

Vincent DARBOT Maria BERNARD

D Olivier Rué

Lucas AUER Laurent CAUQUIL

Patrice Déhais

Developers

Biology experts

Galaxy support

Mahendra Mariadassou

Géraldine Pascal

FROGS articles

Frédéric Escudié, Lucas Auer, Maria Bernard, Mahendra Mariadassou, Laurent Cauquil, Katia Vidal, Sarah Maman, Guillermina Hernandez-Raquet, Sylvie Combes, Géraldine Pascal.

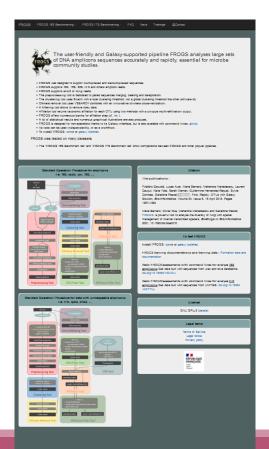
"<u>FROGS</u>: Find, Rapidly, OTUs with Galaxy Solution." *Bioinformatics,* , Volume 34, Issue 8, 15 April 2018, Pages 1287–1294

Maria Bernard, Olivier Rué, Mahendra Mariadassou and Géraldine Pascal; <u>FROGS</u>: a powerful tool to analyse the diversity of fungi with special management of internal transcribed spacers, *Briefings in Bioinformatics* 2021, 10.1093/bib/bbab318


Original Page Sequence analysis FROGS: Find, Rapidly, OTUs with Galaxy Solution Frédéric Escudié^{1,†}, Lucas Auer^{2,†}, Maria Bernard³, Mahendra Mariadassou⁴, Laurent Cauguil⁵, Katia Vidal⁵, Sarah Maman⁵, Guillermina Hernandez-Raquet⁶, Sylvie Combes⁵ and Géraldine Pascal^{5,*} s platform Toulouse Midi-Pyrenees, MIAT, INRA Auzeville CS 52627 31326 Castanet Tolosan ced France ²INRA, UMR 1136, Université de Lorraine, INRA, Nancy 54280, Champenoux, France ³GARI, INRA AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France, ⁴MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France, ⁵GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France and ⁶Laboratoire d'ingénierie des Systèmes Biologiques et des Procédés-USBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France ¹The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors Associate Editor: Bonnie Berger Received on May 10, 2017; revised on December 1, 2017; editorial decision on December 4, 2017; accented on December 5, 201 Abstrac Motivation: Metagenomics leads to major advances in microbial ecology and biologists need use friendly tools to analyze their data on their own Results: This Galaxy-supported pipeline, called FROGS, is designed to analyze large sets of ampl con sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their taxonomic affiliation. The clustering uses Swarm. The HORE VSFARCH with original cross-sample validation. The affiliation output to highlight databases confl ous graphical illustrations are produced along for the detection and quantification of OTUs Briefings in Bioinformatics, 22(6), 2021, 1-6 robust and highly sensitive. It compares fa https://doi.org/10.1093/bib/bb Problem Solving Protocol Availability and imp on: Source or geraldinepascal/FROGS.git. A companion we ontact: geraldine.pascal@inra.fr antary information: Suppl FROGS: a powerful tool to analyse the diversity of The expansion of high-throughput sequencing of rRN has opened new horizons for the study of microbial of By making it possible to study all micro-organisms f fungi with special management of internal transcribed environment without the need to cultivate them, meta led to major advances in many fields of microbial eco study of the impact of microbiota on human and anir spacers OThe Author(s) 2017. Published by Oxford University Press, Al Maria Bernard®†, Olivier Rué†, Mahendra Mariadassou® and Géraldine Pascal orresponding author: Geraldine Pascal, GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France. Tel.: +33 (0)5 61 28 51 05; -mail: geraldine pascal@inrae.fr [†]Maria Bernard and Olivier Rué are joint first author Abstrac Fungi are present in all environments. They fulfil important ecological functions and play a crucial role in the food industry Their accurate characterization is thus indispensable, particularly through metabarcoding. The most frequently used markers to monitor fungi are ITSs. These markers are the best documented in public databases but have one main reakness: polymerase chain reaction amplification may produce non-overlapping reads in a significant fraction of the fungi. When these reads are filtered out, traditional metabarcoding pipelines lose part of the information and consequent produce biased pictures of the composition and structure of the environment under study. We developed a solution that enables processing of the entire set of reads including both overlapping and non-overlapping, thus providing a more accurate picture of fungal communities. Our comparative tests using simulated and real data demonstrated the effectiveness of our solution, which can be used by both experts and non-specialists on a command line or through the Galaxy-based web interface Key words: fungi: ITS: metabarcoding: workflow: amplicon: metagenomic: Introduction for bacteria. The best candidates are internal transcribe Using amplicon sequencing to describe the microbial composi-(ITS), but these are more difficult to manipulate. The main comparing amplicon sequencing to use saving and cost-effective strat-egy and can be used even for very large-scale surveys [1]. Most problem with ITS is size polymorphism, with a size range of 361-1475 bases in UNITE 7.1 [3] (unlike 16S where 95% of the studies currently focus on the bacterial fraction of microbial sequences have a length between 1205 and 1556 bases). Most studies describing ITS data analyses process either (i) paired ommunities but the fungal fraction is equally important, as fungi are ubiquitous and provide several ecosystem services [2]. end reads but filter out non-overlapping, non-mergeable reads. Unfortunately, studying the fungal fraction using metabarcoding has its own challenges. Indeed, in fungi, there is no equivalent thus systematically discarding taxa with longer ITS, or (ii) single end reads, thus limiting taxonomic resolution and losing the of the 16S rRNA gene, which is widely used and highly suitable benefit of information contained in longer sequences [4, 5] Maria Bernard is a bioinformatics engineer. She is a member of a platform team conducting NGS sequence analysis and designing software. She specialize in workflow development in particular for metabarcoding analysis.

doi: 10.1093/bioinformatics/btx791 Publication Date: 7 December 2017

Officient was transformed as the producer of producer and an analysis of metabarrooding analysis at the Migale bioinformatic engineer. He is in charge of data analysis at the Migale bioinformatics facility. He specializes in the analysis of metabarrooding and metabarrooding the specializes of the

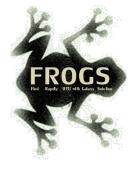

Mahedra Mariadason has a PhD in statistics. It is is involved in the development of new statistical methods and tools for methatoroding analysis. Genkline Iseaach has a PhD in bioinformatics and conditions the PiOCD project. She is currently involved in designing solutions for long read problems, workflow development and metagenomics analysis. Submitted: 53, year] 2022. Received (in revised form; 15 9)/9 /2021

@ The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.c

FROGS'docs

Website: <u>http://frogs.toulouse.inrae.fr</u>

All scripts on Github:


https://github.com/geraldinepascal/FROGS.git

Available on : OANACONDA. ORG

🚍 Galaxy Tool Shed

https://anaconda.org/bioconda/frogs

https://toolshed.g2.bx.psu.edu/view/frogs/frogs/834843ebe5 <u>69</u>

To contact

frogs-support@inrae.fr

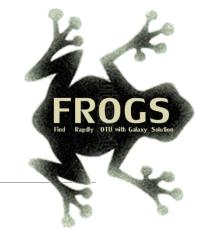
Newsletter – subscription request:

frogs-support@inrae.fr

October 2022 - FROGS News

- FROGS v4.0.1 is available
 - What has changed since the last version?
 - Tools added, Modified tools: Normalisation tool; OTU_filte
- New documentations for using FROGS v4.0.1
- New databases are available
- You need help to use FROGS, you are looking for training
- Who uses FROGS?

June 2021 - FROGS News



- FROGS v3.2 is available
- What has changed since the last version?
- New documentations for using FROGS v3.2 on Galaxy
- A redesigned website
- Convincing results on ITS data processing
- A new SOP dedicated to ITS
- New databases are available
- You need help to use FROGS, you are looking for training

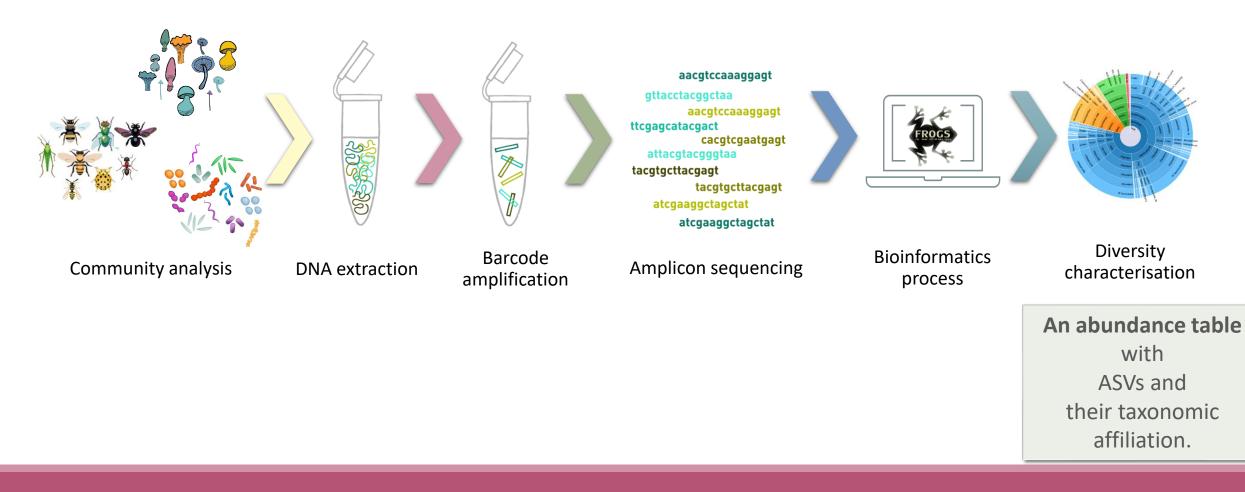
April 2019 - FROGS News

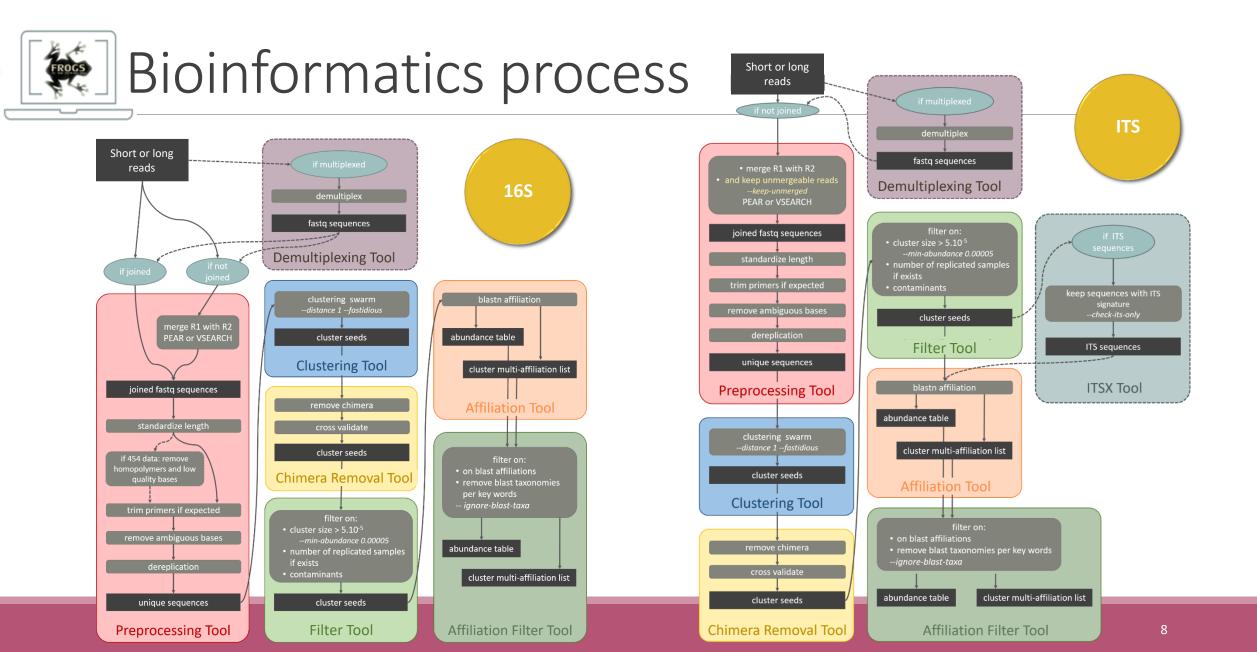
- FROGS v3.1 is available
- What has changed since they. 3.0?

B- Training on Galaxy: Metabarcoding April 2023 - Webinar

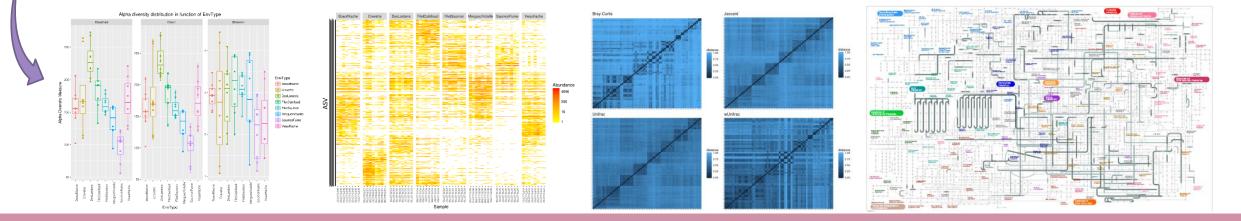
FROGS Practice on 16S data

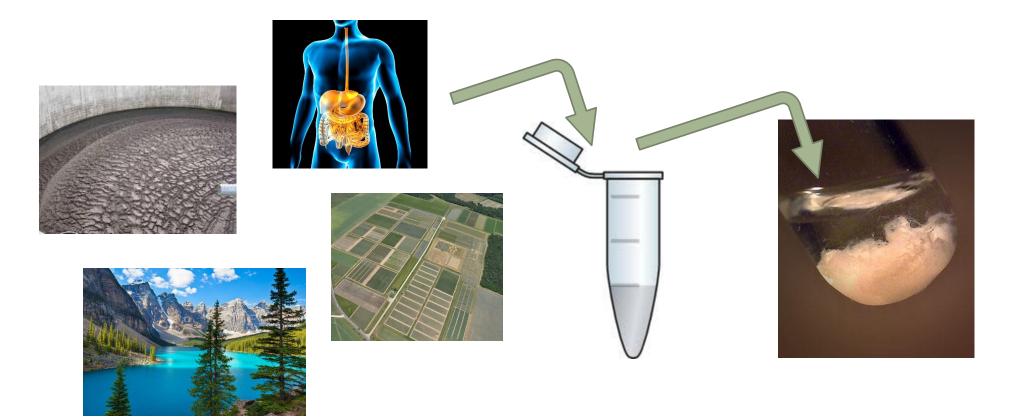
Bioinfo

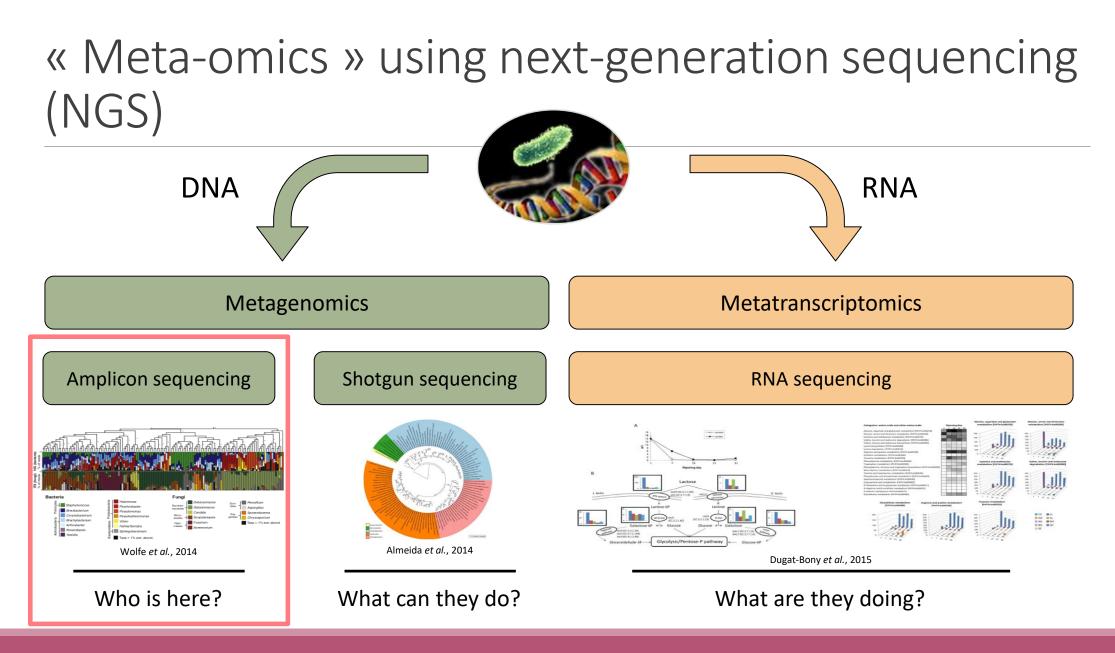

LUCAS AUER, MARIA BERNARD, LAURENT CAUQUIL, MAHENDRA MARIADASSOU, GÉRALDINE PASCAL & OLIVIER RUÉ


GAB mysice

*i*NTERACTION


Objectives


Objectives: a count table for statistics analysis


		Affiliation	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
	ASV1	Species A	0	100	0	45	75	18645
	ASV2	Species B	741	0	456	4421	1255	23
	ASV3	Species C	12786	45	3	0	0	0
	ASV4	Species D	127	4534	80	456	756	108
	ASV5	Species E	8766	7578	56	0	0	200

Material

Sample collection and DNA extraction

Story of barcoding

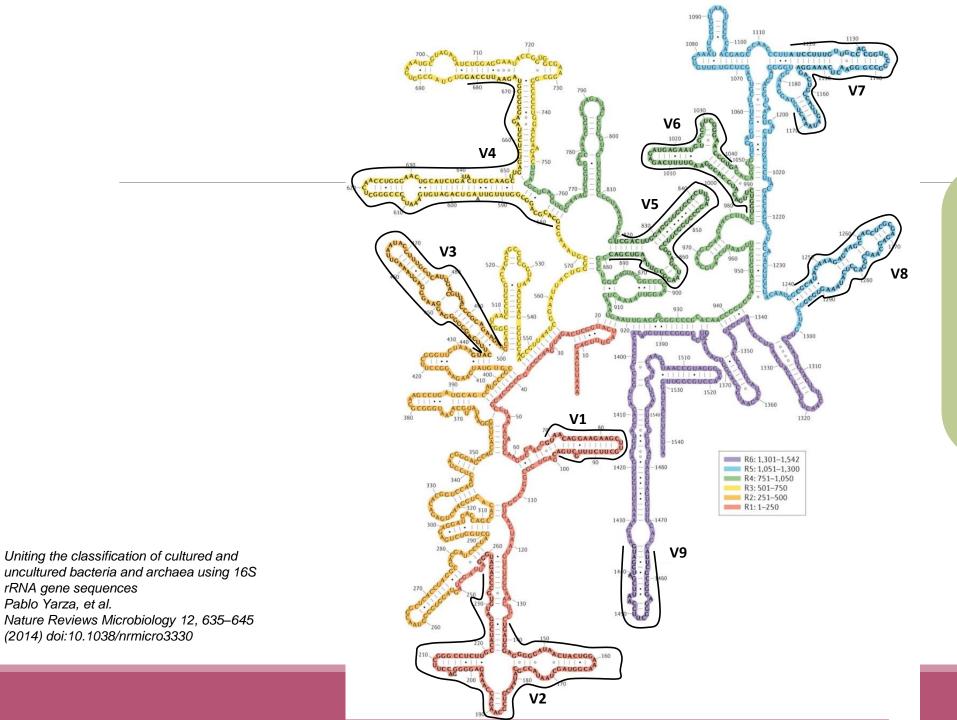
- Early 2000's: beginning of barcoding
- 1st DNA barcode: 65 bases of the mitochondrial gene of Cytochrome Oxidase I (COI) dedicated to the identification of vertebrates
- 2007: 1st international published database
- 2009: chloroplastic markers RBCL (Ribulose Biphosphate Carboxylase; 553 pairs of bases) and MATK (MATurase K; 879 pairs of bases) -> standard markers for plants
- 2012: ITS, standard marker of fungi (length between 361–1475 bases in UNITE 7.1)
- 16S marker, mainly used for bacteria but no designated standard.

Which barcode ?

Microbial lineages vary in their genomic contents, which suggests that different genes might be needed to resolve the diversity within certain taxonomic groups.

- 16S rRNA
- 23S rRNA,
- DNA gyrase subunit B (gyrB),
- RNA polymerase subunit B (rpoB),
- TU elongation factor (tuf),
- DNA recombinase protein (recA),
- protein synthesis elongation factor-G (fusA),
- dinitrogenase protein subunit D (nifD),
- Internal Transcribed Spacer (ITS) for Fungi.

