

D- Training on Galaxy: Metabarcoding December 2021 - Webinar

FROGS Practice on ITS data

🖇 🖸 Bioinfo

LUCAS AUER, MARIA BERNARD, LAURENT CAUQUIL, MAHENDRA MARIADASSOU, GÉRALDINE PASCAL & OLIVIER RUÉ

micipile

Gigenae GenPhySE MaiAGE GABI

What is a ITS ? Map of nuclear ribosomal RNA genes and their ITS regions. ITS3_KYO2 ITS1-F KYO2 Small SU Large SU ITS1-F_KYO1 ITS3_KYO1 18S rRna 25S rRna ITS1-F 58A2F 58A18 S. cerevisiae LSU S. cerevisiae SSU 5.8S LSU SSU 18S ITS1 ITS2 NLC2 ITS2 ITS4-B NL6Amun LR3 region region NL6Bmun ITS8mun NL4B 58A2R NL3B ITS4 KYO1 ITS10mun ITS4_KYO2 ITS2_KYO1 ITS4_KYO3 ITS2_KYO2

Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLOS ONE 7(7): e40863. https://doi.org/10.1371/journal.pone.0040863

Secondary Structures of rRNAs from All Three Domains of Life

Anton S. Petrov, Chad R. Bernier, Burak Gulen, Chris C. Waterbury, Eli Hershkovits, Chiaolong Hsiao, Stephen C. Harvey, Nicholas V. Hud, George E. Fox, Roger M. Wartell, Loren Dean Williams February 5, 2014 https://doi.org/10.1371/journal.pone.0088222

S. cerevisiae

What is a ITS ?

- Size polymorphism of ITS (from 361 to 1475 bases in UNITE 7.1)
- Highly conserved regions of the neighboring of ITS1 and ITS2
- Lack of a generalist and abundant ITS databank (several small specialized databanks)
- Multiple copies^{*} (14 to 1400 copies (mean at 113, median et 80))
- Do not target Glomeromycetes/Glomeromycota (\rightarrow alternative: 18S)

If your sequencing platform preprocesses your data, it has to keep short and long sequences

https://doi.org/10.1111/mec.14995

ITS data form METABARFOOD project metaprogramme MEM

Yeast catalog in food ecosystem

Number of yeast species reported at least twice in each ecosystem and their dissimilarity between ecosystems, as measured by the Whittaker distance

The universal fungal barcode, the Internal Transcribed Spacer (ITS) region, displays considerable size variation amongst yeasts and other micro-eukaryotes.

There are also several repeats leading to sequencing errors or termination.

Minimal pipeline for ITS amplicon analyses

Problematic: some ITS reads (Miseq sequencing) are non-overlapping sequences

Consequence: during bioinformatics process, these reads are lost and underlying organisms will be never represented in the abundance table.

Solution: in preprocess step – creation of "FROGS combined" sequences

Imagine a real amplicon sequence of 700bp	700bp
Imagine a Miseq paired sequencing of 2x250bp R1 : 250bp	
	R2 : 250bp
Reconstructing amplicon sequence is not possible named « FROGS combined »	with overlap, an arbitrary sequence of 100Ns is added. It is

Pre-process tool

.

Sequencer

Illumina

Select the sequencing technology used to produce the sequences.

Input type

Archive

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Archive file

	ආ		5: /work/formation/FROGS/ITS.tar.gz
The t	ar file	conta	ining the sequences file(s) for each sample.

Reads already merged ?

No

250

The archive contains 1 file by sample : R1 and R2 are already merged by pair.

Reads 1 size

The maximum read1 size.

Reads 2 size

250

The maximum read2 size.

mismatch rate.

0.1

The maximum rate of mismatch in the overlap region

Merge software

Vsearch

Yes No

Select the software to merge paired-end reads.

Would you like to keep unmerged reads?

To keep FROGS combined sequences, choose YES

No : Unmerged reads will be excluded; Yes : unmerged reads will be artificially combined with 100 N. (default No)

Minimum amplicon size

50

The minimum size for the amplicons (with primers).

Maximum amplicon size

490

The maximum size for the amplicons (with primers).

