' $0.001{ }^{\prime 88 \prime} 0.01$ '*' $0.05^{\prime} .{ }^{\prime} 0.1$ ' ' 1

Differential abundance analysis

Differential abundance analysis

Are there ASV with differential abundance between 2 conditions ? And which are they ?
To answer these questions, we perform a differential abundance analysis using DESeq2 on the phyloseq object

The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models

Differential abundance analysis

Are there ASV with differential abundance between 2 conditions? And which are they ?
To answer these questions, we perform a differential abundance analysis using DESeq2 on the phyloseq object

The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models

Be aware to use data without normalisation

DESeq has is own normalisation method suited to this kind of data.
It uses the postcount function optimised for metagenomic count table

Differential abundance analysis

$\rightarrow 1^{\text {rst }}$ step: launch DESeq2 Preprocess tool to create the dds object - the DESeq2 objet

FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis (Galaxy Version 4.1.0+galaxy1)

Favorite
Versions

- Options

Type of analysis

(1) ASV

O FUNCTION
Type of data to perform the differential analysis. ASV: DESeq2 is run on the ASV abundance table. FUNCTION: DESeq2 is run on predicted function abundance table from FROGSFUNC_2_function tool.

```
Phyloseq object
```


This is the result of FROGSSTAT_Phyloseq_Import_Data without normalisation (DESeq2 is more powerful on unnormalised counts) (format RData)

Experimental variable
EnvType

The factor that could have an effect on ASV/FUNCTION abundances. Ex: Treatment, etc.
Do you want to correct a confounding factor?

False

If yes, specify the counfouding factor

Ask for DESeq2 ASV data analysis

Explore the sample RAW count

Choose the factor on which the differential abundances will be compared

Specify a confounding factor if necessary

- (example : testing antibiotic treatment effect with 2 different mice phenotypes, or testing drought effect on soil microbiome with two soil compositions)

Differential abundance analysis

\rightarrow What are the output datasets ?
\rightarrow Rdata file: asv_dds.Rdata object with results of the DESeq analysis
$\Rightarrow 2^{\text {nd }}$ step: launch DESeq2 visualization tool to explore the dds object

Differential abundance visualization

FROGSSTAT DESeq2 Visualisation to extract and visualise differentially abundant ASVs or functions (Galaxy Version 4.1.0+galaxy1)

Type of analysis

© ASV
 O FUNCTION

Type of data to perform the differential analysis. ASV: DESeq2 is run on the ASV abundance table. FUNCTION: DESeq2 is run on predicted function abundance table from FROGSFUNC_2_function tool.
Data object (format: data.RData)
[1] ■ 19: FROGSSTAT Phyloseq Import Data NOT NORMALISED: asv_data.Rdata

For ASV: asv_data.Rdata from FROGSSTAT_Phyloseq_Import_Data tool - For FUNCTION: function_data.Rdata from FROGSSTAT_DESeq2_Preprocess tool. (--abundanceData)

DESeq2 object (format: dds. RData)

Ask for DESeq2 ASV data analysis

Result of FROGSSTAT DESeq2 preprocess

This is the result of FROGSSTAT_DESeq2_Preprocess tool asv_dds.Rdata or function_dds.Rdata (--dds)

Factor on which the differential abundances have been tested

Differential abundance visualization

Experimental variable

EnvType

The factor that could have an effect on ASV/FUNCTION abundances. Ex : Treatment (var)
The experimental variable is it quantitative or qualitative?
Qualitative
If qualitative, choose 2 conditions to compare

Condition 1 considered as reference
BoeufHache
One condition of the experimental variable (e.g. with) (--mod2)
Condition 2 to be compared to the reference
VeauHache
Another condition of the experimental variable (e.g. without) (--mod1)
Adjusted p-value threshold
0.05

Threshold used for statistical significance of the differentially abundant ASV/FUNCTION analysis (--padj)

Factor on which the differential abundances have been tested

Specify qualitative or quantitative

Precise the two conditions to compare

Statistical significance threshold (default 0.05)

Differential abundance visualization

What are the output datasets?
\rightarrow HTML report: result table and several plots

Differentially abundant ASV/FUNCTION table Pie chart Volcano plot MA plot Heatmap plot

Differential abundance visualization

Differentially abundant ASV/FUNCTION table Pie chart Volcano plot MA plot Heatmap plot

Code

You chose to compare VeauHache to the reference modality BoeufHache. This implies that a positive log2FoldChange means more abundant in VeauHache than in BoeufHache.