The gene encoding the small subunit of the ribosomal RNA

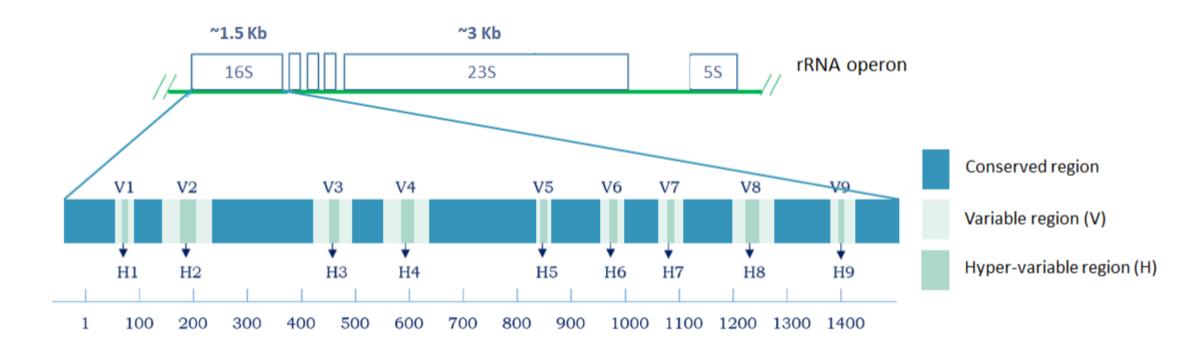

The most widely used gene in **molecular phylogenetic** studies

Ubiquist gene : 16S rDNA in prokaryotes ; 18S rDNA in eukaryotes

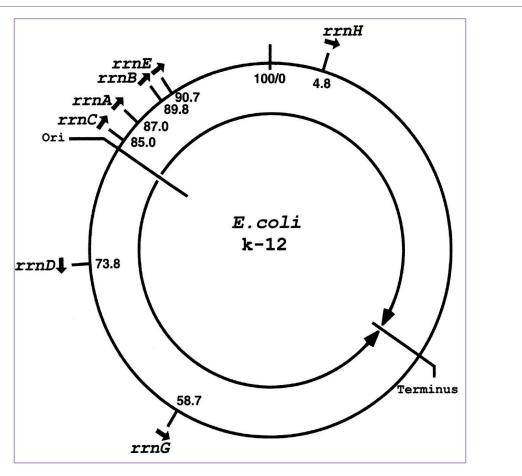
Gene encoding a ribosomal RNA : non-coding RNA (not translated), part of the small subunit of the ribosome which is responsible for the translation of mRNA in proteins

Not submitted to lateral gene transfer

Availability of databases facilitating comparison (Silva v138.1 - 2021: available SSU/LSU sequences to over **10,700,000**)



Secondary structure of the 16S rRNA of


Escherichia coli

In red, fragment R1 including regions V1 and V2; in orange, fragment R2 including region V3; in yellow, fragment R3 including region V4; in green, fragment R4 including regions V5 and V6; in blue, fragment R5 including regions V7 and V8; and in purple, fragment R6 including region V9.

16S rRNA structure

16S rRNA copy number

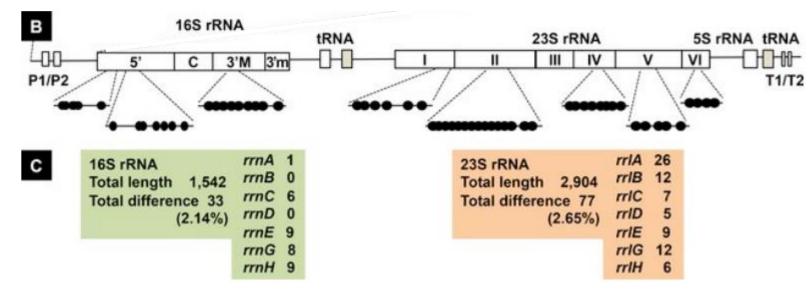
COMMUNITARY / FREE ACCESS Engineering of bacterial ribosomes: Replacement of all seven *Escherichia coli* rRNA operons by a single plasmid-encoded operon Maavaa Norma Authors 100 & Affiliators

March 2, 1999 96 (5) 1820-1822 https://doi.org/10.1073/pnas.96.5.1820

16S rRNA copy number

MINI REVIEW article Front. Microbiol., 08 June 2018 | https://doi.org/10.3389/tmicb.2016

Multiple Ribosomal RNA Operons in Bacteria; Their Concerted Evolution and Potential Consequences on the Rate of Evolution of Their 16S rRNA


Romitio T. Espejo" and III Nicolas Plaza¹⁴ ¹institute of Numicon and Food Technology, Universities de Chile. Santiago, Chile ¹Centro de Investicion Bomédica: Resistuda de Cinicas de la Salut, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile. Santiago, Chi

Median of the number of *16S rRNA* copies in 3,070 bacterial species according to data reported in *rrn*DB database – 2018 https://rrndb.umms.med.umich.edu/search/

2022:

<u>Bacillus megaterium</u> entre 1 à 21 copies selon les souches (médiane à 13) <u>Photobacterium damselae</u> entre 15 et 21 copie selon les souches (médiane à 17)

16S rRNA copy variation

E. coli

[B] The positions of sequence variation within 16S and 23S rRNA are shown along the gene organization of rrn operons. A total of 33 and 77 differences were identified in 16S rRNA and 23S rRNA, respectively.

[C] The number of bases that are different from the conserved sequence are shown for 16S and 23S rRNA for each rrn operon.

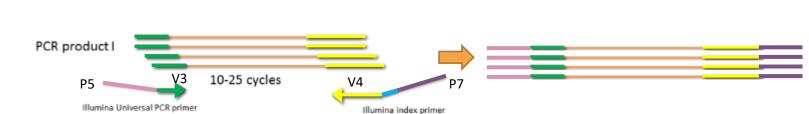
PLOS ONE

RESEARCH ARTICLE

Strength and Regulation of Seven rRNA Promoters in *Escherichia coli*

Michihisa Maeda¹, Tomohiro Shimada^{2,3}, Akira Ishihama³*

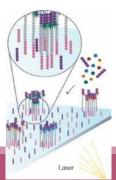
1 Meiji University, Faculty of Agriculture Chemistry, Kawasaki, Kanagawa 214–8571, Japan, 2 Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuda, Yekohama 226–8503, Japan, 3 Research Center for Micro-Nano Technology, Hosei University, Kogamis, Tokyo 184–8584, Japan

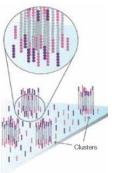

Sequencing produces marker reads

Steps for Illumina sequencing

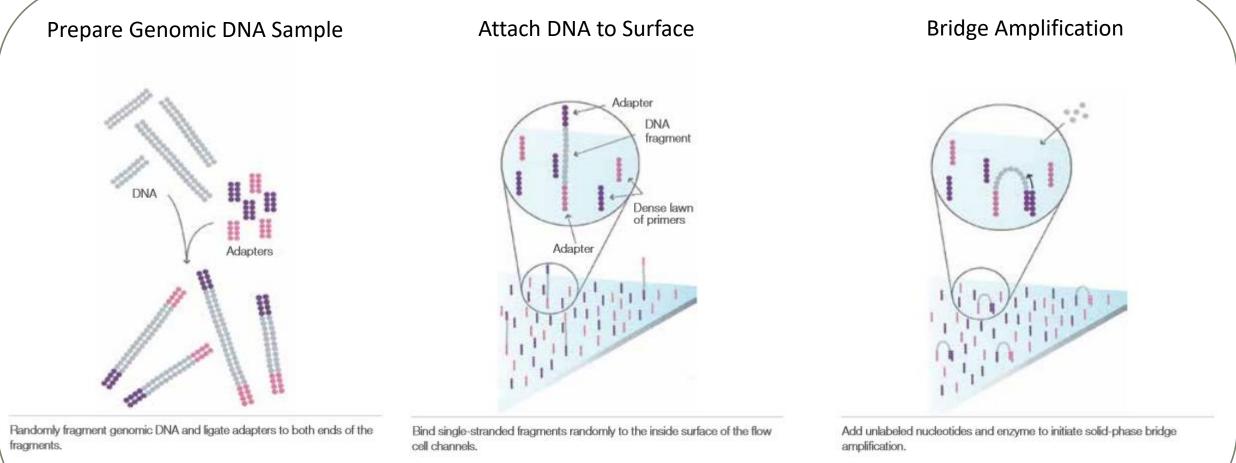
chromosome

primer forward

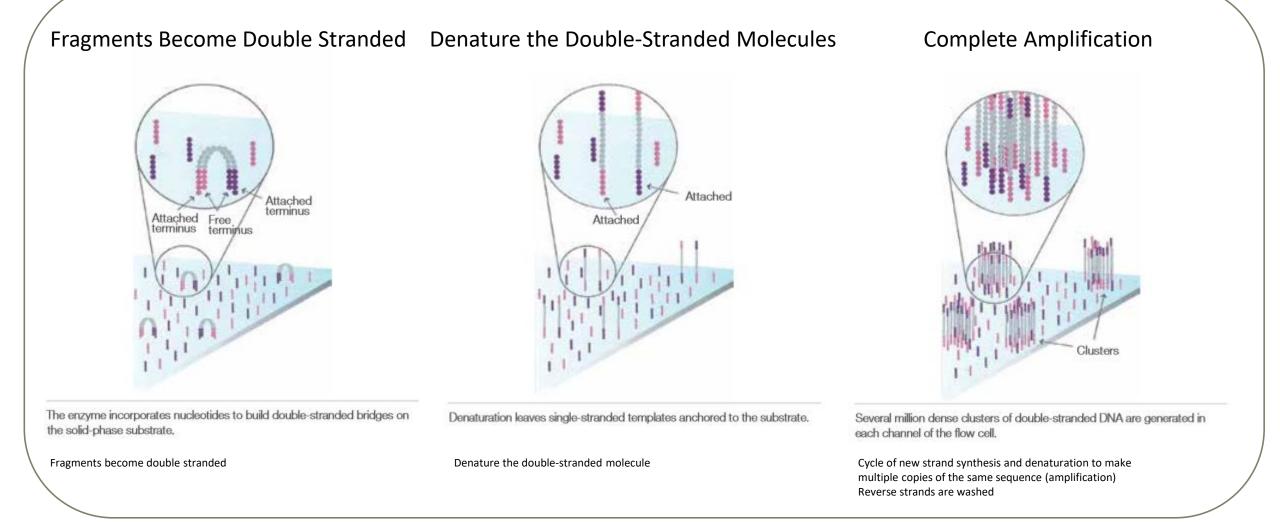

- 1st step : one PCR
- 2nd step: one PCR

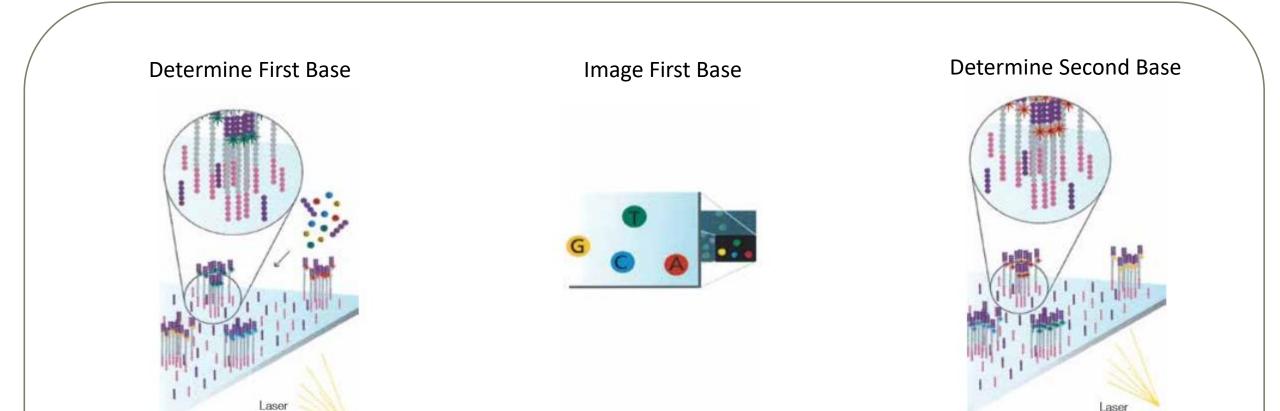


Primer reverse


3rd step: on flow cell, the cluster generations

4th step: sequencing


Cluster generation


Attach DNA to surface

Bridge amplification

Cluster generation

Sequencing by synthesis

The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

Light signal is more strong in cluster

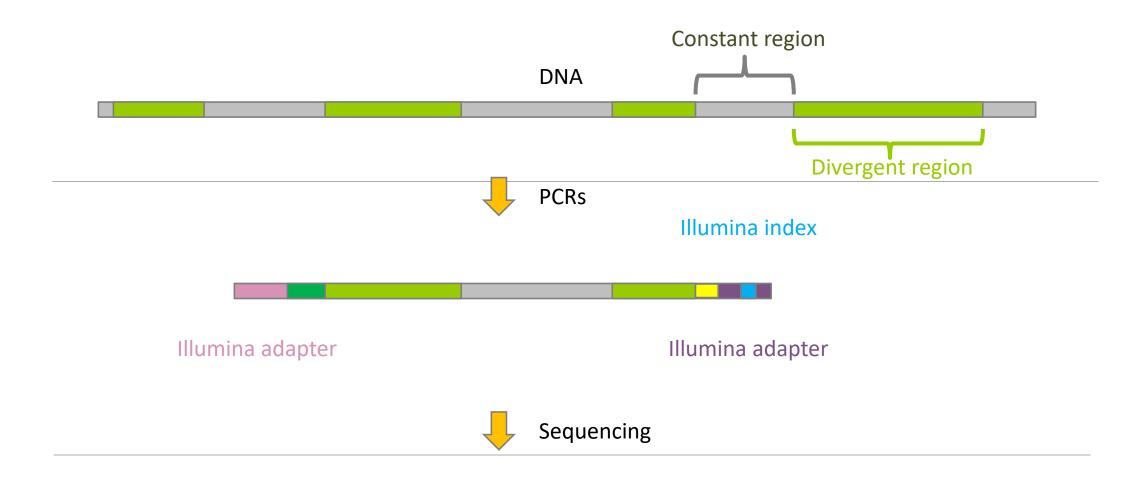
After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified. The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

Sequencing by synthesis

Image Second Chemistry Cycle Sequencing Over Multiple Chemistry Cycles → GCTGA...

After laser excitation, the image is captured as before, and the identity of the second base is recorded.

The sequencing cycles are repeated to determine the sequence of bases in a fragment, one base at a time.


Barcode is read, so cluster is identified.


After first sequencing (250 or 300 nt of Reverse strand), fragment form bridges again and Forward strand can be sequenced also.

Illumina sequencing

https://www.youtube.com/watch?v=fCd6B5HRaZ8

Amplification and sequencing

Sequencing is generally perform on Roche-454 (obsolete now) or Illumina MiSeq platforms or Oxford Nanopore Technology or PACBIO platforms.

Read quantity: ~10 000 reads per sample (454), ~30 000 reads per sample (MiSeq), up to several Tera of data (ONT).

Sequence lengths: >650 bp (Roche-454), 2 x 250 bp or 2 x 300 bp (MiSeq), Longest read > 2Mb (ONT or PACBIO)

Methods

Exemple of FROGS Pipeline

			C	FROGS_Cluster_Stat Abundance file		FROGS_Cluster_Stat		FROGS_Cluster_Stat		
				FROGS_Cluster_Stat: report.html (html)	•	FROGS_Cluster_Stat: report.html (html)	•	✓ FROGS_4b_Cluster_Stat: report.html (html)	•	
🖌 FROGS_1 Pre- 🗳 🗙 process										✔ ① × FROGS_6_Affiliation_Stat
TAR archive file	C	Sequences file	d	Sequences file (format:		Sequence file		Sequence file	C	Abundance file
✓ FROGS_1 Pre-process: dereplicated.fasta (fasta)	A.	Count file FROGS_2 Clustering		FASTA) Abundance file (format: BIOM)		 Abundance file FROGS_4 Cluster filters: 	ſ	Abundance file		FROGS_6_Affiliation_Stat: report.html (html)
FROGS_1 Pre-process:	J	swarm: seed_sequences.fasta (fasta)		FROGS_3 Remove		clusterFilters_abundance.bio m (biom1)		affiliation: affiliation_abundance.biom		Affiliation
FROGS_1 Pre-process: report.html (html)	,	FROGS_2 Clustering swarm:		chimera: non_chimera.fasta (fasta)	2	✓ FROGS_4 Cluster filters: clusterFilters_sequences.fast		(biom1) ✓ FROGS_5 Taxonomic		stat
Pre-process		clustering_abundance.biom (biom1)		FROGS_3 Remove chimera:		a (fasta)	(Y	affiliation: report.html (html)	9	
		FROGS_2 Clustering swarm:		non_chimera_abundance.bi om (biom1)	×	FROGS_4 Cluster filters: excluded.tsv (tsv)	•	Affiliation		
		swarms_composition.txt (txt)	•	FROGS_3 Remove chimera: report.html (html)	>	FROGS_4 Cluster filters: report.html (html)	•			

Clustering

Chimera

Cluster Filters Cluster stat

FROGS_0 Demultiplex reads Attribute reads to samples in function of inner barcode
FROGS_1 Pre-process merging, denoising and dereplication
FROGS_2 Clustering swarm Single-linkage clustering on sequences
FROGS_Cluster_Stat Process some metrics on clusters
FROGS_3 Remove chimera Remove PCR chimera in each sample
FROGS_4 Cluster filters Filters clusters on several criteria.
FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions from ITS sequences
FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by RDPtools and BLAST
FROGS_6_Affiliation_Stat Process some metrics on taxonomies

FROGS Tree Reconstruction of phylogenetic tree FROGS Affiliation Filters Filters ASVs on several affiliation criteria FROGS Affiliation postprocess Aggregates ASVs based on alignment metrics FROGS Abundance normalisation Normalise ASV abundance.

Optional basic tools

FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM

FROGS TSV_to_BIOM Converts a TSV file in a BIOM file 1

FROGS BIOM to TSV Converts a BIOM file in TSV file

Utilities tools

 FROGSSTAT Phyloseq Import Data from 3 files: biomfile, samplefile, treefile

 FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot

 FROGSSTAT Phyloseq Alpha Diversity with richness plot

 FROGSSTAT Phyloseq Beta Diversity distance matrix

 FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods

 FROGSSTAT Phyloseq Structure Visualisation with heatmap plot and ordination plot

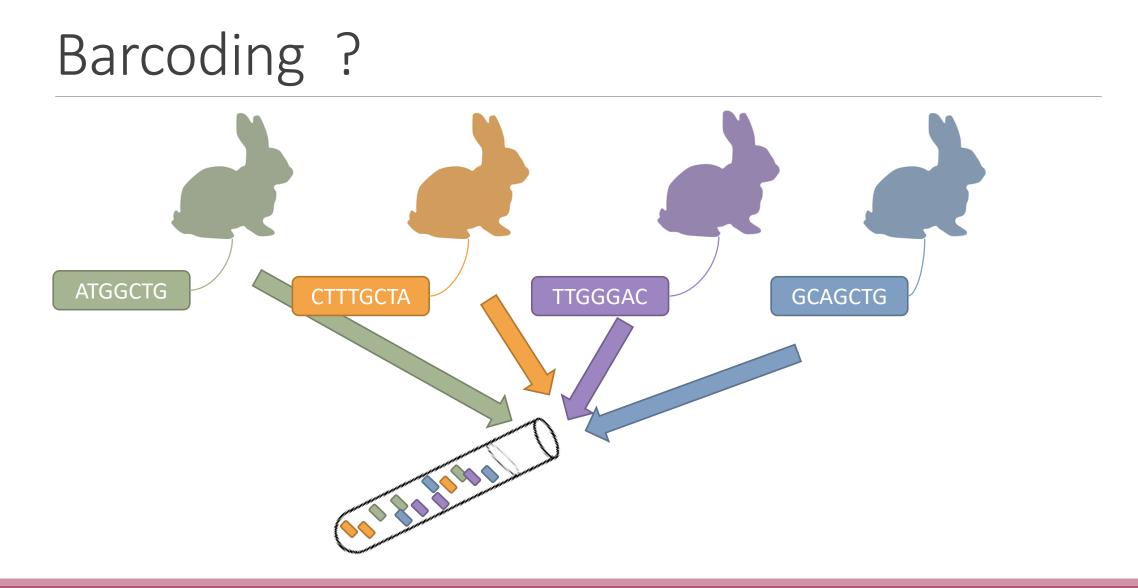
 FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform Multivariate Analysis of Variance (MANOVA)

 FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis a

 FROGSSTAT DESeq2 Visualisation extract and visualise differentially abundant ASVs or functions

FROGSFUNC_1_placeseqs_and_copynumbers Places ASVs into a reference phylogenetic tree. FROGSFUNC_2_functions Calculates functions abundances in each sample.

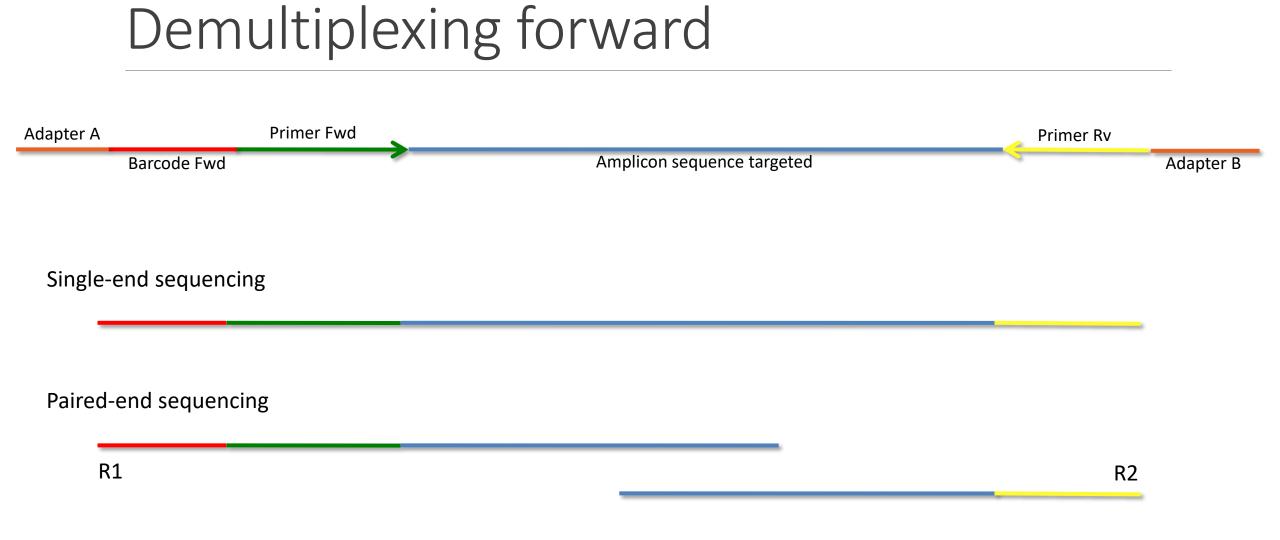
FROGSFUNC_3_pathways Calculates pathway abundances in each sample.