Sequencing protocol

Illumina standard

The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.

5' primer

CTTGGTCATTTAGAGGAAGTAA

The 5' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'.

3' primer

GCATCGATGAAGAACGCAGC

The 3' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'.

Execute

Primer 5': CTTGGTCATTTAGAGGAAGTAA Primer 3': GCATCGATGAAGAACGCAGC

-

Exercise

ITS

Go to « ITS » history

Launch the pre-process tool on this data set

 \rightarrow objective: understand preprocess report and « FROGS combined sequences »

Explore Preprocess report.html

Details on merged sequences

2 tables:

Show	v 10 ¢ entries					Search:	▲ CSV
	Samples 1	% kept ↑↓	paired-end assembled $\uparrow\downarrow$	with 5' primer $\uparrow\downarrow$	with 3' primer $\uparrow\downarrow$	with expected length $~^{\uparrow\downarrow}$	without N 1
	complexe-ADN-1	91.09	54,121	49,322	49,303	49,303	49,299
	echantillon1-1	84.93	31,836	27,059	27,040	27,040	27,039
	echantillon1-2	94.73	54,774	51,938	51,895	51,895	51,890
	echantillon1-3	74.90	81,611	61,197	61,135	61,134	61,128
	echantillon2-1	90.17	51,984	46,886	46,875	46,874	46,873

Details on artificial combined sequences

Show 10 \$ entries Search:								
Samples 1	% kept î↓	paired-end assembled 1	with 5' primer 斗	with 3' primer 1	with expected length			
complexe-ADN-1	72.45	2,163	1,797	1,567	1,567	1,567		
echantillon1-1	57.31	1,047	745	600	600	600		
echantillon1-2	63.86	1,392	1,076	890	890	889		
echantillon1-3	50.58	2,491	1,601	1,260	1,260	1,260		
echantillon2-1	51.30	1,421	950	729	729	729		

Own tag for combined sequences

>Cluster_20410 1:N:0:ATATAA
AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGAT(
>Cluster_2881 1:N:0:ATATAA
AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGAT(
>Cluster_10465 1:N:0:ATTACA
AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGAT(
>Cluster_2714_FROGS_combined R1_desc:1:N:0
AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGAT(
>Cluster_6993_FROGS_combined R1_desc:1:N:0
AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGAT(
>Cluster_2580_FROGS_combined R1_desc:1:N:0
AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGAT(

Filter only on <u>minimum</u> length for « combined ».

Minimum length = R1 + 100N + R2 – primers sizes

If the primers are very internal to the read, after trimming them, the combined sequence could be smaller than a read. FROGS rejects these cases.

FROGS "combined" sequences are **artificial** and present particular features especially on size.

Imagine a MiSeq sequencing of 2x250pb with reads impossible to overlap. So FROGS "combined" length = 600 bp.

Case 1: real amplicon \ge 601 bp \Rightarrow "FROGS combined" length is smaller than the reality 700bp

-NNNNNNNNNNNNNNNNNN

Case 2: real amplicon = 600 bp → "FROGS combined" length is equal to the reality 600bp

----NNNNNNNNNNNNNNNNNNNN

Case 3: real amplicon \ge 500 and \le 599 \Rightarrow "FROGS combined" length is greater than the reality 500bp

Case 4 : real amplicon \ge 491 and \le 499 \Rightarrow FROGS combined length is greater than the reality and duplicate small sequences (between 1 and 9 bp flanking the 100 Ns added).

493bp

OVERLAPNNNNNNNNNNNNNNNNNNNNNNN

ITSx tools

What is the purpose of the ITSx tool?

- ITSx is a tool to filter sequences.
- ITSx identifies and trimms ITS regions in sequences.
- It excludes the highly conserved neighboring sequences SSU, 5S and LSU rRNA.
- If the ITS1 or ITS2 region is not detected, the sequence is discarded.
- You can choose to check only if the sequence is detected as an ITS.
 In this case, the sequence is not trimmed, only sequences not detected as ITS are rejected (*e.g.* contaminants).