Then we extract significant ASVs or FUNCTIONs at the p-value adjusted threshold (after Benjamini Hochberg correction) and enrich results with taxonomic/functional classification and sort the results by pvalue.

Differential abundance visualization

Download		baseMean	log2FoldChange	lfcSE	stat	Search:		Kingdom	
	ID $\hat{\nabla}$					pvalue ${ }^{\text {¢ }}$	padj		
		A	All			All	All		
1	Cluster_53	16.7845	-7.93954	1.21935	-6.51127	7.45192e-11	$2.61563 \mathrm{e}-8$	Bacteria	1
2	Cluster_43	10.4196	15.6431	2.48659	6.29099	$3.15446 \mathrm{e}-10$	$5.53607 \mathrm{e}-8$	Bacteria	1
3	Cluster_120	7.49645	5.21487	0.842194	6.19200	$5.94040 \mathrm{e}-10$	6.95027e-8	Bacteria	1
4	Cluster_4	284.010	-4.46973	0.730032	-6.12265	$9.20307 \mathrm{e}-10$	$8.07569 \mathrm{e}-8$	Bacteria	,
5	Cluster_85	5.25312	-14.8545	2.69005	-5.52204	$3.35093 \mathrm{e}-8$	0.00000235236	Bacteria	1
6	Cluster_174	2.99262	-17.3671	3.27384	-5.30481	$1.12788 \mathrm{e}-7$	0.00000659810	Bacteria	1
7	Cluster_44	22.0406	-6.03398	1.14995	-5.24715	$1.54472 \mathrm{e}-7$	0.00000677746	Bacteria	,
8	Cluster_141	9.26135	5.96649	1.13629	5.25083	$1.51415 \mathrm{e}-7$	0.00000677746	Bacteria	1
9	Cluster_9	150.302	28.4432	5.83716	4.87279	0.00000110034	0.0000429134	Bacteria	1
10	Cluster_135	7.45843	-4.76315	1.05240	-4.52600	0.00000601095	0.000210984	Bacteria	1
Show $10 \vee$ entries									
Showing 1 to 10 of 35 entries						Previous	123	4 N	

Only significantly differentially abundant ASV are displayed
 (with an adjusted p-value < previously defined threshold - set here to 0.05)
 p-value are adjusted using the BenjaminiHochberg method

Differential abundance visualization

Differential abundance visualization

Why $\log 2$ Foldchange ?

Foldchange:

It's the ratio of the normalized counts between VeauHache and BoeufHache
$\log 2$ is used for interpret and scale reasons:

- Positive values denote an increase, and negative a decrease of abundance
- $\log 2 \mathrm{FC}=1$ means a doubling
- $\log 2 \mathrm{FC}=2$ means a quadrupling
- $\log 2 \mathrm{FC}=-1$ means a halving
- $\log 2 \mathrm{FC}=-2$ means a quartering
- ...

Differential abundance visualization

	ID	baseMean ${ }^{\text {® }}$	log2FoldChange ${ }^{\text {F }}$	IfcSE	stat ${ }^{\text {¢ }}$	pvalue ${ }^{-}$	padj ${ }^{-}$	Kingdom ${ }^{-}$
		A	All			All	All	
1	Cluster_53	16.7845	-7.93954	1.21935	-6.51127	$7.45192 \mathrm{e}-11$	$2.61563 \mathrm{e}-8$	Bacteria
2	Cluster_43	10.4196	15.6431	2.48659	6.29099	$3.15446 \mathrm{e}-10$	$5.53607 \mathrm{e}-8$	Bacteria
3	Cluster_120	7.49645	5.21487	0.842194	6.19200	$5.94040 \mathrm{e}-10$	$6.95027 \mathrm{e}-8$	Bacteria
4	Cluster_4	284.010	-4.46973	0.730032	-6.12265	$9.20307 \mathrm{e}-10$	$8.07569 \mathrm{e}-8$	Bacteria
5	Cluster_85	5.25312	-14.8545	2.69005	-5.52204	$3.35093 \mathrm{e}-8$	0.00000235236	Bacteria
6	Cluster_174	2.99262	-17.3671	3.27384	-5.30481	$1.12788 \mathrm{e}-7$	0.00000659810	Bacteria
7	Cluster_44	22.0406	-6.03398	1.14995	-5.24715	$1.54472 \mathrm{e}-7$	0.00000677746	Bacteria
8	Cluster_141	9.26135	5.96649	1.13629	5.25083	$1.51415 \mathrm{e}-7$	0.00000677746	Bacteria
9	Cluster_9	150.302	28.4432	5.83716	4.87279	0.00000110034	0.0000429134	Bacteria
10	Cluster_135	7.45843	-4.76315	1.05240	-4.52600	0.00000601095	0.000210984	Bacteria