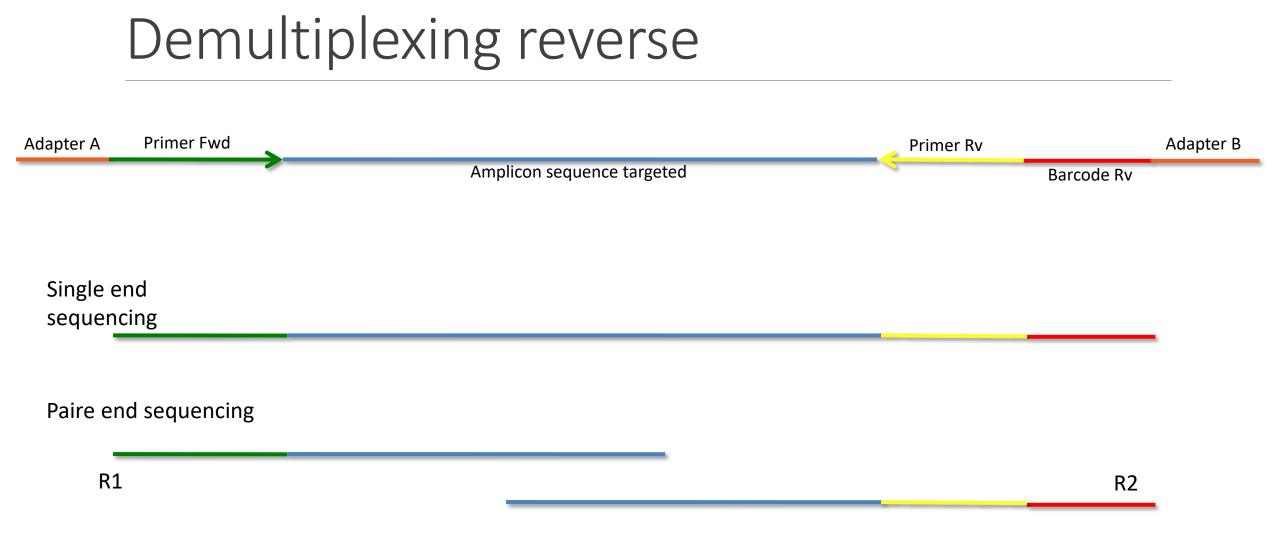

Functional inference tools

FROGS Tools for Bioinfomatics analyses

Galaxy Toulouse	🌴 Workflow Visualize * Données partagées * Aide * Utilisateur * 🞓 🇱		Using 313.8 MB
I Galaxy formation 30/05-02/06/2022			
Tools	Executed FROGS Pre-process and successfully added 1 job to the queue.	History Rechercher des données	\$+⊡¢ 00
	The tool uses this input:		
🏦 Upload Data	• 1:ITS1.tar.gz	Unnamed history	
Sequence Quality & Cleaning	It produces 3 outputs:	313.83 MB	2 🏶 🗩
FROGS FROGS_0 Demultiplex reads Attribute reads to samples in function of inner barcode FROGS_1 Pre-process merging, denoising and dereplication	8: FROGS Pre-process: dereplicated.fasta 9: FROGS Pre-process: count.tsv 10: FROGS Pre-process: report.html	() 10: FROGS Pre-process: eport.html	ar 🕑 🖋 🗙
FROGS_2 Clustering swarm Single-linkage clustering on sequences	You can check the status of queued jobs and view the resulting data by refreshing the History panel. When the job has been run the status will change from 'running' to 'finished' if completed successfully or 'error' if problems were encountered.	9: FROGS Pre-process: o	0 @ # ¥
FROGS_Cluster_Stat Process some metrics on clusters		unt.tsv	
FROGS_3 Remove chimera Remove PCR chimera in each sample FROGS_4 Cluster filters Filters clusters on several criteria.		(.) 8: FROGS Pre-process: d ereplicated.fasta	d ⊕∦×
FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions from ITS sequences	Waiting to run	7: metadata_ITS.tsv	⊛ / ×
FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by RDPtools and BLAST		-	
FROGS_6_Affiliation_Stat Process some metrics on taxonomies		6: ITS1.tar.gz	⊕ / ×
FROGS Affiliation Filters Filters ASVs on several affiliation criteria		😢 5: metadata_ITS.tsv	⊕ / ×
FROGS Tree Reconstruction of phylogenetic tree	Currently	4: metadata_ITS.tsv	@ / X
FROGS Affiliation postprocess Aggregates ASVs based on alignment metrics	running		
FROGS Abundance normalisation Normalise ASV abundance.		3: Galaxy2-[metadata_chail ou.tsv].tsv	ill ⊕∮×
FROGSFUNC_1_placeseqs_and_copynumbers Places ASVs into a reference phylogenetic tree.			a 4 u
FROGSFUNC_2_functions Calculates functions abundances in each sample.		2: metadata_ITS.tsv	⊕ / ×
FROGSFUNC_3_pathways Calculates pathway abundances in each sample.	Result files	tool error Une erreur est survenue avec	ce jeu de
FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM		données:	
FROGS TSV_to_BIOM Converts a TSV file in a BIOM file 1		Unable to finish job	
FROGS BIOM to TSV Converts a BIOM file in TSV file		※0 ?	۲
FROGSSTAT Phyloseq Import Data from 3 files: biomfile, samplefile, treefile	Echoc process		
FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot	Echec process	1: ITS1.tar.gz	⊕ ∥ ×
FROGSSTAT Phyloseq Alpha Diversity with richness plot			
FROGSSTAT Phyloseq Beta Diversity distance matrix			
FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods			
FROGSSTAT Phyloseq Structure Visualisation with heatmap plot and ordination plot			
FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform Multivariate Analysis of Variance (MANOVA)			
FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis			
FROGSSTAT DESeq2 Visualisation to extract and visualise differentially abundant ASVs or functions			

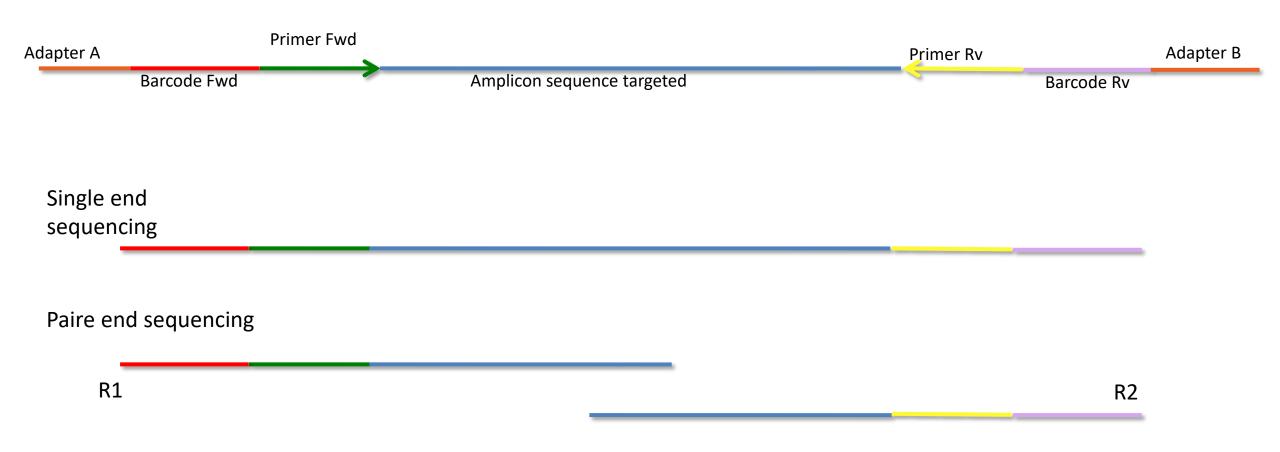
^{skip} O-Demultiplexing tool

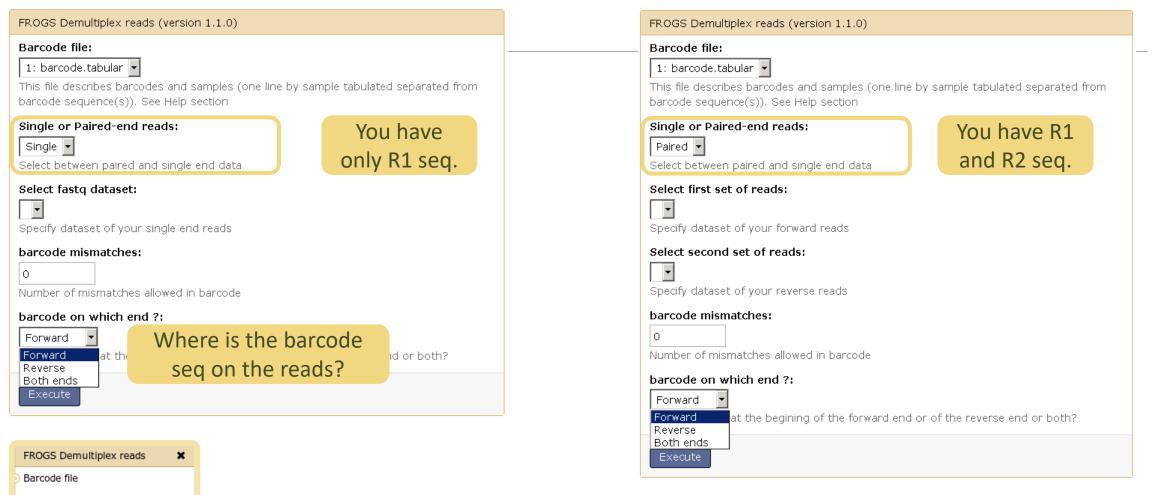



Demultiplexing

Sequence demultiplexing in function of barcode sequences :

- In forward
- In reverse
- In forward and reverse


Remove unbarcoded or ambiguous sequences



Demultiplexing forward and reverse

demultiplexed_archive (data)

undemultiplexed_archive (data) 🖂

			Input example
FROGS Demultiplex reads Attribute reads to samples	in function of inner barcode. (Galaxy Version 2.0.0)	 Options 	MgArd0001 ACAGCGT
Barcode file			MgArd0009 ACAGTAG
			MgArd0017 ACGTCAG
24: barcode_forward.tabular			MgArd0029 ACTCAGT
This file describes barcodes and samples (one line by	sample tabulated separated from barcode sequence(s)). See Help section		MgArd0038 ACTCGTC
Single or Paired-end reads			MgArd0046 AGCAGTC
Single		-	MgArd0054 AGCTATG
Select between paired and single-end data			MgArd0062 AGCTCGC
· · · ·			MgArd0073 AGTATCT
Select fastq dataset			MgArd0081 AGTCTGC
🗋 省 🗅 6: multiplex.fastq		-	
Specify dataset of your single end reads			
Barcode mismatches			if index is in only at forwards
0			if index is in only at forward:
Number of mismatches allowed in barcode			tabular file with 2 columns
			sample names + barcodes
Barcode on which end ?			
Forward		-	
The barcode is placed either at the beginning of the fo	orward end or of the reverse end or both?		
✓ Execute			

Advices

For your own data

- Do not forget to indicate barcode sequence as they are in the fastq sequence file, especially if you have data multiplexed via the reverse strand.
- For the mismatch threshold, we advised you to let the threshold to 0, and if you are not satisfied by the result, try with 1. The number of mismatch depends on the length of the barcode, but often those sequences are very short so 1 mismatch is already more than the sequencing error rate.
- If you have different barcode lengths, you must demultiplex your data in different times beginning by the longest barcode set and used the "unmatched" or "ambiguous" sequence with smaller barcode and so on.
- If you have Roche 454 sequences in sff format, you must convert them with some program like sff2fastq

Outputs

7: FROGS	0 Demulti	iplex reads:	report

6: FROGS_0 Demultiplex reads: undemultiplexed.tar.gz

5: FROGS_0 Demultiplex reads: demultiplexed.tar.gz

A tar archive is created by grouping one (or a pair of) fastq file per sample with the names indicated in the first column of the barcode tabular file.

1	2
#sample	count
ambiguous	0
MgArd0009	91
MgArd0017	7 166
MgArd0038	1208
MgArd0029) 193
unmatched	245
MgArd0001	. 119
MgArd0081	. 246
MgArd0046	i 401
MgArd0054	243
MgArd0073	3 474
MgArd0062	2 1127

With barcode <u>mismatches >1</u> sequence can corresponding to several samples. Sequences that match at only one sample are affected to this sample but the others (ambiguous) are not re-affected to a sample.

> Sequences without known barcode. So these sequences are non-affected to a sample.

Format: Barcode

BARCODE FILE is expected to be tabulated:

- first column corresponds to the sample name (unique, without space)
- second to the forward sequence barcode used (None if only reverse barcode)
- optional third is the reverse sequence barcode (optional)

Take care to indicate sequence barcode in the strand of the read, so you may need to reverse complement the reverse barcode sequence. Barcode sequence must have the same length.

Example of barcode file.

The last column is optional, like this, it describes sample multiplexed by both fragment ends.

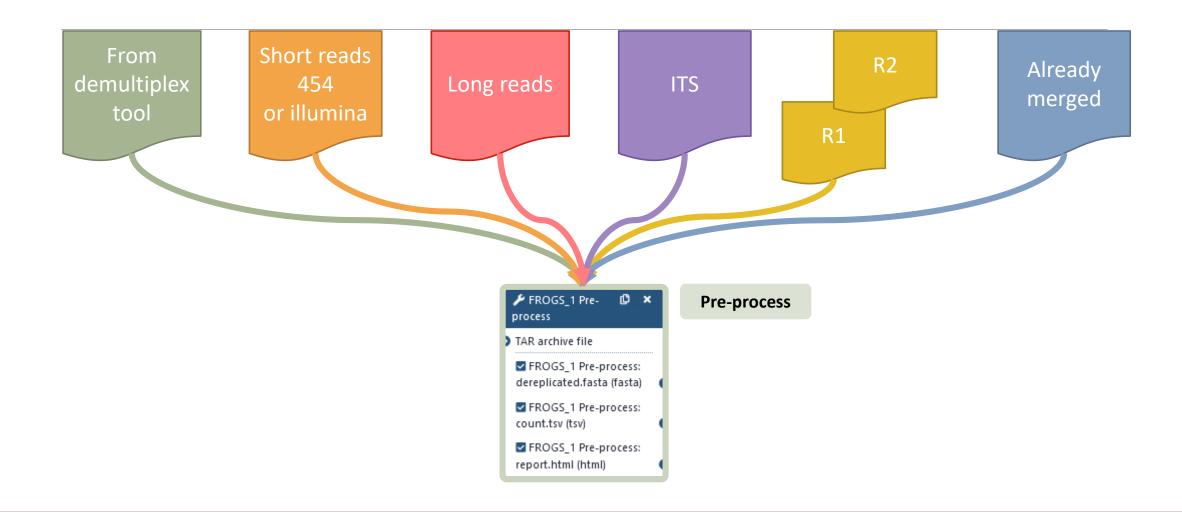
MgArd00001 ACAGCGT ACGTACA

Format : FastQ

FASTQ : Text file describing biological sequence in 4 lines format:

- first line start by "@" correspond to the sequence identifier and optionally the sequence description. "@Sequence_1 description1"
- second line is the sequence itself. "ACAGC"
- third line is a "+" following by the sequence identifier or not depending on the version
- fourth line is the quality sequence, one code per base. The code depends on the version and the sequencer

@HNHOSKD01ALD0H
ACAGCGTCAGAGGGGGTACCAGTCAGCCATGACGTAGCACGTACA
+
CCCFFFFFFHHHHHJJIJJJJHHFF@DEDDDDDDD@CDDDDACDD


How it works ?

For each sequence or sequence pair the sequence fragment at the beginning (forward multiplexing) of the (first) read or at the end (reverse multiplexing) of the (second) read will be compare to all barcode sequence.

If this fragment is equal (with less or equal mismatch than the threshold) to one (and only one) barcode, the fragment is trimmed and the sequence will be attributed to the corresponding sample.

Finally fastq files (or pair of fastq files) for each sample are included in an archive, and a report describes how many sequence are attributed for each sample.

1-Preprocess tool

What does the Pre-process tool do?

- Merging of R1 and R2 reads with vsearch, flash or pear (only in command line)
- Delete sequences without good primers
- Finds and removes adapter sequences with cutadapt
- Delete sequence with not expected lengths
- Delete sequences with ambiguous bases (N)
- Dereplication
- + removing homopolymers (size = 8) for 454 data
- + quality filter for 454 data

VSEARCH: a versatile open source tool for metagenomics. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. PeerJ. 2016 Oct 18;4:e2584. eCollection 2016.

Bioinformatics (2011) 27 (21):2957-2963. doi:10.1093/bioinformatics/btr507 FLASH: fast length adjustment of short reads to improve genome assemblies TanjaMagoc, Steven L. Salzberg

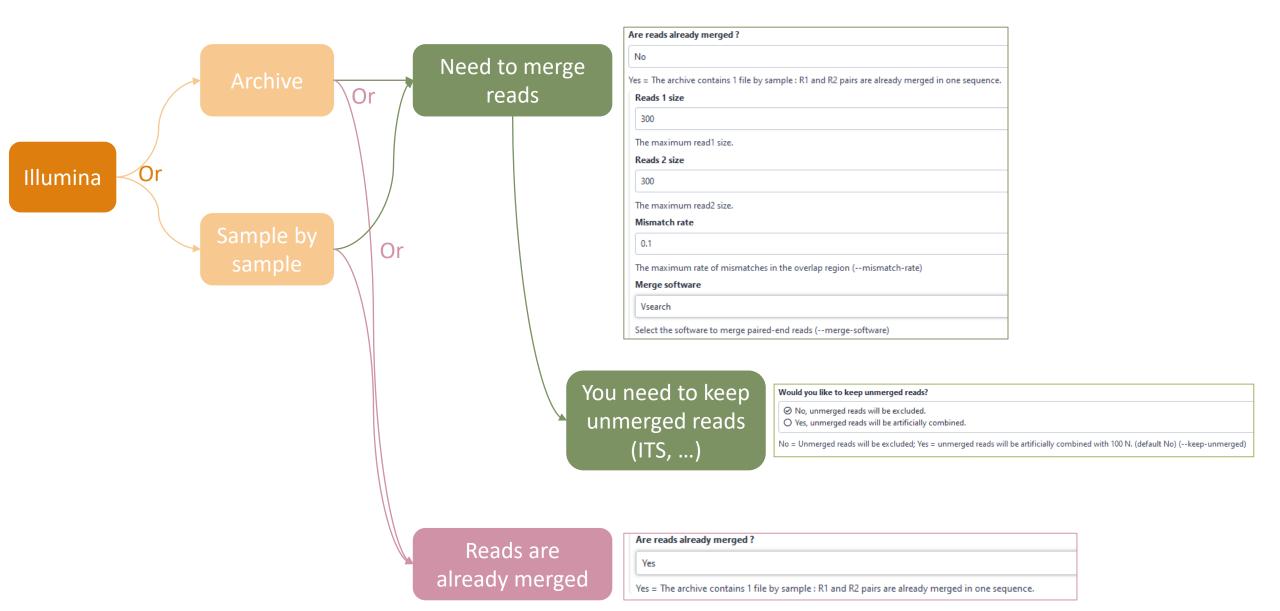
Bioinformatics (2014) 30 (5):614–620 doi.org/10.1093/bioinformatics/btt593 **PEAR: a fast and accurate Illumina Paired-End reAd mergeR** J. Zhang, K. Kobert, T. Flouri, A. Stamatakis,

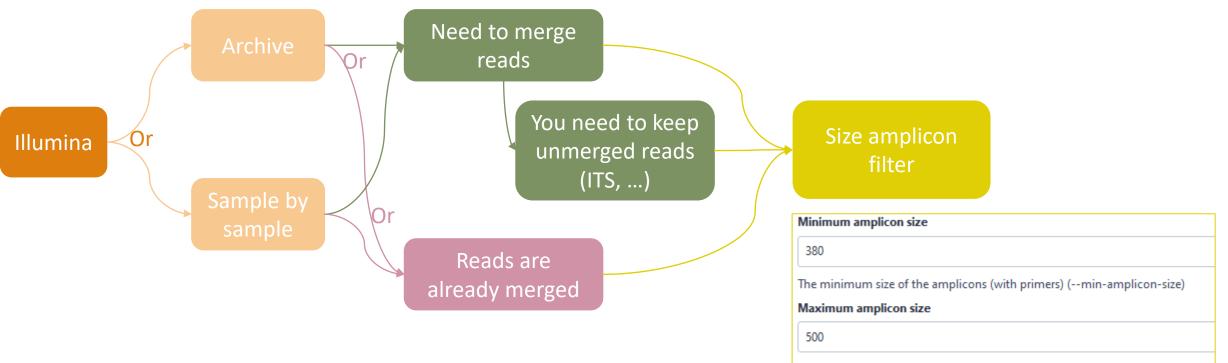
EMBnet Journal, Vol17 no1. doi : 10.14806/ej.17.1.200 Cutadapt removes adapter sequences from high-throughput sequencing reads Marcel Martin

Exemples of different preprocess panels for your future personal uses.