Bengtsson-Palme, J., et al. (2013), Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol, 4: 914-919. https://doi.org/10.1111/2041-210X.12073

What is the purpose of the ITSx tool?

1st case: choose to trim ITS1 is well detected SSU part and 5.8S part are trimmed Result: 2nd case: choose to check only ITS1 is well detected SSU part and 5.8S part are not trimmed Result:

Check only if sequence is detected as ITS? Yes or not?

- If not, only ITS1 or ITS2 part will be conserved
- This is interesting to keep only the ITS parts without the flanking sequences in case of :
 - comparison of sequenced amplicons with different primers targeting the same region to be amplified.
 - using a database with only ITS part

When should we use ITSx ?

- The ITSx step is time consuming and has to be done on clusters. We advise our users to apply ITSx in 5th step:
- 1. Preprocess step,
- 2. Clustering step,
- 3. Chimera removing step,
- 4. Filter on OTUs abundances and replicats step,
- 5. ITSx if Fungi ITS amplicons.

ITS Affiliation

- 2 alignment tools blastn+ or needleall are used to find alignments between each OTU and the database.
- Only the bests hits with the same score are reported.
- blastn+ is used for classical merged read pair, and blastn+ then needleall are used for artificially combined sequence.
- For each alignment, several metrics are computed: %identity, %coverage and alignment length.

blastn+ i.e. a local aligner, is not usable for "combined" sequences

Between combined and the database sequence, alignment is perfect until N stretch with blastn+. Information about the 2nd part of sequence are not explored !

It is necessary to use a <u>global</u> aligner *i.e.* Needleall (the sequence must be aligned in its entirety), but it is computationally too hard.

(/	NNNNNNNNNNNN	FROGS combined	d sequence
				database sequence
I	·		/	

Solution:

1st step treat classical merged sequences with blastn+

 2nd step for FROGS combined sequences: use blastn+ to create a small databank and align with needleall this small databank versus FROGS combined sequences

Careful, with "combined" sequences, we introduced some modification on identity percentage

Case 1: a sequencing of overlapping sequences *i.e.* 16S V3-V4 amplicon MiSeq sequencing

Imagine a real amplicon sequence of 400bp

400bp

Reconstructing amplicon sequence is a merged sequence (length : 400bp, with 100bp overlap)

Affiliation is notably made by a local alignment with NCBI Blast+

Imagine a perfect sequencing without error:

classical %id = number of matches / alignment length = 400 matches / 400 positions = 100% identity

Case2: a sequencing of non-overlapping sequences case of ITS1 amplicon MiSeq sequencing

Imagine a real amplicon sequence of 700bp

700bp

Reconstructing a FROGS combined sequence (length : 600bp, with 100Ns)

Affiliation could not be made by a local alignment but with a global alignment with Emboss needleall

·····

Imagine a perfect sequencing without error: classical %id = number of matches / alignment length = (250+250 matches) / 700 positions = 71%

Case2: a sequencing of non-overlapping sequences case of ITS1 amplicon MiSeq sequencing

Filtering on %id will systematically removed "FROGS combined" OTUs. So, we replaced the classical %id by a %id computed on the sequenced bases only.

% sequenced bases identity = number of matches / (seed length – artificial added N)

Case 1 : 16S V3V4 → overlapped sequence

% sequenced bases identity = 400 matches / 400 bp = **100** %

Case 2 : very large ITS1 → "FROGS combined" shorter than the real sequence % sequenced bases identity = (250 + 250) / (600 - 100) = **100%**

This calculation allows the 100% identity score to be returned on FROGS "combined" shorter or longer than reality in case of perfect sequencing. And returns a lower percentage of identity in the case of repeated small overlaps kept in the FROGS "combined".

Affiliation Post-process

What is the purpose of the Affiliation post-process tool ?

This tool allows **grouping OTUs together** in accordance with the %id and %cov chosen by the user and according to the following criteria:

1. They must have the same affiliation

Or

2. If they have "multi-affiliation" tag in FROGS taxonomy, they must have in common in their list of possible affiliations at least one identical affiliation.

What is the purpose of the *Affiliation* post-process tool ?