Differentially abundant ASV/FUNCTION table

You can sort by numeric columns and filter on taxonomy

Differential abundance visualization

\rightarrow Which species have the highest positive log2Foldchange ?

	ID $\hat{\square}$	baseMean ${ }^{\text {f }}$	log2FoldChange ${ }^{\text {a }}$	IfcSE	stat ${ }^{\text {b }}$	pvalue	padj	Kingdom
		A	All			All	All	
1	Cluster_53	16.7845	-7.93954	1.21935	-6.51127	7.45192e-11	$2.61563 \mathrm{e}-8$	Bacteria
2	Cluster_43	10.4196	15.6431	2.48659	6.29099	$3.15446 \mathrm{e}-10$	$5.53607 \mathrm{e}-8$	Bacteria
3	Cluster_120	7.49645	5.21487	0.842194	6.19200	$5.94040 \mathrm{e}-10$	$6.95027 \mathrm{e}-8$	Bacteria
4	Cluster_4	284.010	-4.46973	0.730032	-6.12265	$9.20307 \mathrm{e}-10$	8.07569e-8	Bacteria
5	Cluster_85	5.25312	-14.8545	2.69005	-5.52204	$3.35093 \mathrm{e}-8$	0.00000235236	Bacteria
6	Cluster_174	2.99262	-17.3671	3.27384	-5.30481	$1.12788 \mathrm{e}-7$	0.00000659810	Bacteria
7	Cluster_44	22.0406	-6.03398	1.14995	-5.24715	$1.54472 \mathrm{e}-7$	0.00000677746	Bacteria
8	Cluster_141	9.26135	5.96649	1.13629	5.25083	$1.51415 \mathrm{e}-7$	0.00000677746	Bacteria

Differential abundance visualization

\rightarrow Which species have the highest positive log2Foldchange (more present in VeauHache than BoeufHache) ?

It's the Cluster_9 which is a Weissella ceti

Phylum	Class	Order	Family	Genus	Species
All	All	All		All	All
Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Weissella	Weissella ceti

Differential abundance visualization

Pie chart to view ASVs or FUNCTIONs number of Differential Abundance test

Differentially Abundant (log-fold change < 0)
Differentially Abundant (log-fold change >0)
Not Differentially Abundant

Most of the ASVs are not significantly affected between the conditions (DESeq2 hypothesis !!)

35 ASVs are significantly affected between conditions

Differential abundance visualization

Volcano Plot Colored by effect sign

Volcano plot
visualization of ASVs log2FoldChange and their associated adjusted p-values

Only ASVs with a significant adjusted p-value are colored

Differential abundance visualization

Differential abundance visualization

Post Normalisation DESeq2: MA plot of log2FoldChange

\rightarrow Which Cluster is the triangle spotted?

Differential abundance visualization

Differential abundance visualization

Heatmap plot

visualization of the DESeq2 normalised abundances of differentially abundant ASVs grouped by condition

Here, we observe only the significant 35 ASV that are differential abundant

ASVs are ordered from top to bottom in $\log 2$ flold change descending order

Differential abundance visualization

Compare FiletSaumon vs SaumonFume

Experimental variable

EnvType

The factor that could have an effect on ASV/FUNCTION abundances. Ex : Treatment (var)

The experimental variable is it quantitative or qualitative?

Qualitative
If qualitative, choose 2 conditions to compare

Condition 1 considered as reference

FiletSaumon
One condition of the experimental variable (e.g. with) (--mod2)
Condition 2 to be compared to the reference
SaumonFume

Another condition of the experimental variable (e.g. without) (--mod1)

Differential abundance visualization

Differentially abundant ASV/FUNCTION table Pie chart Volcano plot MA plot Heatmap plot

 we will use the other syntax with contrast=c(0)

```
You chose to compare SaumonFume to the reference modality FiletSaumon. This implies that a positive
log2FoldChange means more abundant in SaumonFume than in FiletSaumon.
```

Then we extract significant OTUs at the p-value adjusted threshold level (after correction) and enrich results with taxonomic informations and sort taxa by pvalue.