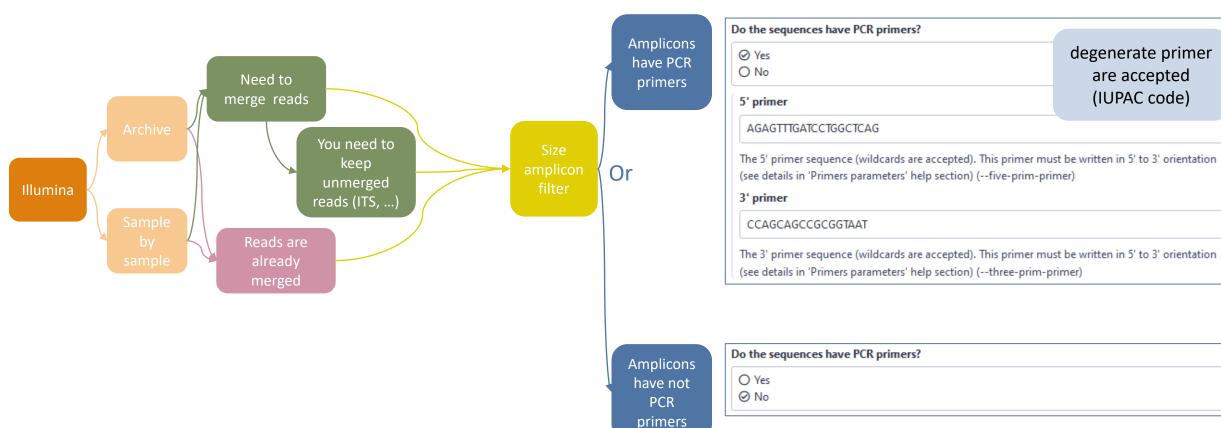
Illumina

Sequencer


Illumina


Select the sequencing technology used to produce the sequences.

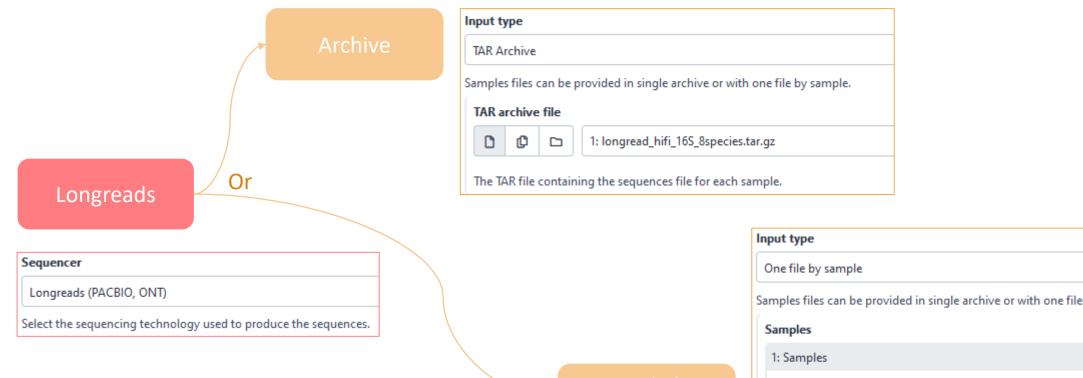
Illumina


	input (jpc
	TAR Archive
	Samples files can be provided in a single TAR archive or sample by sample (with one or two files each
	TAR archive file
Or	1: chaillou_withprimers_64renamedsamples_V1V3_10000seq_R1R2.tar.gz
	The TAR file containing the sequences file(s) for each sample.

Input type
Files by samples
Samples files can be provided in a single TAR archive or sample by sample (with one or two files each).
Are reads already merged ?
No
Yes = The inputs contain 1 file by sample : R1 and R2 pairq are already merged in one sequence.
Samples
1: Samples
Name
sampleA
The sample name.
Reads 1
C C 252: sampleA_R1.fastq
R1 FASTQ file of paired-end reads.
Reads 2
D D 251: sampleA_R2.fastq
R2 FASTQ file of paired-end reads.
+ Insert Samples

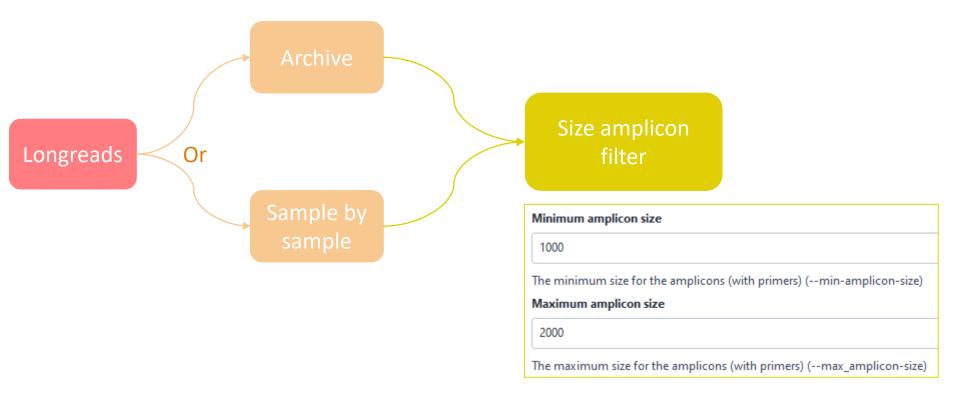
The maximum size of the amplicons (with primers) (--max-amplicon-size)

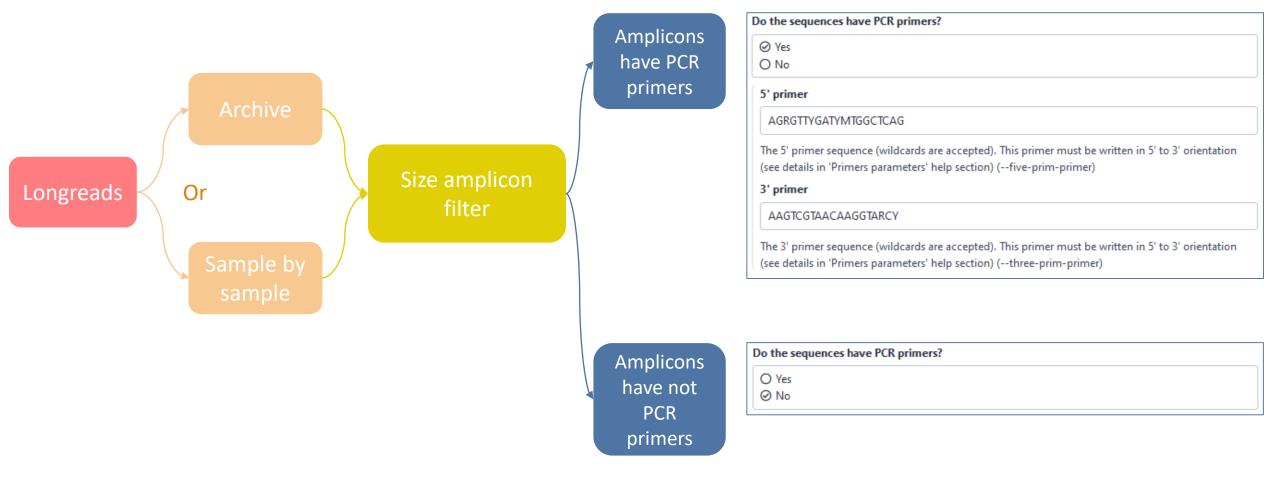
are accepted


(IUPAC code)

Longreads

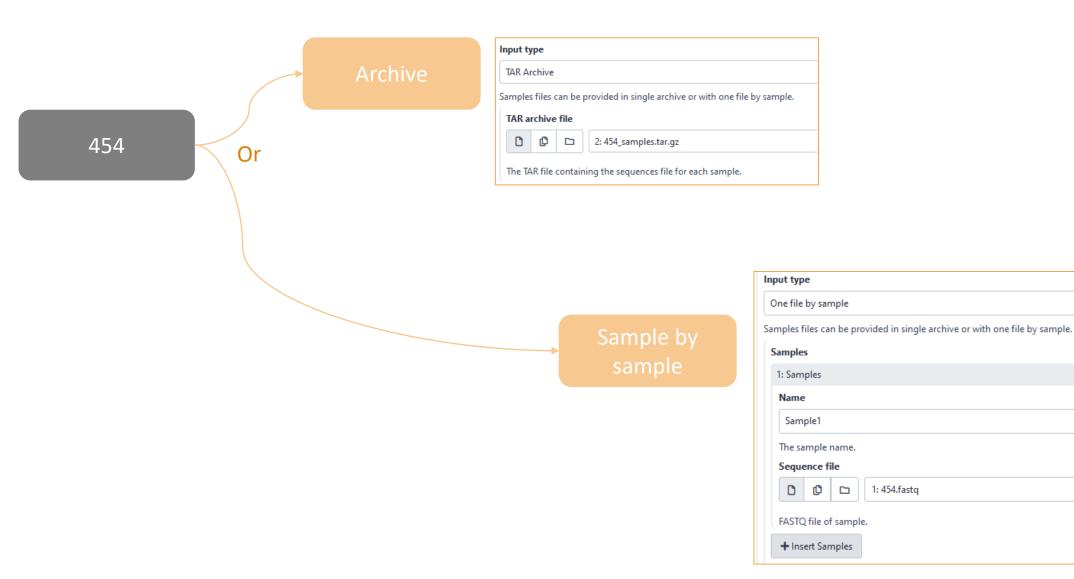
Sequencer

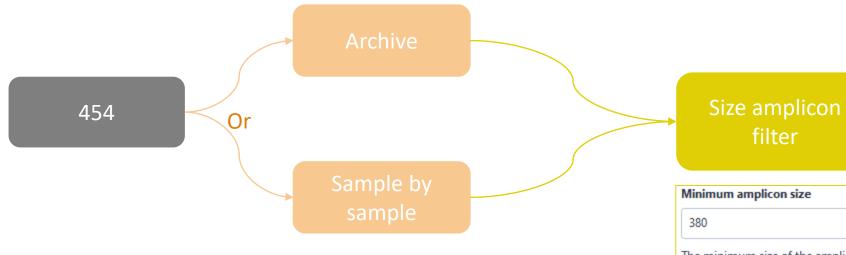

Longreads (PACBIO, ONT)


Select the sequencing technology used to produce the sequences.

Sample by sample

amples files can be provided in single archive or with one file by sample.		
Samples		
1: Samples		
Name		
Mockbact		
The sample name.		
Sequence file		
D D 11: Mockbact.fastq		
FASTQ file of sample.		
+ Insert Samples		

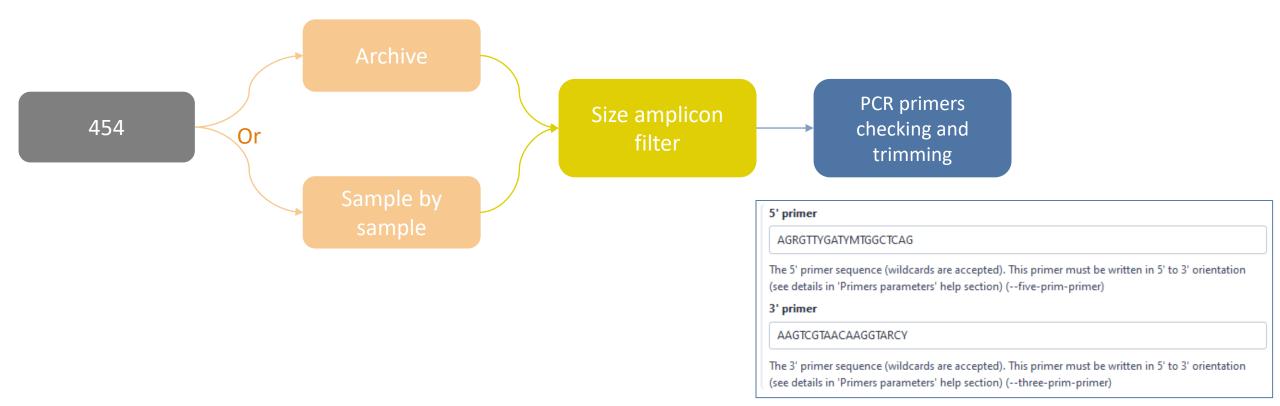




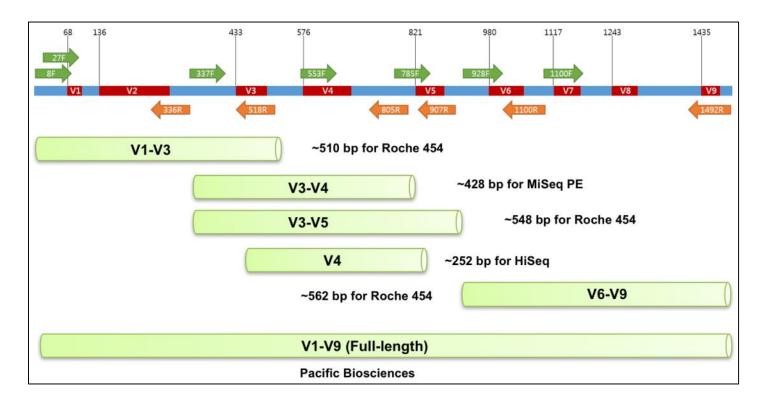
454

Sequencer			
454			

Select the sequencing technology used to produce the sequences.



filter	
Ainimum amplicon size	
380	
he minimum size of the amplicons	(with primers) (min-amplicon-size)

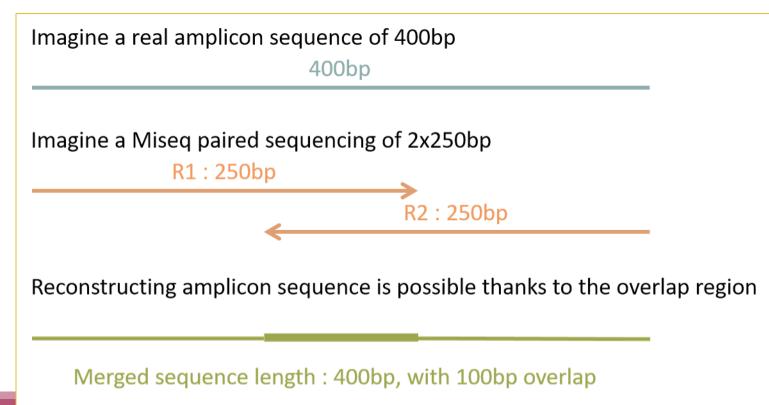

Maximum amplicon size

500

The maximum size of the amplicons (with primers) (--max-amplicon-size)

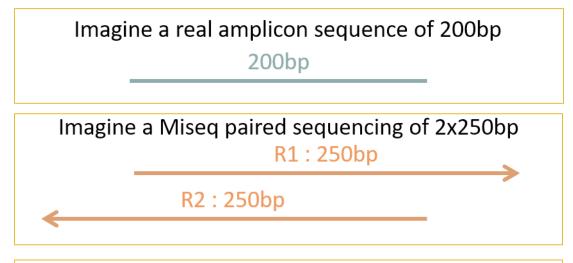
Which primers for 16S?

NGS platforms	16S region	PCR primers	Estimated insert size to read (E. coli)	Sequencing
Illumina MiSeq PE (Pair End)	V3V4	341F & 805R	427 bp	250 bp x 2 or 300 bp x 2
Illumina HiSeq/iSeq100 (Earth Microbiome Project)	V4	515FB & 806RB	250 bp	150 x 2


Name of primer F=forward, R=reverse	Sequence
8F	AGAGTTTGATCCTGGCTCAG
27F	AGAGTTTGATCMTGGCTCAG
336R	ACTGCTGCSYCCCGTAGGAGTCT
337F	GACTCCTACGGGAGGCWGCAG
337F	GACTCCTACGGGAGGCWGCAG
341F	CCTACGGGNGGCWGCAG
515FB	GTGYCAGCMGCCGCGGTAA
518R	GTATTACCGCGGCTGCTGG
533F	GTGCCAGCMGCCGCGGTAA
785F	GGATTAGATACCCTGGTA
805R	GACTACHVGGGTATCTAATCC
806RB	GGACTACNVGGGTWTCTAAT
907R	CCGTCAATTCCTTTRAGTTT
928F	TAAAACTYAAAKGAATTGACGGG
1100F	YAACGAGCGCAACCC
1100R	GGGTTGCGCTCGTTG
1492R	CGGTTACCTTGTTACGACTT

How work reads merging ?

WITH VSEARCH


The aim of Vsearch is to merge R1 with R2

Case of a sequencing of overlapping sequences: case of 16S V3-V4 amplicon MiSeq sequencing:

The aim of Vsearch is to merge R1 with R2

Case of a sequencing of over-overlapping sequences:

FROGS takes in charge this case in trimming over bases

200bp

Merged sequence length : 200bp, with 100% overlap

Practice:

Exercise

Go to « 16S » history

Launch the pre-process tool on that data set

 \rightarrow objective: understand Vsearch software

16S dataset presentation:

A real analysis provided by Stéphane Chaillou et al.

Comparison of meat and seafood bacterial communities.

8 environment types (EnvType) :

- Meat \rightarrow Ground Beef, Ground veal, Poultry sausage, Diced bacon
- Seafood \rightarrow Cooked schrimps, Smoked salmon, Salmon filet, Cod filet

Chaillou, S. et al (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J, 9(5):1105-1118.

16S dataset presentation:

From Chaillou paper, we produced simulated data:

- 64 samples of 16S amplicons
- R1 and R2 overlapping reads of 300 bases.
- 8 replicates per condition
- with errors among the linear curve 2.54e-1 2.79e-1

- with 10% chimeras
- Primers for V1-V3:
 - 5' AGAGTTTGATCCTGGCTCAG 3'
 - 5' CCAGCAGCCGCGGTAAT 3'

Chaillou, S. et al (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J, 9(5):1105-1118.

FROGS_1 Pre-process merging, denoising and dereplication (Galaxy Version 4.1.0+galaxy1)

Sequencer

Illumina

Select the sequencing technology used to produce the sequences.

Input type

TAR Archive

Samples files can be provided in a single TAR archive or sample by sample (with one or two files each).

TAR archive file

٥	¢			1: chaillou_withprimers_64renamedsamples_V1V3_10000seq_R1R2.tar.gz	
---	---	--	--	--	--

The TAR file containing the sequences file(s) for each sample.

Are reads already merged ?

No

Yes = The archive contains 1 file by sample : R1 and R2 pairs are already merged in one sequence.

Reads 1 size

300

The maximum read1 size.

Reads 2 size

300

The maximum read2 size.

Mismatch rate

0.1

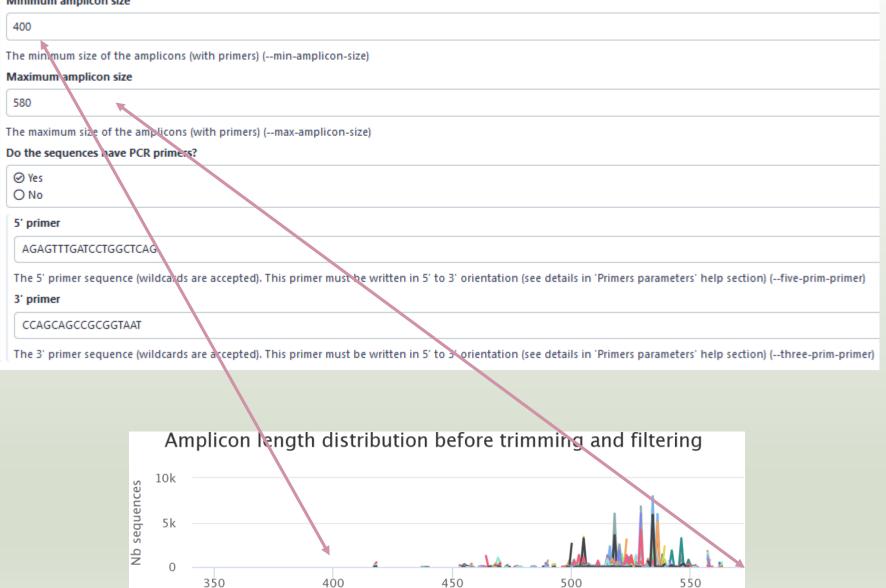
The maximum rate of mismatches in the overlap region (--mismatch-rate)

Merge software

Vsearch

Vsearch is recommended (in command line, prefer pear)

Select the software to merge paired-end reads (--merge-software)


Would you like to keep unmerged reads?

⊘ No, unmerged reads will be excluded.

O Yes, unmerged reads will be artificially combined.

No = Unmerged reads will be excluded; Yes = unmerged reads will be artificially combined with 100 N. (default No) (--keep-unmerged)

Minimum amplicon size

Length

Minimum amplicon size									
400									
The minimum size of the amplicons (with primers) (min-amplicon-size)									
Maximum amplicon size									
580									
The maximum size of the amplicons (with primers) (max-amplicon-size)									
Do the sequences have PCR primers?									
⊘ Yes									
O No									
5' primer									
AGAGTTTGATCCTGGCTCAG									
The 5' primer sequence (wildcards are accepted). This primer must be writte	Primer R1: AGAGTTTGATCCTGGCTCAG								
3' primer	reverse transcribed Primer R2 : CCAGCAGCCGCG	GTAAT							
CCAGCAGCCGCGGTAAT									
The 3' primer sequence (wildcards are accepted). This primer must be writte									

Ex: read R1

@63_0 reference=ASV_00517 position=1..300

AGAGTTTGATCCTGGCTCAGgatgaacgctagcgggaggcttaacacatgcaagccgagggg tagaattagcttgctaatttgagaccggcgcacgggtgcgtaacgcgtatgcaacttgccctactgaaaa ggatagcccagagaaatttggattaatactttataatagactgaatggcatcatttagttttgaaagattt atcgcagtaggataggcatgcgtaagattagatagttggtgaggtaacggctcaccaagtcgacgatct ttagggggcctgagagggtgaacccca

Ex: read R2

@63_0 reference=ASV_00517 position=1..300 errors=5%G ATTACCGCGGCTGCTGGcacggagttagccggtgcttattcttctggtaccttcagctacttacac gtaagtaggtttatccccagataaaagtagtttacaacccataaggccgtcatcctacacgcgggatggc tggatcaggcttccacccattgtccaatattcctcactgctgcctccgtaggagtctggtccgtgtctcag taccagtgtgggggttcaccctctcaggccccctaaagatcgtcgacttggtgggggttaccccacaa ctatctaatcttacgcatgcct

R2 primer must be reverse transcribed Use: https://www.bioinformatics.nl/cgibin/emboss/revseq

- 1. Do you understand how enter your primers ?
- 2. What is the « FROGS Pre-process: dereplicated.fasta » file ?