In consequence:

The different affiliations involved in multi-affiliation are merged.

The abundances are added together.

It is the most abundant OTU seed that is kept.

Sequences	file	
D 2	23: FROGS ITSx: itsx.fasta	•
he sequenc	e file to filter (format: fasta).	
Abundance	file	-
D 2	24: FROGS ITSx: itsx.biom	•
The abundar	nce file to filter (format: BIOM).	
(s this an a Yes No	Yes, we have combined sequences	
Yes No Yes No Multi-affiliati our targetto Using ref UNITE_8. Select refe	Implicen hyper variable in length? Yes, we have combined sequences In tag may be resolved by selecting the shortest amplicon reference. For the amplicon erence database 2 ITS1 same database used for affiliation erence from the list	is you need the reference fasta file of
Yes No Yes No Multi-affiliati your targette Using ref UNITE_8. Select refe minimum io 100	Implicen hyper variable in length? Yes, we have combined sequences Item to be resolved by selecting the shortest amplicon reference. For the amplicon erence database 2 ITS1 same database used for affiliation erence from the list	Is you need the reference fasta file of
Yes No Yes No Multi-affiliati your targette Using ref UNITE_8. Select refe minimum ie 100 DTUs will be	Implicen hyper variable in length? Yes, we have combined sequences Item to be resolved by selecting the shortest amplicon reference. For the damplicon erence database 2 ITS1 same database used for affiliation erence from the list dentity for aggregated if they share the same taxonomy with at least X% identity.	Here, we wanted to
Yes No Yes No Multi-affiliati your targette Using ref UNITE_8. Select refe minimum id 100 DTUs will be minimum c	Implicen hyper variable in length? Yes, we have combined sequences In tag may be resolved by selecting the shortest amplicon reference. For the amplicon erence database 2 ITS1 same database used for affiliation erence from the list dentity for aggregation aggregated if they share the same taxonomy with at least X% identity. overage for aggregation	Here, we wanted to aggregate OTUs only if

FROGS

Exemple

After Preprocessing + Clustering + OTU Filter:

>Cluster_3 AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAGTGATTGCCTTTATAGGCTTATAACTATATCCACTTACACCTGTGAACTGTTCTACTACTTGACGCAAGTCGAGT ATTTTTACAAACAATGTGTAATGAACGTCGTTTTATTATAACAAAATAAAACTTTCAACAACGGATCTCTTGGCTCTC

>Cluster_54

AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAGTGATTGCCTTTATAGGCTTATAACTATATCCACTTACACCTGTGAACTGTTCTACTACTACTGACGCAAGTCGAGT ATTTTTACAAACAATGTGTAATGAACGTCGTTTTATTATAACAAAATAAAACTTTCAACAACGGATCTCTTGGTTCCG

>Cluster_414_FROGS_combined

Exemple

After Preprocessing + Clustering + OTU Filter + **ITSX** :

These 3 sequences have become strictly identical !

Exemple

After Preprocessing + Clustering + OTU Filter + ITSX + Affiliation Post-process :

Cluster_3, Cluster_54 and Cluster_414_FROGS_combined are aggregated in a same OTU

FROGS Affiliation postprocess: aggregation composition.txt

Cluster_1 Cluster_244 Cluster_448_FROGS_combined Cluster_471_FROGS_combined

Cluster_2 Cluster_320 Cluster_357 Cluster_435 Cluster_468 Cluster_312 Cluster_364 Cluster_477 Cluster_466 Cluster_480

Cluster_3 Cluster_54 Cluster_414_FROGS_combined

Cluster_4 Cluster_15 Cluster_27 Cluster_42 Cluster_67 Cluster_77 Cluster_137 Cluster_209 Cluster_422