Differential abundance visualization

	ID ${ }^{\text {¢ }}$	baseMean ${ }^{\text {¢ }}$	log2FoldChange	IfcSE	stat	pvalue	padj	Kingdom	Differentially abundant ASV/FUNCTION table
		A	All			All	All		
1	Cluster_4	284.010	-4.97034	0.718373	-6.91888	$4.55218 \mathrm{e}-12$	$2.25333 \mathrm{e}-9$	Bacteria	
2	Cluster_85	5.25312	-17.5013	2.66091	-6.57717	$4.79475 \mathrm{e}-11$	$1.18670 \mathrm{e}-8$	Bacteria	
3	Cluster_55	19.0634	-4.83859	0.825830	-5.85906	$4.65500 \mathrm{e}-9$	7.68076e-7	Bacteria	
4	Cluster_123	10.3886	7.90236	1.39576	5.66171	$1.49873 \mathrm{e}-8$	0.00000185468	Bacteria	
5	Cluster_31	37.4358	-5.51672	1.04587	-5.27478	$1.32918 \mathrm{e}-7$	0.0000131588	Bacteria	
6	Cluster_13	139.041	4.03643	0.838190	4.81565	0.00000146724	0.000121047	Bacteria	
7	Cluster_27	41.5512	-5.32505	1.13155	-4.70599	0.00000252641	0.000178653	Bacteria	

Differential abundance visualization

Most of the ASV are not significantly affected between your conditions
Only 47 ASVs are significantly affected between conditionsDifferentially Abundant (log-fold change >0) Not Differentially Abundant

Differential abundance visualization

Volcano Plot
Colored by effect sign

Differential abundance visualization

Differential abundance visualization

Post Normalisation DESeq2: MA plot of log2FoldChange

Differential abundance visualization

FROGSStat Summary

f FROGSSTAT Phyloseq Import Data
C Abundance biom file with taxonomical metadata (format: BIOM)
© Metadata associated to samples (format: TSV) Taxonomic tree file (format: Newick) \checkmark FROGSSTAT asv_data.Rdata (rdata) \checkmark FROGSSTAT Phyloseq Import Data: report.nb.html (html)

Differential analysis

Which ASVs are differentially abundant?

What is the sample composition?
What are the sample diversities ?

```
Structure
    analysis
```

Is there any relation between species or communities?

FROGSStat Summary

f FROGSSTAT Phyloseq Import Data
© Abundance biom file with taxonomical metadata (format: BIOM)
© Metadata associated to samples (format: TSV)
© Taxonomic tree file (format: Newick)

- FROGSSTAT Phylosed Import Data: asv_data.Rdata (rdata) - FROGSSTAT Phylosed Import Data: report.nb.html (html)

Differential analysis

What is the sample composition ?
What are the sample diversities ?

Is there any relation between species or communities?

How do the communities cluster?

Which variable influence the diversity?
verutubion tures

Conclusion and advices reminder

FROGSTAT advices

- Before starting, check taxonomy format : how many levels? What are their names ?
- Carefully construct your sample_metadata TSV file, and after its import, check that your variable order is smart
- Keep in mind that :
- Phyloseq composition and structure analyses need to be perform on normalised (=rarefied) counts
- DESeq analysis needs to be performed on counts without normalisation
- Different indices or distance methods will give different but complementary information
- Test different distances and choose which one fits better your data

References

- Chaillou, S., Chaulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Desmonts, M. H., Dousset, X., Feurer, C., Hamon, E., Joraud, J.-J., La Carbona, S., Leroi, F., Leroy, S., Lorre, S., Mace, S., Pilet, M.-F., Prevost, H., Rivollier, M., Roux, D., Talon, R., Zagorec, M., and Champomier-Verges, M.-C. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J, 9(5):1105\{1118.
-McMurdie, P. J. and Holmes, S. (2013). phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4):e61217.
- Shade, A., Jones, S. E., Caporaso, J. G., Handelsman, J., Knight, R., Fierer, N., and Gilbert, J. A. (2014). Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio, 5(4):e01371\{e01314.

[^0]:

[^1]: (--alpha-measures)

[^2]: (--ordination-method)