۲

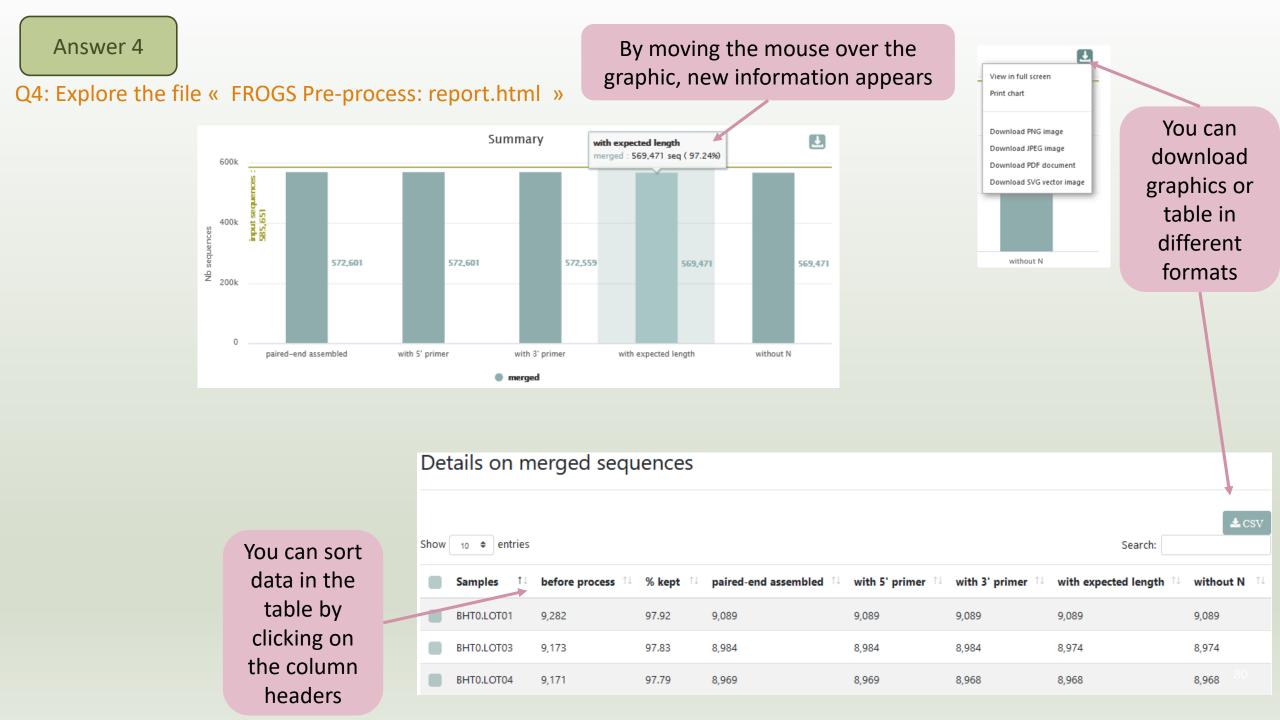
- 3. What is the « FROGS Pre-process: count.tsv » file ?
- 4. Explore the file « FROGS Pre-process: report.html » 💿
- 5. Who loose a lot of sequences ?

- 6. How many sequences are there in the input file ?
- 7. How many sequences did not have the 5' primer?
- 8. How many sequences still are after pre-processing the data?
- 9. How much time did it take to pre-process the data ?
- 10. What is the length of your merged reads before preprocessing?
- 11. What can you tell about the samples, based on amplicon size distributions ?

Q1: Do you understand how enter your primers ?

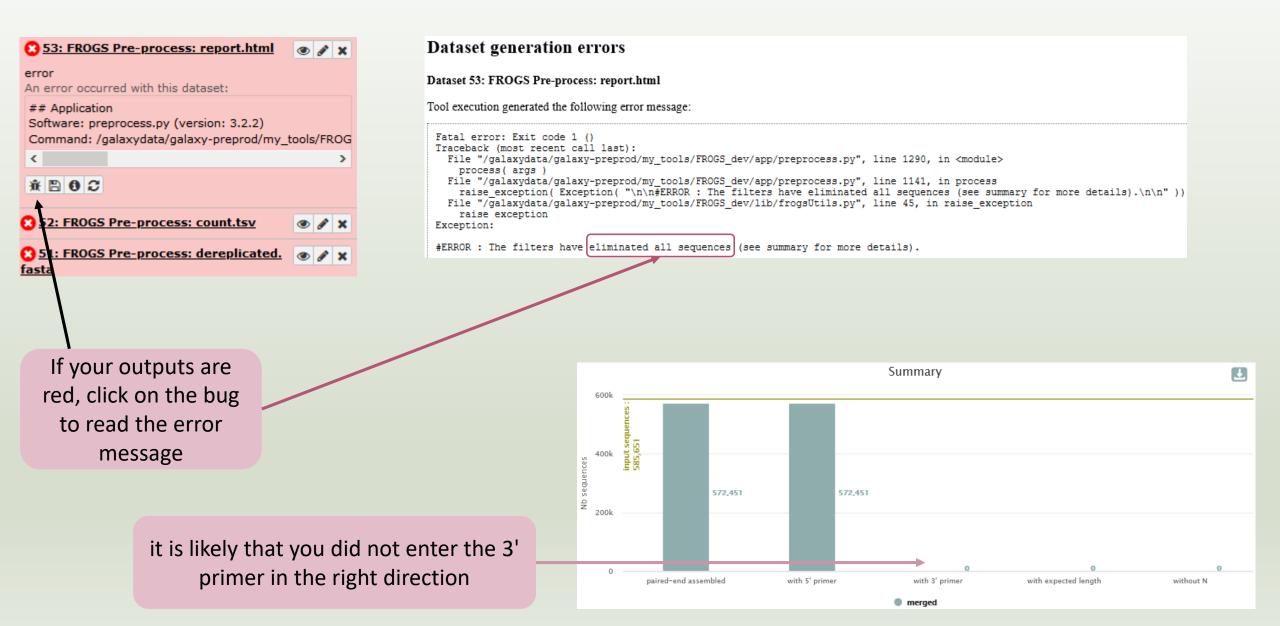
400	
The minimum size for the amplicons (with primers).	
Maximum amplicon size	
580	
The maximum size for the amplicons (with primers).	N.B.
Sequencing protocol	
Illumina standard	Primers in 5' \rightarrow 3' sen
The protocol used for sequencing step: standard or custom with PCR primers as s	sequencing primers.
5' primer	
AGAGTTTGATCCTGGCTCAG	
The 5' primer sequence (wildcards are accepted). The orientation is detailed be	low in 'Primers parameters' help section.
3' primer	
CCAGCAGCCGCGGTAAT	
The 3' primer sequence (wildcards are accepted). The orientation is detailed be	low in 'Primers parameters' help section.
✓ Execute	
	R2 primer must be reverse transcribed
	R2 primer must be reverse transcribed Use https://www.bioinformatics.nl/cgi-

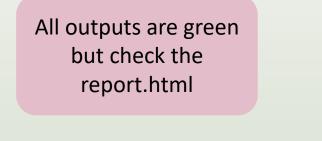
Q2: What is the « FROGS Pre-process: dereplicated.fasta » file ?


Q3: What is the « FROGS Pre-process: count.tsv » file ?

<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
<pre>>>56_3551;size=1 reference=otu_00680 position=1300 errors=21%A AAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >>53_322;size=1 reference=otu_01408,otu_00680 amplicon=1300,1300 position=1300 ATTGAACGGTGGCGGCATGCCTACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >>56_2589;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >>56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >>6_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >>6_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >>6_626;size=1 reference=otu_00680 position=1300 errors=21%C</pre>
AAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_322;size=1 reference=otu_01408,otu_00680 amplicon=1300,1300 position=1300 ATTGAACGGTGGCGGCATGCCTACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_2589;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C
<pre>>53_322;size=1 reference=otu_01408,otu_00680 amplicon=1300,1300 position=1300 ATTGAACGGTGGCGGCATGCCTACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_2589;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130</pre>
ATTGAACGGTGGCGGCATGCCTACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_2589;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130
<pre>>56_2589;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130</pre>
CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130
<pre>>56_7560;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130</pre>
CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130
>36_626;size=1 reference=otu_00680 position=1300 errors=21%C CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130
CAGACCGGCGCACGGGTGCGTAACGCGTATGCAATCTGCCTTTCACAGAGGGATAGCCCAGAGAAATTTGGATTAATACCTCAT >53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130
>53_6128;size=1 reference=otu_00231,otu_00941,otu_00680 amplicon=1300,1300,130
TREETCARGATGAACCCCGTAACCCGTATGCAATCTCCCTTTCACAGAGGATAACCCCAGAGAAAATTTGGATTAATACCTCAT
, I BOCI CABBAI BAACBCCDI ALBCADI CIBCCI I I CACABAGBAI ABCCCCABABAAAI I I BOAI I AAIACCI CAI
>51_6860;size=1 reference=otu_00799,otu_00680 amplicon=1300,1300 position=1300
CARGAAGGCGCACGGGGGGGGGTAACGCGTATGCCAATCCGCCTTTCACAGAGGATAGCCCAGAGAAATTTGGATTAATACCTCAT

Fasta sequence of all clean and dereplicated sequence *i.e.* only one copy of each sequence is kept


#id	BHT0.LOI	01	BHT0.LO	E03	BHT0.LO	04	BHT0.LOT	05	BHT0.LOT	06	BHT0.LOI	07
06_5949	0	0	0	0	0	0	0	0	0	0	0	0
56_3551	0	0	0	0	0	0	0	0	0	0	0	0
53_322	0	0	0	0	0	0	0	0	0	0	0	0
56_2589	0	0	0	0	0	0	0	0	0	0	0	0
56 7560	0	0	0	0	0	0	0	0	0	0	0	0
36 626	0	0	0	0	0	0	0	0	0	0	0	0
53_6128	0	0	0	0	0	0	0	0	0	0	0	0
51_6860	0	0	0	0	0	0	0	0	0	0	0	0
56 6906	0	0	0	0	0	0	0	0	0	0	0	0
56_3997	0	0	0	0	0	0	0	0	0	0	0	0
59_6	0	0	0	0	0	0	0	0	0	0	191	111
59_5144	0	0	0	0	0	0	0	0	0	0	1	0
59 5852	0	0	0	0	0	0	0	0	0	0	1	0
60 1696	0	0	0	0	0	0	0	0	0	0	0	1
59_6656	0	0	0	0	0	0	0	0	0	0	1	0
50 1102	0	0	0	0	0	0	0	0	0	0	1	0


count table for each sequence in each sample

Answer 5

Q5: Who loose a lot of sequences ?



5: FROGS_1 Pre-process: report.html

4: FROGS_1 Pre-process: count.tsv

3: FROGS_1 Pre-process: dereplicated.fasta

Error in 3' primer sequence. Primers must be similar with 10% of errors (~1 or 2 bases per primer) FROGS_1 Pre-process merging, denoising and dereplication (Galaxy Version 4.1.0+galaxy1)

Sequencer

Illumina

Select the sequencing technology used to produce the sequences.

Input type

TAR Archive

Samples files can be provided in a single TAR archive or sample by sample (with one or two files each).

TAR archive file

000

1: chaillou_withprimers_64renamedsamples_V1V3_10000seq_R1R2.tar.gz

The TAR file containing the sequences file(s) for each sample.

Are reads already merged ?

No

Yes = The archive contains 1 file by sample : R1 and R2 pairs are already merged in one sequence.

Reads 1 size

300

The maximum read1 size.

Reads 2 size

300

The maximum read2 size.

Mismatch rate

0.1 The maximum rate or mismatches in the overlap

Merge software

Vsearch

Select the software to merge paired-end reads

Would you like to keep unmerged reads?

⊘ No, unmerged reads will be excluded.

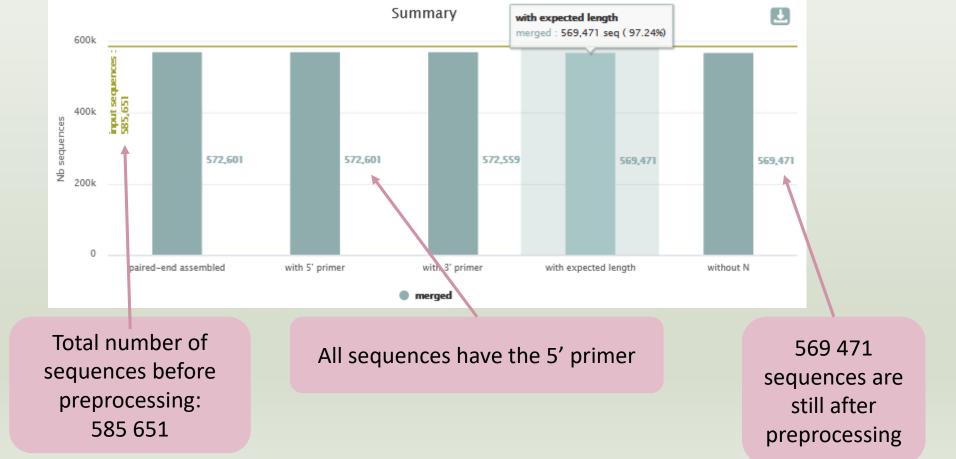
O Yes, unmerged reads will be artificially combined.

No = Unmerged reads will be excluded: Yes	= unmerged reads will be artificially	y combined with 100 N. (default No) (keep-unmerged)
		//(

if your sequences have low

qualities, you can increase

this parameter


But carreful !

To check the sequence quality use FASTQC (present in galaxy tools)

	Tools	☆
	fastqc	8
	1 Upload	I Data
	Show Set	ections
	FastQC Read Quality re	ports
Ţ	Quality scores across all bases (Sanger / Illumina 1.9 encoding)
12345	6 7 8 9 15-19 25-29 35-39 50-59 Position in re	80-89 110-119 140-149 170-179 200-209 230-239

30

Q6: How many sequences are there in the input file ?Q7: How many sequences did not have the 5' primer?Q8: How many sequences still are after pre-processing the data?

Answer 9

Q9: How much time did it take to pre-process the data ?

		FROGS Pre-process		
		Dataset Information		
		Number	19	
		Name	FROGS Pre-process: report.html	
3: FROGS_1 Pre-process: dereplicated.fasta	⊙ / ×	Created	Wednesday May 25th 2:10:46 2022 UTC	
5. FROG5_1 FTe-process. derepileated.iasta		Filesize	141.8 KB	
		Dbkey	?	
287,403 sequences		Format	html	
		File contents	contents	
format: fasta , génome de référence: ?		History Content API ID	76fc6a61d2847f9c	
		History API ID	ebfb8f50c6abde6d	
## Application		UUID Full Path	8a49299b-5b92-4e33-b05a-0fd54bb1aecc	
## Application		Full Path	/galaxy/database/objects/8/a/4/dataset_8a49299b-5b92-4e33-b05a-0fd54bb1aecc	.uai
Software: preprocess.py (version: 4.1.0)		Tool Parameters		
		Input Parameter	Value	
Command: /galaxydata/galaxy2021/galaxy02/galaxy/data	abase	Sequencer	illumina	
/dependencies/_conda/envs/mulled-		Input type	archive	
		TAR archive file	 1: chaillou_withprimers_64renamedsamples_V1V3_10000seq_R1R2.tar.gz 	
v1-916ab06f682ad01c3fd3dce3cb781eab380d0e2ea46de	6f24ab32102bee(Are reads already merged ?	paired	
/bin/preprocess.py illuminaoutput-derep		Reads 1 size	300	
/bin/preprocess.py mamma output derep		Reads 2 size	300	
<	>	Mismatch rate	0.1	Retrieve the tool
		Merge software	vsearch	
B & Q 2 📖 ?		Would you like to keep unmerged reads?	False 400	parameters
		Minimum amplicon size Maximum amplicon size	580	
		Sequencing protocol	standard	
		5' primer	AGAGTITGATCCTGGCTCAG	
		3' primer	CCAGCAGCCGCGGTAAT	
		hale had a second and		
Click on « i »		Job Information		
		Galaxy Tool ID:	toolshed.g2.bx.psu.edu/repos/frogs/frogs/FROGS_preprocess/4.0.0+galaxy1 🗓	
		Command Line	preprocess.py 'illumina'output-dereplicated '/galaxy/database/jobs_directory/0	88/194/outputs/galaxy_dataset_a18de719-f838-4f83-bfa8-888ab375af4
		Tool Standard Output	## Application Software: preprocess.py (version: 4.8.8) Command: /galaxy/database	/dependencies/_conda/envs/mulled-v1-aea09ae926f842aeedb029aa54a6e

Tool Standard Error

Tool Exit Code:

Job API ID:

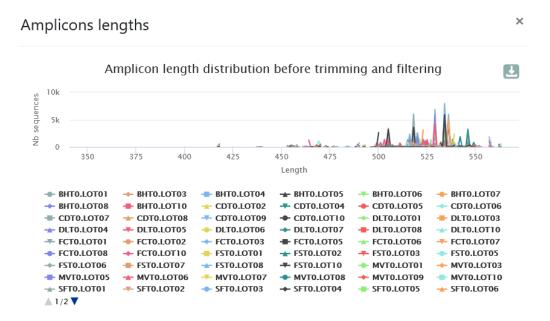
empty

4eb81b04b33684fd

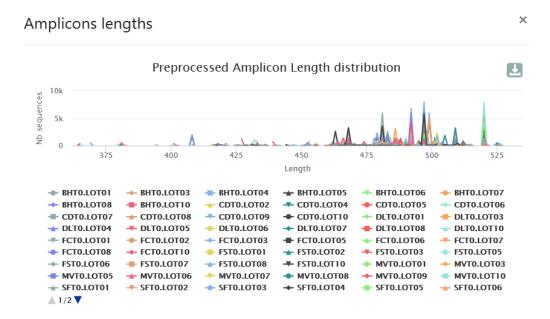
0

Stdout contains FROGS command lines and time execution

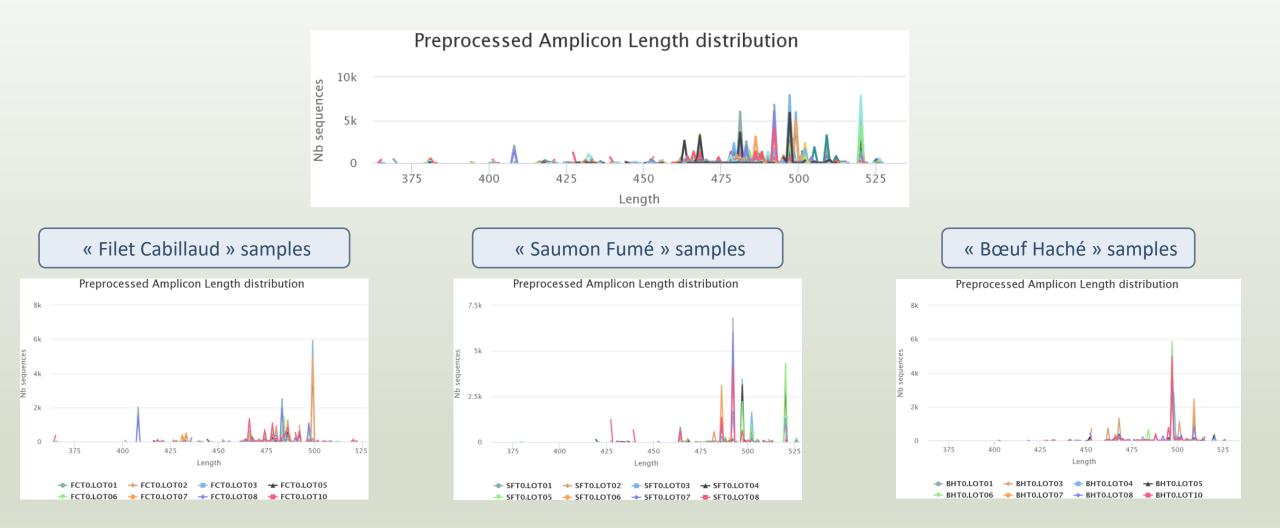
0-808ab375af46.dat


Details on merged sequences

Show 10 ¢ entries Search:									
Samples 🛍 k	pefore process	% kept 斗	paired-end assembled $\uparrow\downarrow$	with 5' primer $~^{\uparrow\downarrow}$	with 3' primer $~^{\uparrow\downarrow}$	with expected length $~^{\uparrow\downarrow}$	without N $~^{\uparrow\downarrow}$		
Selec	t all samples	92	9,089	9,089	9,089	9,089	9,089		
	9,173	97.83	8,984	8,984	8,984	8,974	8,974		
BHT0.LOT04 9	9,171	97.79	8,969	8,969	8,968	8,968	8,968		
BHT0.LOT05 9	9,109	97.56	8,890	8,890	8,888	8,887	8,887		


Q10: What is the length of your merged reads before preprocessing ?

Q10: What is the length of your merged reads before preprocessing ?