Cluster_5 Cluster_5171

Cluster_6 Cluster_53

Cluster_9 Cluster_71

Cluster_7

Workflow creation

		<pre></pre>	st	FROGS Clusters X		✓ FROGS Clusters ★ stat		1	FROGS Clusters X		<pre></pre>
		Abundance file summary_file (html) 🔹 🖓) A SI	bundance file ummary_file (html) 🔹 📀		Abundance file summary_file (html) *		A	ummary_file (html) 🔹 🛇		Abundance file summary_file (html) 🔹 🖓
FROGS Clustering swarm X		FROGS Remove chimera X		FROGS OTU Filters X		FROGS ITSx	×		✓ FROGS Affiliation X OTU		<pre></pre>
FROGS Pre-process Sequences file Archive file Count file	A P	Abundance file	Ð	Abundance file	S.	Abundance file		¥-	OTU seed sequence Abundance file	S	 Abundance file Sequences file
dereplicated_file (fasta) seed_file (fasta) count_file (tabular) abundance biom (biom1)	ÿ	out_abundance_biom (biom1)	ý	output_fasta (fasta) 000	Ø	out_excluded (fasta) out_fasta (fasta)	30	<u> </u>	biom_affiliation (biom1)) summary (html) 🛊 🔇)	tsv_file (tabular) 🔹 🛛
summary_file (html) * swarms_composition (tabular)		out_abundance_count (tabular) summary_file (html)		output_excluded (tabular) output_summary (html)# 2		out_abundance_biom (biom1) summary_file (html)	• 0 • 0				

Workflow are useful for routine analyses

A workflow links FROGS steps together and when it is launched, all the steps run automatically.

Practice

CREATE YOUR OWN WORKFLOW !

Exercise	1			
- Galaxy Sigenae - Welcome gpascal / Your workflows	Analyze Data Workflow Shared Data Visualization -	Help▼ User▼	Create new workflow	Using 18.3 GB
Name		#	of Steps	
formation workflow -		9		
demoNEM2015 workflow 🗸		9		
FROGS_v1.0_06_05_2015 -		1	0	

Workflows shared with you by others

No workflows have been shared with you.

Other options

Configure your workflow menu

Exercise

Exercise

Configure your workflow menu

Your workflows

Solution of exercise:

FROGS Pre-process X	FROGS Clustering swarm
Archive file) Sequences file
dereplicated_file (fasta) 🗆 🥪	Ocount file
count_file (tabular)	seed_file (fasta) 🛛 🔾 🕻
summary_file (html) 🛛 💿	abundance_biom (biom1) 🛛 🛛 🕻 🕻
	swarms_composition (tabular) 🗆 💁

1. Fixe parameter ?

FROGS Clustering swarm Step 2 in metagenomics analysis : clustering. (Galaxy Version 2.3.0)

Sequences file

Data input 'sequence_file' (fasta) The sequences file (format: fasta).

Count file

Data input 'count_file' (tabular) It contains the count by sample for each sequence (format: TSV).

Aggregation distance

Set at Runtime

?

Maximum number of differences between sequences in each aggregation step.

Performe denoising clustering step?

Yes No

If checked, clustering will be perform in two steps, first with

Tags

This action will set tags for the dataset.

- 1. Fixe parameter ?
- 2. Rename output files
- 3. Hide intermediate files

11: FROGS Remove chimera: report.html	• / %
10: FROGS Remove chimera: non chimera abundance.biom	• / %
<u>9: FROGS Remove chimera:</u> non_chimera.fasta	• / %

- 1. Fixe parameter ?
- 2. Rename output files
- 3. Hide intermediate files

- 1. Fixe parameter ?
- 2. Rename output files
- 3. Hide intermediate files

Could you integrate « upload file » in the workflow ?

Could you integrate « upload file » in the workflow ?

Upload file cannot be automitized because the workflow, at each run, will be processed with different input data

Could you integrate « Normalisation tool » in the workflow ?

Could you integrate « Normalisation tool » in the workflow ?

You need to know by which number you will normalize data and this maximal number is known during the process, you need to enter in a clusterStat_report.html after OTU filter step.

Exercise

When your workflow is built

- 1. Run your own workflow with ITS data with : http://genoweb.toulouse.inra.fr/~formation/15 FROGS/Webinar data/ITS1.tar.gz
- 2. Import metadata for statistics analyses

http://genoweb.toulouse.inra.fr/~formation/15 FROGS/Webinar data/metadata ITS.tsv

3. Run FROGS_stat tools