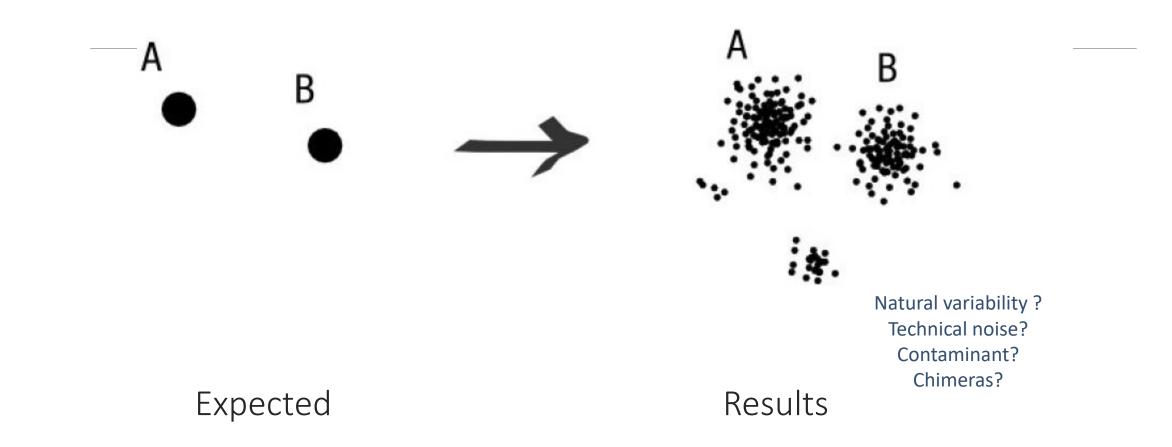
Before the preprocessing, 400 < sequence length < 555

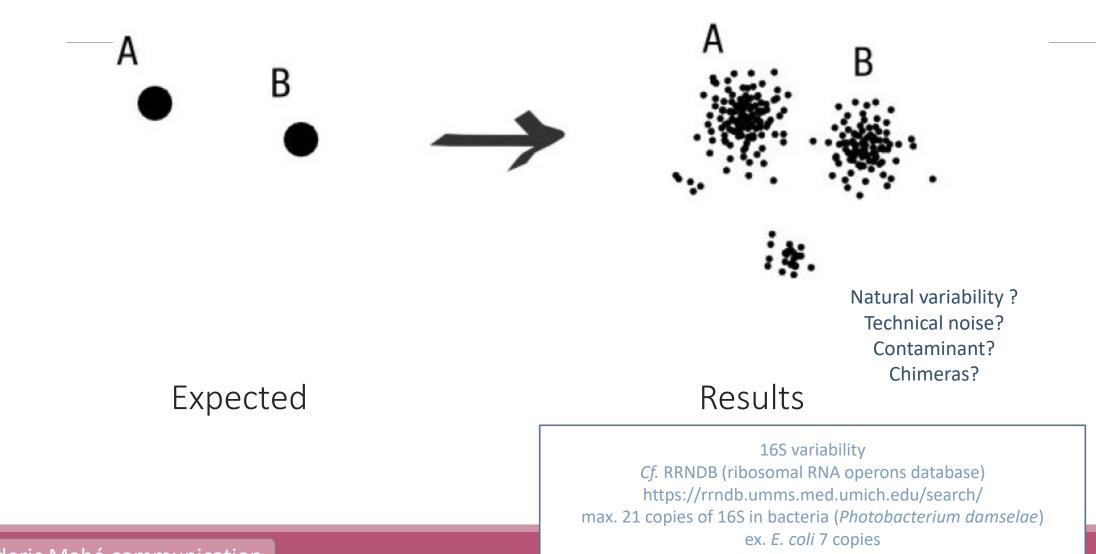
After the preprocessing, the sequences were shortened

Q11: What can you tell about the samples, based on amplicon size distributions ?

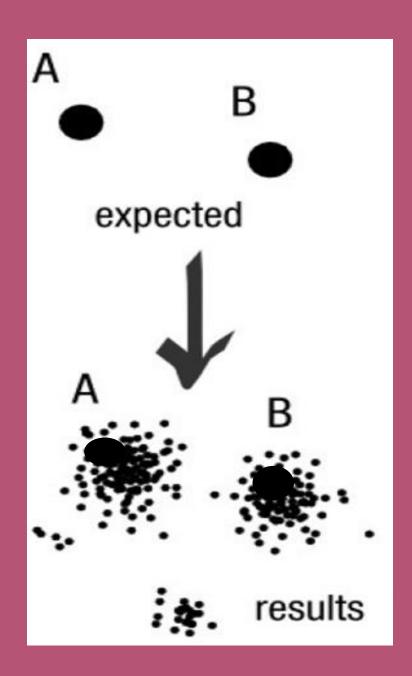
Answer 11

For each EnvType, we can observe different amplicon sizes. They correspond to different species. *N.B.* amplicons with same size can represent different species.


2-Clustering tool

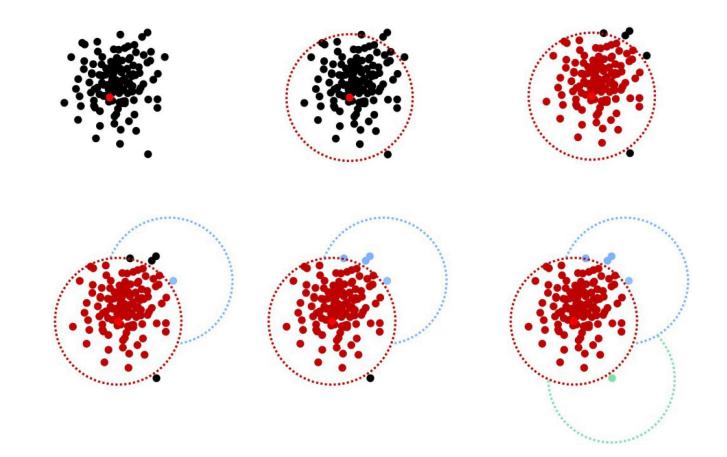

Why do we need clustering ?

Amplication and sequencing and are not perfect processes



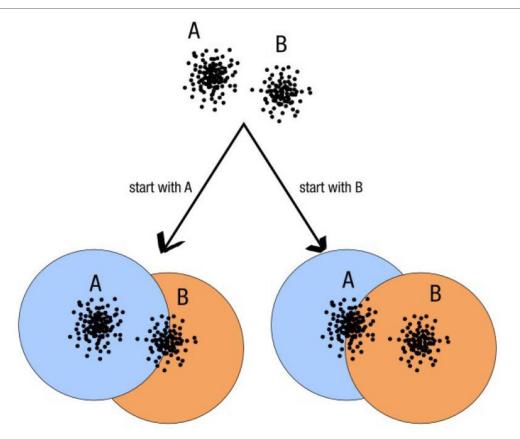
chemistry, physics and randomness

Fréderic Mahé communication


To have the best accuracy:

Method: All against all

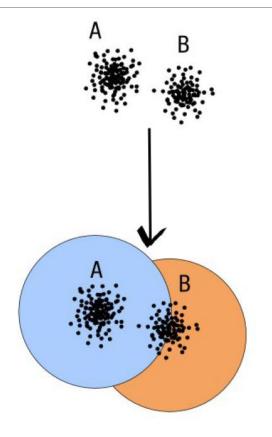
- Very accurate
- Requires a lot of memory and/or time

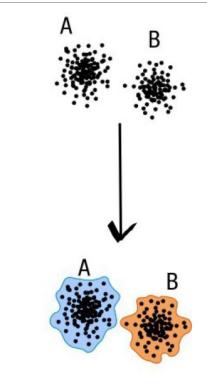

=> Impossible on very large datasets without strong filtering or sampling

How traditional clustering works ?

Fréderic Mahé communication

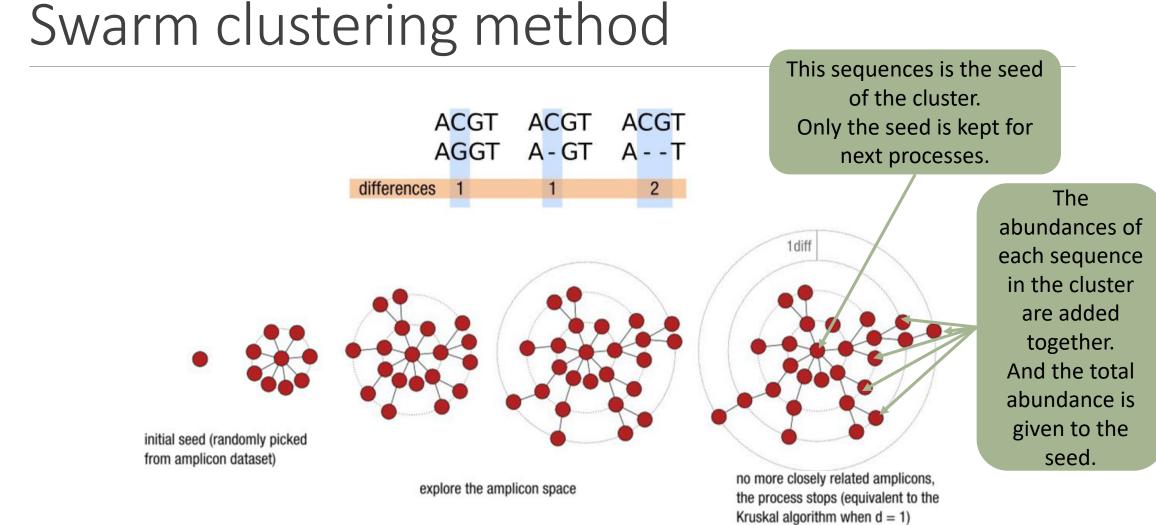
Input order dependent results

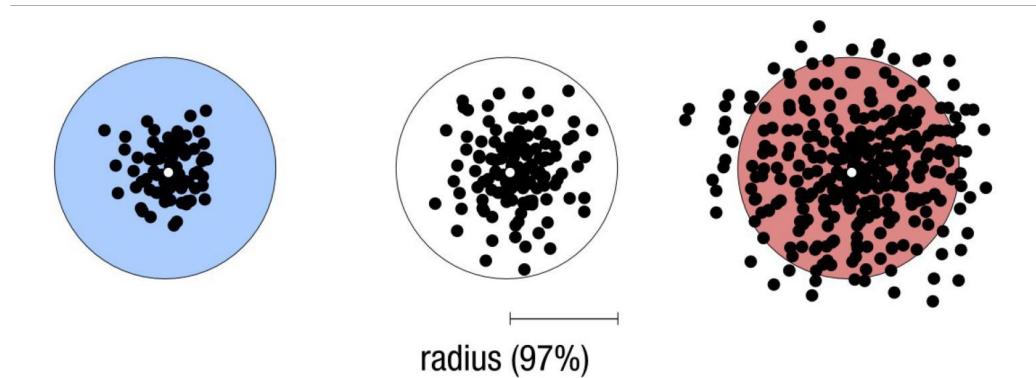



decreasing length, decreasing abundance, external references

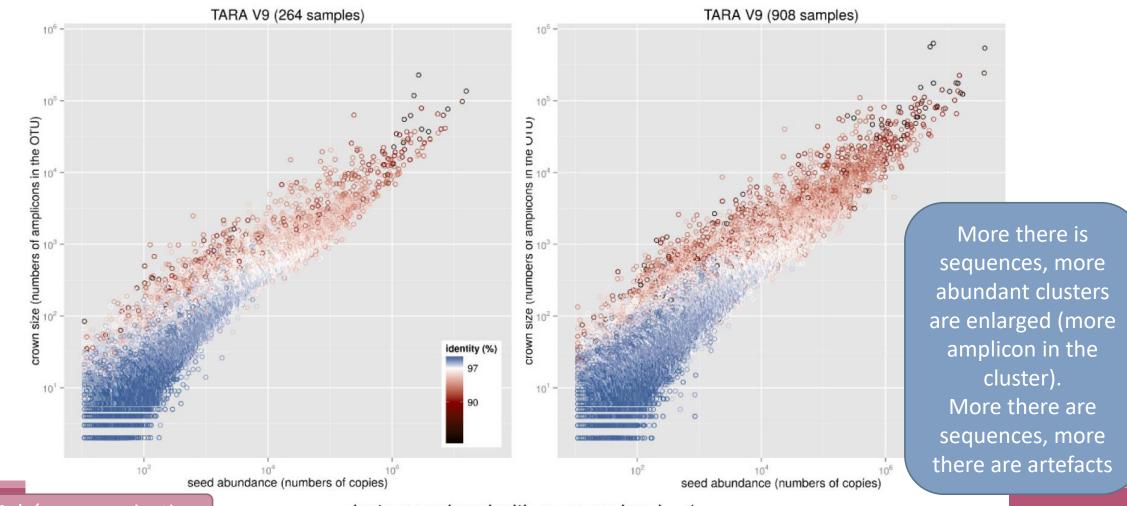
Fréderic Mahé communication

96


Single a priori clustering threshold


compromise threshold unadapted threshold natural limits of clusters

Fréderic Mahé communication


Fréderic Mahé communication

Comparison Swarm and 3% clusterings

Radius expressed as a percentage of identity with the central amplicon (97% is by far the most widely used clustering threshold)

Comparison Swarm and 3% clusterings

clusters produced with swarm using d = 1

Fréderic Mahé communication

Image: Strong Strong Stars Image: Strong Strong Stars Image: Stars <th>FROGS_2 Clustering swarm Single-linkage clustering on sequences (Galaxy Version 4.1.0+galaxy1)</th> <th>☆ Favorite 😪 Versions 🔽 Options</th> <th></th> <th></th> <th></th> <th></th>	FROGS_2 Clustering swarm Single-linkage clustering on sequences (Galaxy Version 4.1.0+galaxy1)	☆ Favorite 😪 Versions 🔽 Options				
he dereplicated sequences file (format: FASTA) contains the count by sample for each sequence (format: TSV): ROSS guidelines version New guidelines from version 3.2 the denoising step before a d3 dustering is no longer recommended since FROGS 3.2, but you can still choose it. Aggregation distance clustering Maximum number of differences between sequences in each aggregation Swarm step. (recommended d = 1) (distance) Roffice clustering Ves. refine clustering withfastidious swarm option No. perform dustering without refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yeg) (fastidious former but more accurate	Sequences file					
sourt file	Image: Construction of the second	•				
A: FROGS_1 Pre-process: count.tsv contains the count by sample for each sequence (format: TSV) ROGS guidelines version New guidelines from version 3.2 the denoising step before a d3 dustering is no longer recommended since FROGS 3.2, but you can still choose it. Aggregation distance clustering Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Rofe Custering Or service of 1 (default and recommended: Yes) (fastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended in the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended tree) (fastidious) Interview of the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended in the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended tree) (fastidious) Interview of the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended in the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended tree) (fastidious) Interview of the formed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended in the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended tree)	The dereplicated sequences file (format: FASTA)					
contains the count by sample for each sequence (format: TSV) ROGS guidelines version New guidelines from version 3.2 the denoising step before a d3 dustering is no longer recommended since FROGS 3.2, but you can still choose it. Aggregation distance clustering Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Refice clustering Maximum dustering withfastidious swarm option No. perform dustering with ur-fastidious swarm option No. perform dustering with ur fastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Inger but more accurate mail cluster (made of 2 rare amplicons)	Count file					
ROGS guidelines version New guidelines from version 3.2 the denoising step before a d3 dustering is no longer recommended since FROGS 3.2, but you can still choose it. Aggregation distance clustering Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Maximum number of distering without refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Indiger but more accurate maximum sequences in each aggregation Swarm sequences in each a	1 1 <td>•</td> <td></td> <td></td> <td></td> <td></td>	•				
New guidelines from version 3.2 New guidelines from version 3.2 the denoising step before a d3 dustering is no longer recommended since FROGS 3.2, but you can still choose it. Aggregation distance clustering Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Refine clustering Yes, refine dustering with 0-rfastidious swarm option No, perform dustering with out refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious Ionger but more accurate small cluster (made of 2 rare amplicons)	t contains the count by sample for each sequence (format: TSV)					
he denoising step before a d3 clustering is no longer recommended since FROGS 3.2, but you can still choose it. Aggregation distance clustering Aximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Refine clustering Yes, refine clustering withfastidious swarm option No, perform clustering without refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious Inonger but more accurate small cluster (made of 2 rare amplicons)	ROGS guidelines version					
Aggregation distance clustering 1 Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Refine clustering Image: Poisson of the sequence of the	New guidelines from version 3.2					
Aggregation distance clustering 1 Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Refine clustering Image: Poisson of the sequence of the	The densities star before a d2 directoring is no langer recommended since	FROCE 2.2 but you can still shoose it)			
1 Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance) Fefine clustering (a) Yes, refine dustering withfastidious swarm option No, perform dustering with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Ionger but more accurate mail cluster (made of 2 rare amplicons)		NOGS 5.2, but you can still choose it.				
Maximum number of differences between sequences in each aggregation Swarm step. (recommended d=1) (distance)			C			
Refine clustering () Yes, refine dustering withfastidious swarm option () No, perform dustering without refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Ionger but more accurate () (made of 2 rare amplicons)					\bigcirc	
Yes, refine dustering withfastidious swarm option No, perform dustering without refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Ionger but more accurate small cluster (made of 2 rare amplicons) small cluster (made of 2 rare amplicons)	Maximum number of differences between sequences in each aggregation	Swarm step. (recommended d=1) (distance)			Y	\bigcirc
O No, perform dustering without refinment Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Ionger but more accurate Small cluster (made of 2 rare amplicons)	Refine clustering		2		\bigcirc	40
Clustering will be performed with the Swarmfastidious option. It is recommended and only usable in association with a distance of 1 (default and recommended: Yes) (fastidious) Ionger but more accurate small cluster (made of 2 rare amplicons)					$\sim \sim \sim$	
distance of 1 (default and recommended: Yes) (fastidious) Ionger but more accurate small cluster (made of 2 rare amplicons)	O No, perform clustering without refinment			0		φ
Ionger but more accurate small cluster (made of 2 rare amplicons)		mmended and only usable in association with a		0 7	run	
small cluster (made of 2 rare amplicons)	distance of 1 (default and recommended: Yes) (fastidious)				0-2	
small cluster (made of 2 rare amplicons)	longer h	out more accurate			~ 20	50%
	longer			oluctor (made of 2 rare empli		- L On
virtual amplicon			Sinal C			QV
			🔵 virtual	amplicon	0 Z	L

Cluster stat tool

A RECURRENT TOOL

FROGS_Cluster_Stat Process some metrics on clusters (Galaxy Version 4.1.0+galaxy1)

Abundance file

7: FROGS_2 Clustering swarm: clustering_abundance.biom

Clusters abundance (format: BIOM)

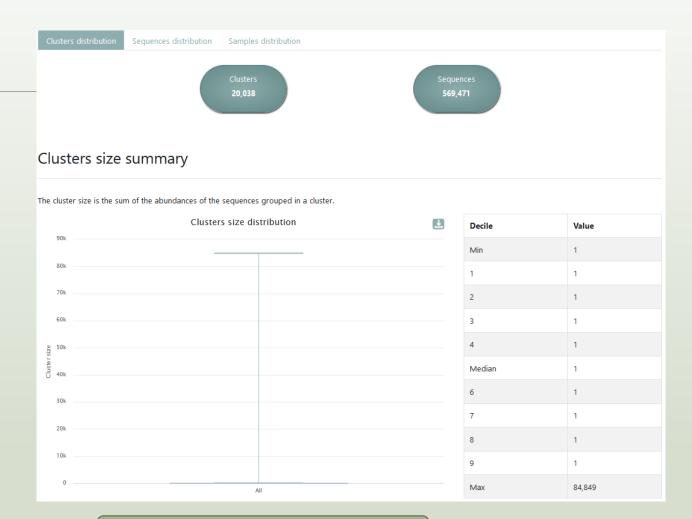
Practice:

LAUNCH CLUSTERING AND CLUSTERSTAT TOOLS

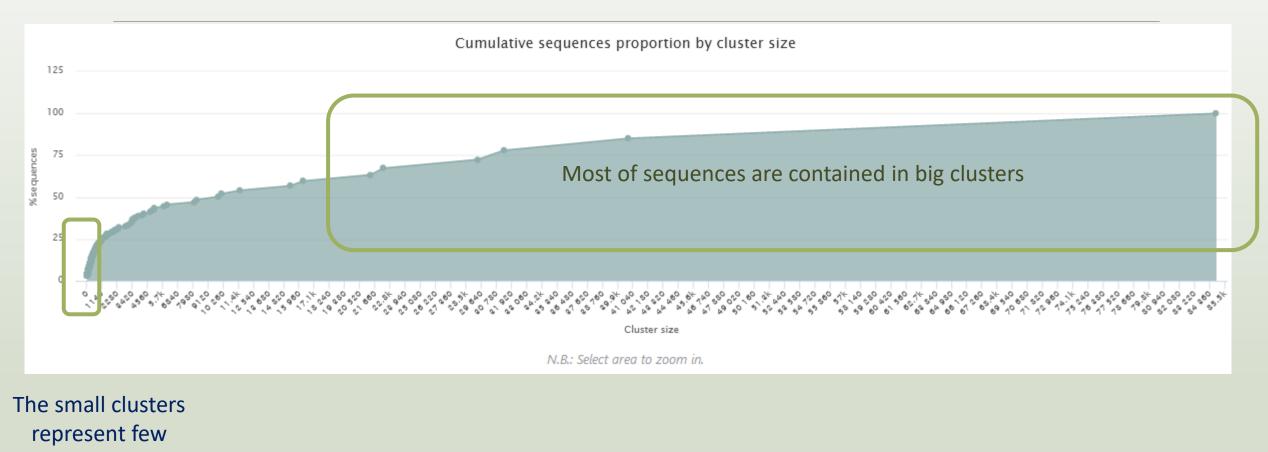
Go to « 16S » history

Launch the Clustering SWARM tool on that data set with guideline 3.2 *i.e. aggregation distance =1*

- \rightarrow objectives :
 - understand the outputs from clustering
 - understand the ClusterStat utility


1. How many clusters do you get ?

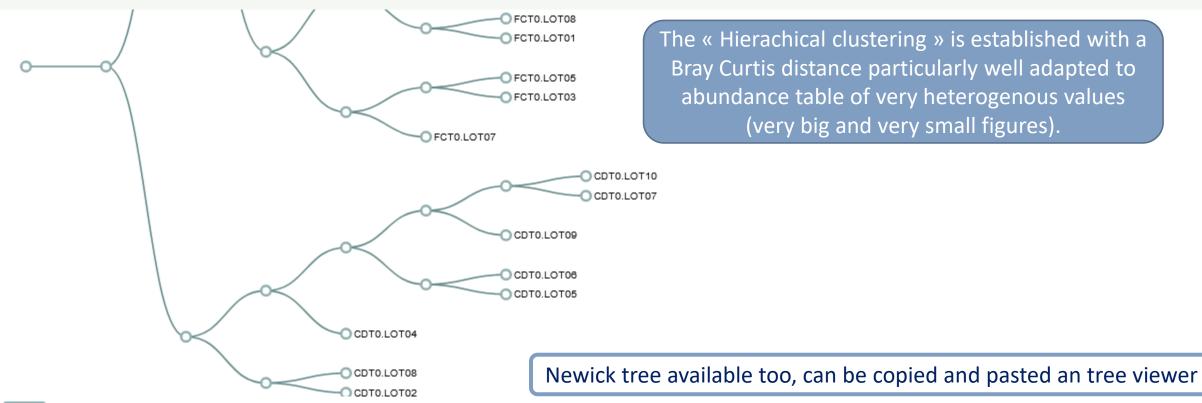
Launch FROGS Cluster Stat tools on the previous abundance biom file


FROGS Clusters stat Process some metrics on clusters.

- 2. Interpret the boxplot: Clusters size summary
- 3. Interpret the table: Clusters size details How many single singletons do you find?
- 4. What can we say by observing the **sequence distribution**?
- 5. How many clusters share "BHT0.LOT08" with at least one other sample?
- 6. How many clusters could we expect to be shared ?
- 7. How many sequences represent the 106 specific clusters of "CDT0.LOT06"?
- 8. This represents what proportion of "CDT0.LOT06"?
- 9. What do you think about it?
- 10. How do you interpret the « Hierarchical clustering » ?

Q1: How many clusters do you get ? Q2: Interpret the boxplot: **Clusters size summary** Q3: Interpret the table: **Clusters size details -How many single singletons do you find?**

Most of clusters are singletons

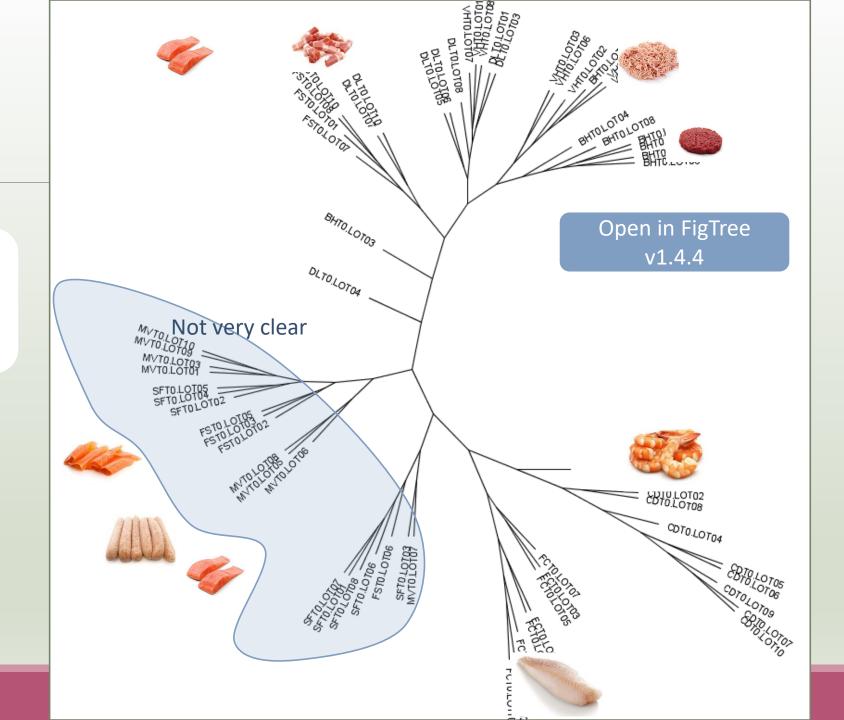


sequences

Ans	wer 5 to						
	9	Total clusters	Shared clusters	Own clusters 11	Total sequences 11	Shared sequences	Own sequences
	BHT0.LOT01	493	114	379	9,089	8,709	380
	BHT0.LOT03	433	140	293	Q5: How many clusters share "BHT0.LOT08" with at least one other s Q6: How many clusters could we expect to be shared ?		
	BHT0.LOT04	474	152	322	8,1 Q7: How many sequences represent the 106 specific clusters of "C		
	BHT0.LOT05	475	152	323	Q8: This represents what proportion of "CDT0.LOT06"? 8, Q9: What do you think about it?		
	BHT0.LOT06	490	156	334	8,996	8,662	334
	BHT0.LOT07	531	165	366	9,059	8,690	369
	BHT0.LOT08	430	201	229	8,715	8,486	229
	BHT0.LOT10	201 clusters	of BHT0.LOT0	77 8	8,937	8,630	307
	CDT0.LOT02		on at least once		9,270	8,767	503
	CDT0.LOT04		ther sample	3	8,918	8,609	309
	CDT0.LOT05	384	241	143	8,520	8,377	143
	CDT0.LOT06	365	256	109	8,373	8,264	109
	CDT0.LOT07	512	100	412 ~3	0 % of the spec	ific clusters of C	DT0.LOT06
	CDT0.LOT08	556	162	394	~30 % of the specific clusters of CDT0.LOT06 represent around ~1% of sequences		

represent around ~1% of sequences Could be interesting to remove if individual variability is not the concern of user

Answer 10 Q10: How do you interpret the « Hierarchical clustering » ?

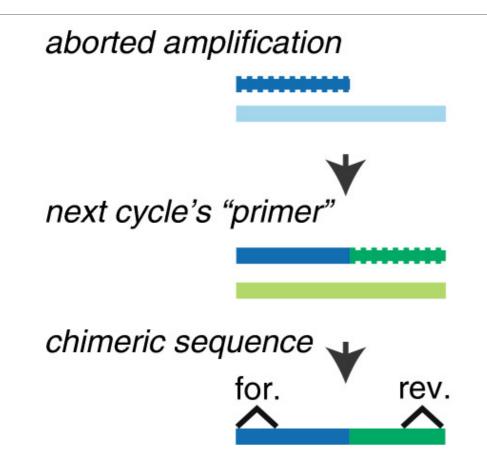


Newick

((((CDT0.LOT02,CDT0.LOT08):0.312,(CDT0.LOT04,((CDT0.LOT05,CDT0.LOT06):0.518,(CDT0.LOT09,(CDT0.LOT07,CDT0.LOT10):0.533):0.582):0.757):0.816):0.840,(((FCT0.LOT07,FCT0.LOT03,FCT0.LOT05):0.257):0.262, ((FCT0.LOT01,FCT0.LOT08):0.352,(FCT0.LOT06,(FCT0.LOT02,FCT0.LOT10):0.427):0.631):0.805):0.832,(((MVT0.LOT07,SFT0.LOT03):0.493,(FST0.LOT06,(SFT0.LOT06,(SFT0.LOT08, (SFT0.LOT01,SFT0.LOT07):0.132):0.345):0.354):0.570):0.655,(((MVT0.LOT06,(MVT0.LOT05,MVT0.LOT08):0.439):0.511,((FST0.LOT02,(FST0.LOT03,FST0.LOT05):0.147):0.179,((SFT0.LOT02, (SFT0.LOT04,SFT0.LOT05):0.211):0.227,((MVT0.LOT01,MVT0.LOT03):0.161,(MVT0.LOT09,MVT0.LOT10):0.341):0.466):0.526):0.661):0.681,(DLT0.LOT05,DLT0.LOT05,DLT0.LOT06):0.173,(DLT0.LOT08,((VHT0.LOT07, (VHT0.LOT01,VHT0.LOT08):0.095):0.184,(DLT0.LOT01,DLT0.LOT03):0.231):0.267):0.325):0.411,((BHT0.LOT04,(BHT0.LOT08,((BHT0.LOT07,BHT0.LOT07):0.224,(BHT0.LOT05,BHT0.LOT06):0.231):0.309):0.352):0.462, ((VHT0.LOT03,VHT0.LOT06):0.387,(VHT0.LOT02,(BHT0.LOT10,(VHT0.LOT04,VHT0.LOT10):0.272):0.336):0.401):0.463):0.590):0.711,(BHT0.LOT03,((FST0.LOT07,(FST0.LOT07,(FST0.LOT01, (FST0.LOT08,FST0.LOT10):0.254):0.388):0.408,(DLT0.LOT07,DLT0.LOT10):0.440):0.666):0.734):0.745):0.827):0.856):0.875):0.911):0.938);

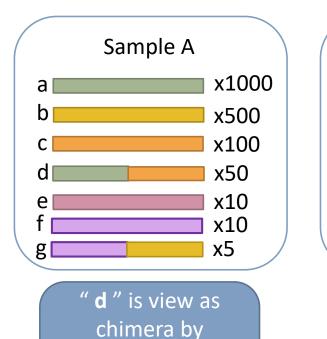
Q10: How do you interpret the « Hierarchical clustering » ?

N.B.: Hierarchical clustering is not all a phylogenetic tree !Please consult with caution.



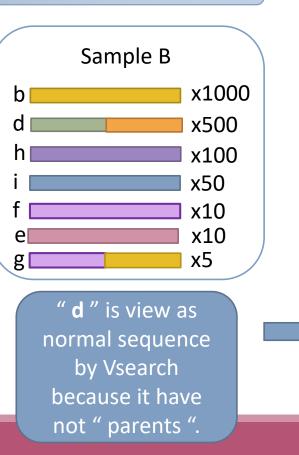
3-Chimera removal tool

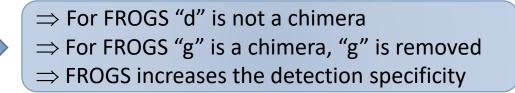
What is chimera ?


PCR-generated chimeras are typically created when an aborted amplicon acts as a primer for a heterologous template. Subsequent chimeras are about the same length as the non-chimeric amplicon and contain the forward (for.) and reverse (rev.) primer sequence at each end of the amplicon.

Chimera: from 5 to 45% of reads (Haas 2011 doi: 10.1101/gr.112730.110)

A smart removal chimera to be accurate





Vsearch

Its " parents " are

presents

Practice:

LAUNCH THE REMOVE CHIMERA TOOL

Exercise

Go to « 16S » history

Launch the « FROGS_3 Remove Chimera » tool

Follow by the « FROGS ClusterStat » tool

 \rightarrow objectives :

- understand the efficiency of the chimera removal
- make links between small abundant ASVs and chimeras

FROGS_3 Remove chimera Remove PCR chimera in each sample (Galaxy Version 4.1.0+galaxy1)

Sequences file (format: FASTA)

6: FROGS_2 Clustering swarm: seed_sequences.fasta

The sequences file

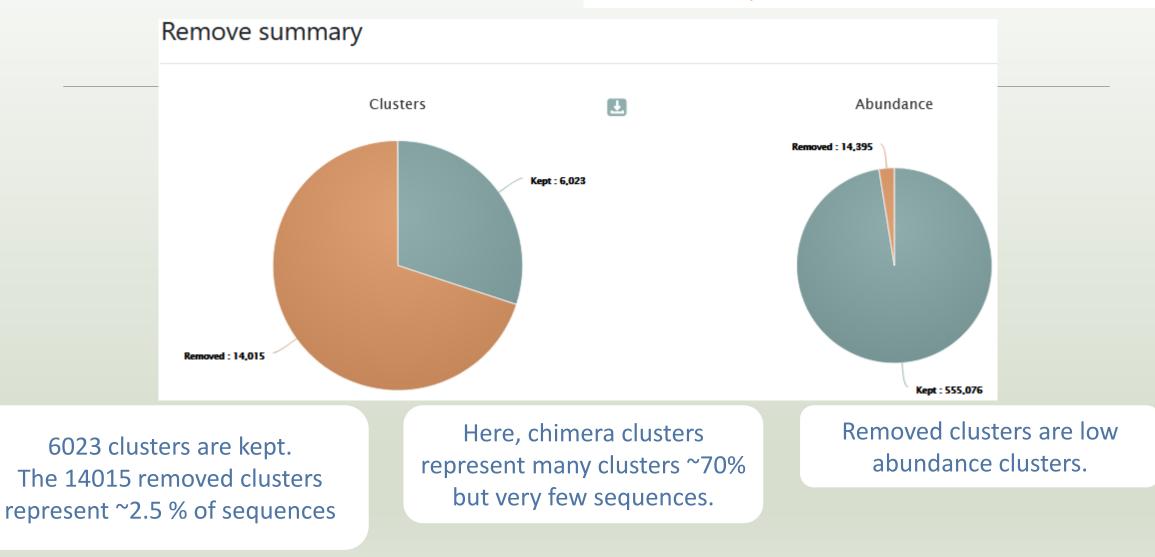
Abundance type

BIOM file

Select the type of file where the abundance of each sequence by sample is stored.

Abundance file (format: BIOM)

00


7: FROGS_2 Clustering swarm: clustering_abundance.biom

It contains the count by sample for each sequence.

Exercise

- 1. Understand the « FROGS remove chimera : report.html»
 - a. How many clusters are kept after chimera removal?
 - b. How many sequences that represent ? So what abundance?
 - c. What do you conclude ?
- 2. What is the size of the largest removed cluster of chimeras?
- 3. Compare the HTML files
 - a. Of what are mainly composed singleton ? (compare with previous report.html)
 - b. What are their abundance?
 - c. What do you conclude ?

Q1a: How many clusters are kept after chimera removal? Q1b: How many sequences that represent ? So what abundance? Q1c: What do you conclude ?

120

Q2: What is the size of the largest removed cluster of chimeras?

Sample îl	Clusters kept î↓	% Clusters kept î↓	Cluster abundance kept î↓	% Cluster abundance kept îi	Chimeric clusters removed îi	Chimeric abundance removed îi	Abundance of the most abundant chimera removed	Individual chimera detected îi	Individual chimera abundance detected îi	Abundance of the most abundant individual chimera detected
VHT0.LOT02	205	35.90	8,862	The largest	t cluster	410	19	372	446	19
MVT0.LOT10	254	60.48	9,313	of chim containe		180	10	169	304	92
VHT0.LOT08	261	45.87	8,852	sequen		332	10	310	344	11
VHT0.LOT01	198	35.42	8,832	95.90	361	378	8	365	382	8

92 chimeras are detected but only 10 are removed because 82 have been invalidated by the cross validation

Q3a: Of what are mainly composed singleton ? (compare with previous report.html) Q3b: What are their abundance? Q3c: What do you conclude ?

	Cluster_Stat report		
Cluster size	Number of cluster	% of all clusters	after clustering
1	19,267	96.15	
2	150	0.75	
3	22	0.11	
4	10	0.05	Most small clu
			are compose

chimeras

Cluster size	ţĻ	Number of cluster	% of all clusters	
1		5,387	89.44	
2		49	0.81	
3		15	0.25	
4		7	0.12	

Cluster_Stat report after chimera removing

4- Cluster Filter tool

4- Cluster Filter

Goal: This tool deletes clusters among conditions enter by user. If an cluster reply to at least 1 criteria, the cluster is deleted.

Criteria:

The cluster prevalence: The number of times the cluster is present in the environment, *i.e.* the number of samples where the cluster must be present.

Cluster size: An cluster that is not large enough for a given proportion or count will be removed. Biggest Cluster : Only the X biggest are conserved.

Contaminant: If cluster sequence matches with phiX, chloroplastic/mitochondrial 16S of A. Thaliana or your own contaminant sequence.

	FROGS_4 Cluster filters Filters clusters on several criteria. (Galaxy Version 4.1.0+galaxy1) The Provide Prov					
	Sequence file					
	Image: Description of the second s					
One tool, 4 criteria	The sequence file to filter (format: FASTA) Abundance file					
	🗅 🗘 🗅 14: FROGS_4 Cluster filters: clusterFilters_abundance.biom -					
	The abundance file to filter (format: BIOM) Minimum prevalence method					
$\begin{pmatrix} 1 \end{pmatrix}$	all samples					
	Minimum prevalence					
	Fill the field only if you want this treatment. Keep cluster if it is present in at least this number of samples. Minimum cluster abundancy as proportion or count. We recommend to use a proportion of 0.00005.					
(2)	as proportion					
	Minimum proportion of sequences abundancy to keep cluster					
	Fill the field only if you want this treatment. Example: 0.00005, recommended by Bokulich et al 2013, to keep cluster with at least 0.005% of all sequences (min_abundance)					
	N biggest clusters					
(3)						
	Fill the fields only if you want this treatment. Keep the N biggest clusters (nb-biggest-clusters)					
\frown	Search for contaminant clusters.					
(4)	No contaminant filter					

Either you use your own contaminant fasta file or you select one among available ones. (--contaminant)

FROGS_4 Cluster filters Filters clusters on several criteria. (Galaxy Version 4.1.0+galaxy1)	☆ Favorite
Sequences file	
Image: Brown of the second	•
The sequence file to filter (format: FASTA)	
Abundance file	
Image: Constraint of the second se	•
The abundance file to filter (format: BIOM)	
Minimum prevalence method	
all samples	•
Minimum prevalence	
Here, user wants that each cluster are present in a	at least 4 samples.
Fill the field only if you want this treatment. Keep OTU if it is present in at least this number of samples.	

FROGS_4 Cluster filters Filters clusters on several criteria. (Galaxy Versio	on 4.1.0+galaxy1)	☆ Favorite
Sequences file 9: FROGS Remove chimera: non_chimera.fasta The sequence file to filter (format: FASTA)		•
Abundance file Image: Constraint of the soundance file to filter (format: BIOM)	ance.biom	•
Minimum prevalence method replicate identification File of replicated sample names	Need to know group composition	•
Image: Construction of the product		hat each cluster of its group to be alf of samples making up the group

Fill the field only if you want this treatment. Keep OTU present in at least this proportion of replicates in at least one group (must be a proportion between 0 and 1).

How to build the file of replicated sample names ?

The file must consist of only 2 columns, separated by a tab.

The first column contains the exact names of the samples (exactly those contained in the biom file)

The second column contains the name of the group to which they belong. Please note that group names must not contain accents, spaces or special characters.

Example:	<pre>sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9 sample10 sample11 sample12</pre>	rich rich richAB richAB richAB richAB richAB low lowAB lowAB april21	Thanks to get data tool, add it in your history
	sample13	april21	

Results:

if we want to keep the clusters that are present in at least 50% of the samples of a same group, we set the threshold at 0.5.

The process will therefore keep the clusters present in at least

- 3 "richAB" samples,
- 1 "lowAB" sample
- 1 "april21" sample

and all clusters in sample9 since it is the only representative of the "low" condition.

sample1	rich
sample2	rich
sample3	rich
sample4	richAB
sample5	richAB
sample6	richAB
sample7	richAB
sample8	richAB
sample9	low
sample10	lowAB
sample11	lowAB
sample12	april21
sample13	april21

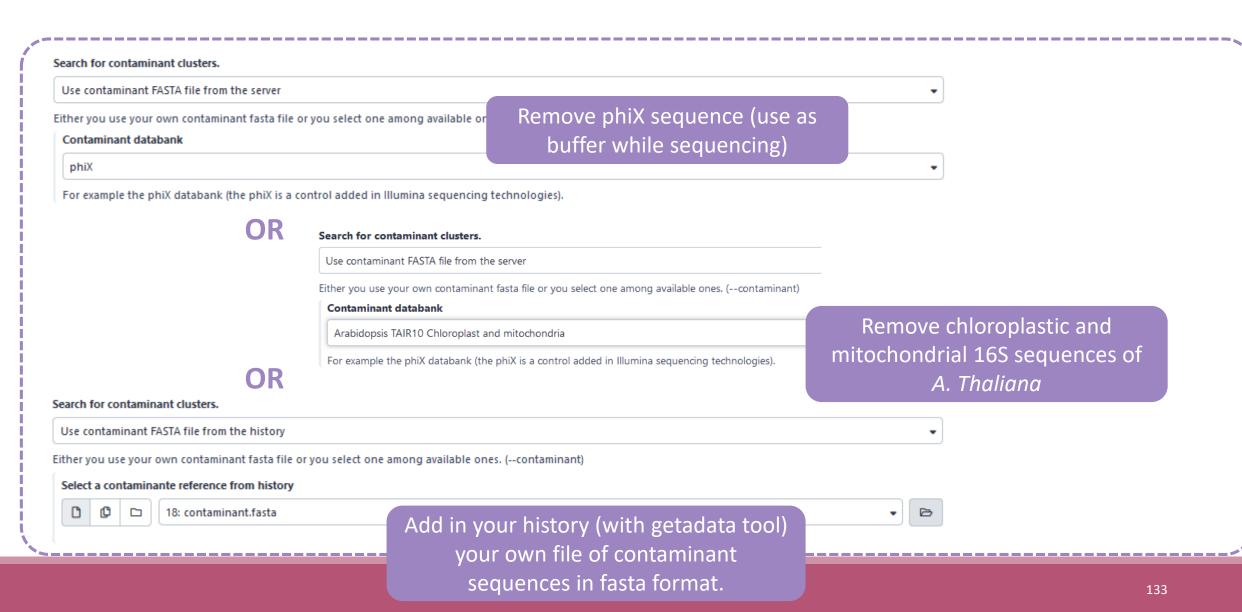
mistakes not to be made:

<pre>sample2 rich sample3 rich sample4 richAB sample5 richAB sample6 richAB sample7 richAB sample8 low sample9 lowAB sample10 lowAB sample11 lowAB sample11 april21 sample13 april21</pre>	<pre>sample rich sample 3 rich sample4 richAB sample5 richAB sample6 richAB sample7 richAB sample8 low sample9 lowAB sample10 lowAB sample11 lowAB sample11 april21 sample13 april21</pre>	sample2 rich sample3 rich sample4 rich AB sample5 richAB sample6 richAB sample7 richAB sample8 low sample8 low sample10 lowAB sample11 lowAB sample11 lowAB sample12 april21 sample13 april21
valid	Creates artificially 3 columns	Creates artificially 3 columns

² Cluster size filter

Minimum cluster a	oundancy as proportion or count. We recommend to use a proportion of 0.00005.
as proportion	\bullet
Minimum propor	ion of sequences abundancy to keep cluster
5e-05	
Fill the field only	you want this treatment. Example: 0.00005, recommended by Bokulich et al 2013, to keep cluster with at least 0.005% of all sequences (min_abundance)
	Minimum cluster abundancy as proportion or count. We recommend to use a proportion of 0.00005.
	Minimum number of sequences to keep cluster
	2
	Fill the field only if you want this treatment. Ex: 2 to keep cluster with at least 2 sequences, so remove single singleton (min_abundance)
abundan	user wants that each cluster has an ce representing at least 0.005% of total mber of sequences (<i>i.e.</i> 0.00005). Here, user wants that each cluster has an abundance at least equals to <u>2 sequences</u> -> <u>single</u> <u>singleton</u> will be removed.

³ Filter : Keep biggest cluster


N biggest clusters

50

Fill the fields only if you want this treatment. Keep the N biggest clusters (--nb-biggest-clusters)

Here, user wants to keep the 50 biggest clusters.

Contaminant filter

Practice:

LAUNCH THE CLUSTER FILTER TOOL

Exercice:

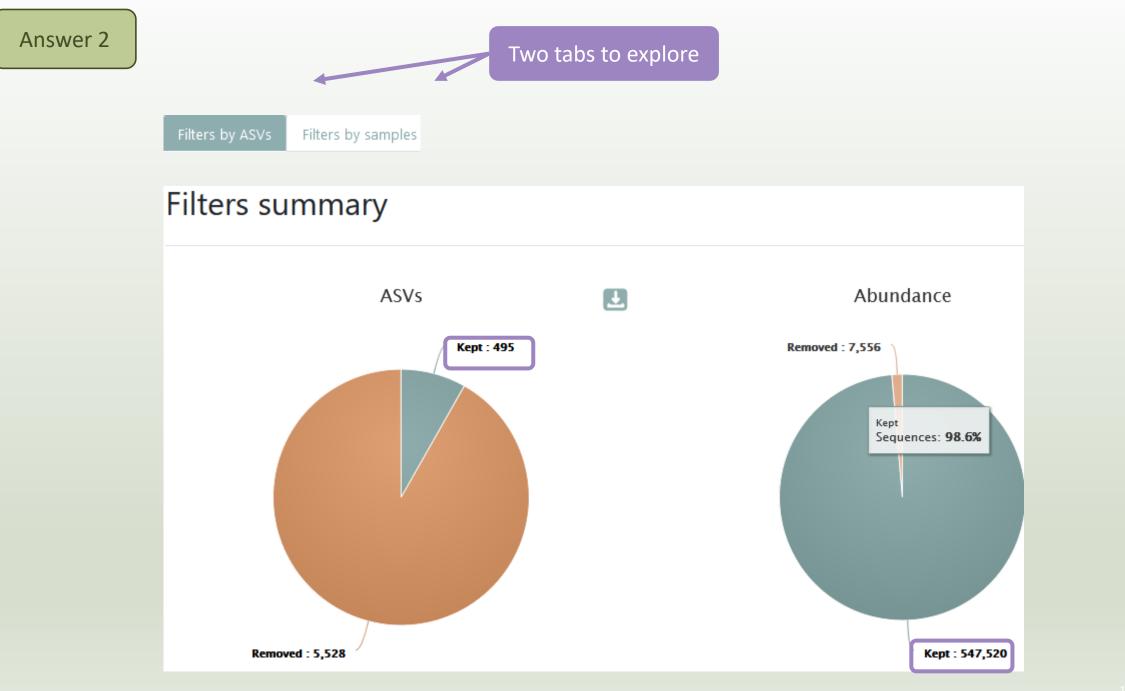
Go to history « 16S » history

Launch « cluster Filter » tool with non_chimera_abundance.biom, non_chimera.fasta

Use 3 criteria to filter clusters:

- cluster must be present at least in 4 samples
- Each cluster must represented a minimum of 0.005 % = 0.00005 ⁽¹⁾ of the totality of the sequences
- cluster of phiX ⁽²⁾ must be removed

 \rightarrow objective : play with filters, understand their impacts on falses-positives clusters

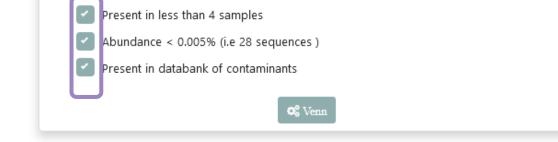

⁽¹⁾ Nat Methods. 2013 Jan;10(1):57-9. doi: 10.1038/nmeth.2276. Epub 2012 Dec 2.
 Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.
 Bokulich NA1, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG.

⁽²⁾ https://www.illumina.com/products/by-type/sequencing-kits/cluster-gen-sequencing-reagents/phix-control-v3.html

Exercice:

- 1. What are the output files of "cluster Filter"?
- 2. Explore "FROGS Filter : report.html" file. How many cluster have you removed ? How many cluster do they remain ? Which sample keeps the least cluster and for which reason?
- 3. Build the Venn diagram on the two filters. How many cluster have you removed with each filter ?
- 4. How many own cluster remains in BHT0.LOT08 ? To retrieve this information, which tool do you need to launch previously ?

	FROGS_4 Cluster filters Filters clusters on several criteria. (Galaxy Version 4.1.0+galaxy1)	☆ Favorite 💌 Options		
Answer 1	Sequence file			
	Image: Construction of the second	Outputs		
	The sequence file to filter (format: FASTA)	Outputs		
	Abundance file	17: FROGS_4 Cluster filters: report.html		
	Image: Constraint of the second sec	16: FROGS_4 Cluster filters: excluded.tsv		
	The abundance file to filter (format: BIOM)	15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta		
	Minimum prevalence method all samples	14: FROGS_4 Cluster filters: clusterFilters_abundance.biom		
	Minimum prevalence			
	4			
	Fill the field only if you want this treatment. Keep cluster if it is present in at least this number of samples.			
	Minimum cluster abundancy as proportion or count. We recommend to use a proportion of 0.00005.			
	as proportion	-		
	Minimum proportion of sequences abundancy to keep cluster			
	0.00005			
	Fill the field only if you want this treatment. Example: 0.00005, recommended by Bokulich et al 2013, to keep cluster with at least 0.005	% of all sequences (min_abundance)		
0.005% = 0.0000	D5 st clusters			
	Fill the fields only if you want this treatment. Keep the N biggest clusters (nb-biggest-clusters)			
	Search for contaminant clusters.			
	Use contaminant FASTA file from the server			
	Either you use your own contaminant fasta file or you select one among available ones. (contaminant) Contaminant databank			
	phiX			
	For example the phiX databank (the phiX is a control added in Illumina sequencing technologies).	137		

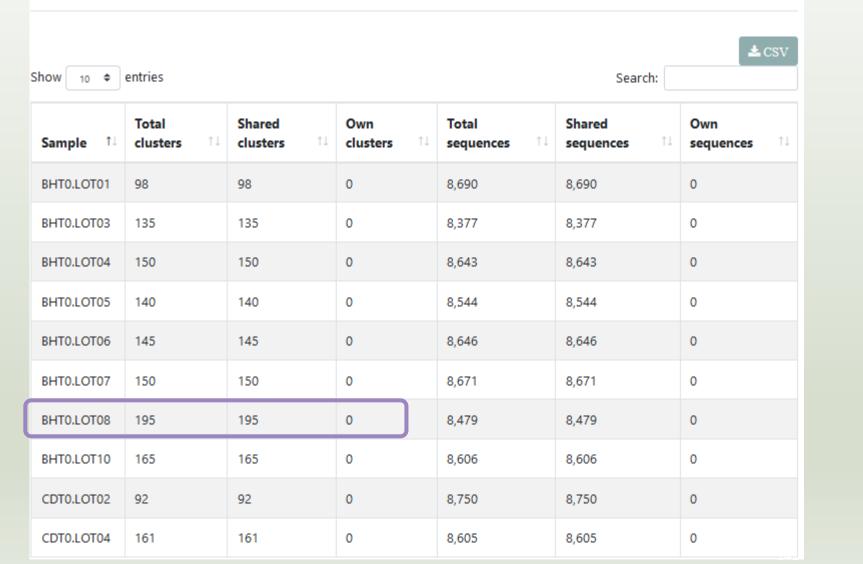


Details by samples

Show 10 🗢 entries			Sort by Kept to find the answer		Search:		
Sample name îl	Initial ᡝ	Kept ↑↓	Present in less than 4 samples	Abundance < 0.00 28 sequences)	5% (i.e ↑↓	Present in databank of contaminants	
SFT0.LOT06	438	34	381	403		0	
SFT0.LOT07	278	66	191	212			
SFT0.LOT01	312	70	220	242	This sample have only very small		
SFT0.LOT08	339	88	230	251	clusters that are		
CDT0.LOT02	240	92	147	148	shared by very few other samples.		
MVT0.LOT10	254	96	156	158			
SFT0.LOT03	196	97	92	98		0	
BHT0.LOT01	173	98	73	75		0	
CDT0.LOT07	190	99	90	91		0	
SFT0.LOT05	215	105	108	109		0	

Filters intersections

Draw a Venn to see which ASVs had been deleted by the filters chosen (Maximum 6 options):



Venn on removed ASVs Abundance < Present in less than 4 samples 0.005% (i.e 28 sequences) 5 5477 46 • No phiX sequence. Most clusters are both 0 small and not shared by 4 samples. 0 0 0

report.html of **ClusterStat** tool

Because of the "prevalence = 4" criterion, there is no longer an "own cluster" for any sample.

Sequences count

Overview

- 1. Preprocessing
- 2. Clustering without fixed-threshold
- 3. Remove chimera
- 4. Cluster filters
 - \rightarrow ASV Amplicon Sequence Variant

Affiliation tool

	silva138.1 16S		
	silva138.1 pintail100 16S		
FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by R	psilva138.1 pintail80 16S	y1)	• Options
	silva138.1 pintail50 16S	DAIRYdb_v1.1.2	options
Using reference database	silva138.1 18S	EZBioCloud_052018	
	silva138.1 235	PHYMYCO-DB_2013	
165 SILVA 138.1	silva138.1 28S	BOLD_COI-5P_022019	•
Select reference from the list	silva138 16S	BOLD_COI-5P_1percentN_022019	
Also perform RDP assignation? Optional	silva138 pintail100 16S	MIDORI_UNIQUE_COI_20180221	
	silva138 pintail80 16S	MIDORI_UNIQUE_COI_MARINE_20180221	
⊘ Yes ⊗ No	silva138 pintail50 16S	silva128 16S	
	silva138 18S	silva128_pintail100 16S	
axonomy affiliation will be perform thanks to Blast. This option allows to perfo	Isilva138 SSU	silva128_pintail80 16S	
axonomic ranks	silva132 LSU	silva128_pintail50 16S	
Domain Phylum Class Order Family Genus Species	silva132 28S	silva128 18S	
	silva132 16S	silva128 23S	
he ordered taxonomic rank levels stored in BIOM. Each rank is separated by on	e silva132_pintail100 16S	silva123 16S	
Sequence file	silva132_pintail80 16S	silva123 23S	
15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta	silva132_pintail50 16S	silva123 18S	• 🖻
	silva132 18S	midas_S119_1.20	
he sequences to affiliated (format: FASTA)	silva132 23S	pr2_4.11.0	
Abundance file	greengenes13_5	pr2_gb203_4.5	
	midas_S132_3.6	Unite_s_7.1_20112016	
14: FROGS_4 Cluster filters: clusterFilters_abundance.biom	midas_S123_2.1.3		• 🖻
	Psyringae CTS 20200131		
	pr2_4.12.0		
	rpoB_122017		
or more details on FROGS databanks:	Unite_Fungi_8.2_20200204		
ttp://genoweb.toulouse.inra.fr/frogs_databanks/	Unite_Euka_8.2_20200204	For ITS	
	Unite_Fungi_8.0_18112018		
ssignation/readme.txt	Unite_Euka_8.0_18112018		
	RSyst_Diatom_7		

1 Cluster = 2 affiliations

RDPClassifier*: one affiliation with bootstrap, on each taxonomic subdivision.

Bacteria; (1.0); Actinobacteriota; (1.0); Actinobacteria; (1.0); Propionibacteriales; (1.0); Propionibacteriaceae; (1.0); Cutibacterium; (1.0); Cutibacterium acnes; (0.57);

NCBI Blastn+** : one affiliation with identity %, coverage %, e-value, alignment length and a special tag "Multi-affiliation".

Bacteria;Actinobacteriota;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Cutibacterium;Multi-affiliation Identity: 100% and Coverage: 100%

* Appl. Environ. Microbiol. August 2007 vol. 73 no. 16 5261-5267. doi : 10.1128/AEM.00062-07 Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Qiong Wang, George M.Garrity, James M. Tiedje and James R. Cole

** BMC Bioinformatics 2009, 10:421. doi:10.1186/1471-2105-10-421
 BLAST+: architecture and applications
 Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin Bealer and Thomas L Madden

Affiliation Strategy of FROGS

Blastn+ with "Multi-affiliation" management

Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus xylosus

Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus saprophyticus

Strictly identical (V1-V3 amplification) on 499 nucleotides

Which one to choose?

Affiliation Strategy of FROGS

Blastn+ with "Multi-affiliation" management

Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus xylosus

Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus saprophyticus

Strictly identical (V1-V3 amplification) on 499 nucleotides

Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;**Multi-affiliation**

We cannot choose without preconceived ideas.

Practice:

LAUNCH THE FROGS_5 TAXONOMIC AFFILIATION TOOL

Exercice:

Go to history « 16S » history

Launch the « FROGS_5 taxonomic affiliation » tool with

- SILVA 138.1 16S database pintail 100
- \rightarrow objectives :
 - understand abundance tables columns
 - understand the BLAST affiliation

FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by RDPtools and BLAST (Galaxy Version 4.1.0+galaxy1)	
Using reference database	
165 SILVA 138.1_pintail100	•
Select reference from the list Also perform RDP assignation?	
 ○ Yes ⊘ No 	
Taxonomy affiliation will be perform thanks to Blast. This option allows to perform it also with RDP classifier tool (default No) (rdp) Taxonomic ranks	
Domain Phylum Class Order Family Genus Species	
The ordered taxonomic rank levels stored in BIOM. Each rank is separated by one space (taxonomic-ranks) Sequence file	
C D 15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta	
The sequences to affiliated (format: FASTA)	
Abundance file	
Image: Constraint of the second se	ł
The abundance file (format: BIOM)	


- 1. What are the « FROGS_5 taxonomic affiliation tool » output files ?
- 2. How many sequences are affiliated by BLAST?
- 3. How many ASV have a "multiaffiliation" at Order ranks ?
- 4. Click on the « eye » button on the BIOM output file, what do you understand ?

Use the **Biom_to_TSV tool** on this last file and click again on the "eye" • on the new output generated.

≥

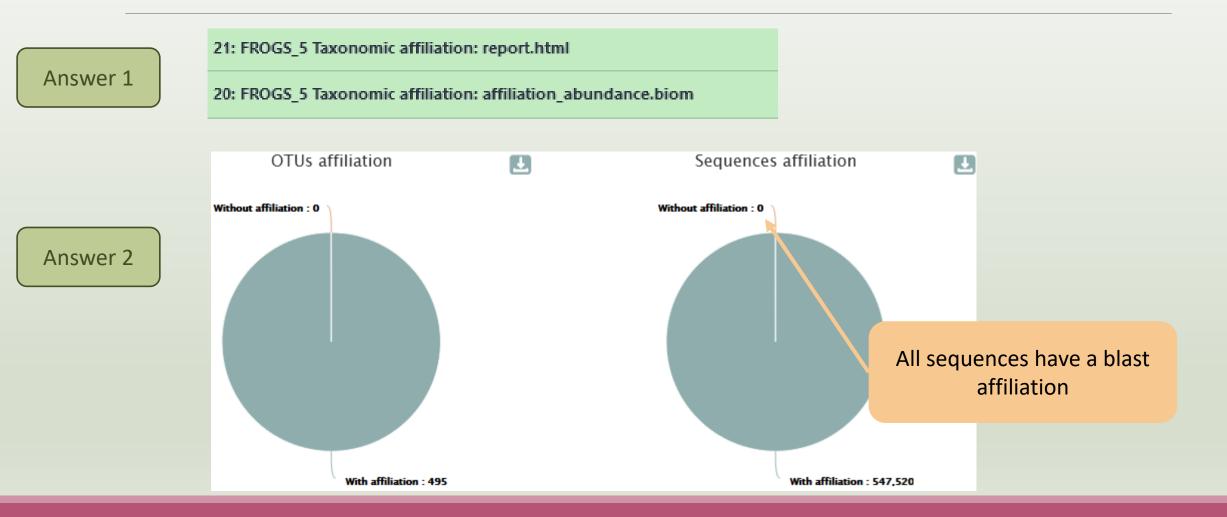
ambiguous ASV with multiaffiliation

lignements in a second TSV.

FROGS_0 Demultiplex reads Attribute reads to samples in functio FROGS_1 Pre-process merging, denoising and dereplication FROGS_2 Clustering swarm Single-linkage clustering on sequence FROGS Cluster Stat Process some metrics on clusters FROGS 3 Remove chimera Remove PCR chimera in each sample FROGS_4 Cluster filters Filters clusters on several criteria. FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions fi FROGS 5 Taxonomic affiliation Taxonomic affiliation of each ASV FROGS_6_Affiliation_Stat Process some metrics on taxonomies FROGS Tree Reconstruction of phylogenetic tree FROGS Affiliation Filters Filters ASVs on several affiliation criteria FROGS Affiliation postprocess Aggregates ASVs based on alignm FROGS Abundance normalisation Normalise ASV abundance. FROGSFUNC_1_placeseqs_and_copynumbers Places ASVs into a r FROGSFUNC_2_functions Calculates functions abundances in eac FROGSFUNC_3_pathways Calculates pathway abundances in each FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compa-FROGS TSV to BIOM Converts a TSV file in a BIOM file 1 FROGS BIOM to TSV Converts a BIOM file in TSV file FROGSSTAT Phyloseq Import Data from 3 files: biomfile, samplefil FROGSSTAT Phyloseq Composition Visualisation with bar plot an FROGSSTAT Phyloseq Alpha Diversity with richness plot FROGSSTAT Phyloseg Beta Diversity distance matrix FROGSSTAT Phyloseg Sample Clustering of samples using differe FROGSSTAT Phyloseq Structure Visualisation with heatmap plot a FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform N FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prej FROGSSTAT DESeq2 Visualisation to extract and visualise different

5. Click again on the "eye" on the new output generated.

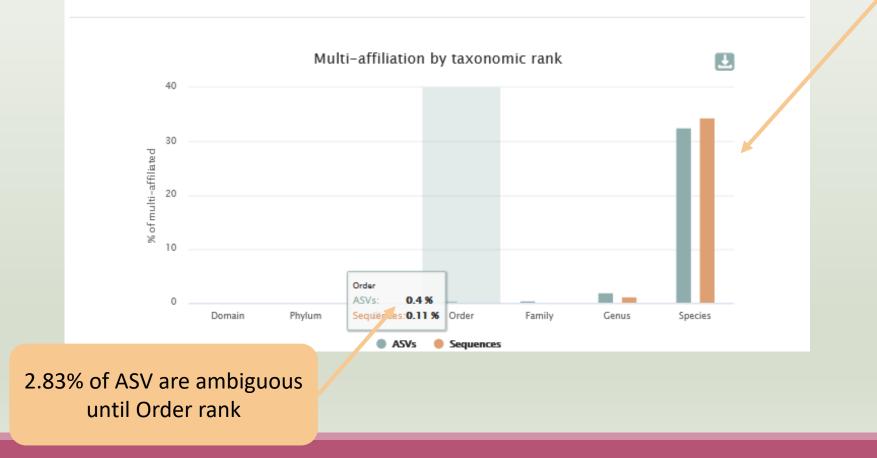
Or open it in your favorite spreadsheet (Excel, google sheet, Calc...) !


Now, what do you think about the file format? What does it contain?

- 6. Observe and describe
- In FROGS BIOM to TSV: abundance_silva.tsv, the different columns of cluster 3
 - a. how would you qualify the alignment between the ASV3 seed and the sequences of the silva database?
 - b. What does it mean e-value = 0 ?
 - c. What is the header of column that shows the sequence of ASV seed ?
 - d. How many sequences have ASV3 in total?
 - e. How many sequences have ASV3 in MVT0.LOT10? What is the sample where ASV3 is absent?

- 7. Observe and describe
- In FROGS BIOM to TSV: multi_affiliations.tsv, identifies the lines corresponding to cluster3
 - a. Why cluster3 has a multiaffiliation for species ?
 - b. Why "Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Lactobacillus sakei" is present 74 times ?

Q1: What are the « FROGS_5 taxonomic affiliation tool » output files ?


Q2: How many sequences are affiliated by BLAST ?

Answer 3

Most of ASVs are ambiguous at species rank. For this study, V1V3 amplicon is not resolutive enough to identify the species.

Blast multi-affiliation summary

Answer 4

{"id": null, "format": "Biological Observation Matrix 1.0.0", "format_url": "http://biom-format.org", "type": "OTU table" "2023-03-28T11:27:32", "rows": [{"id": "Cluster_1", "metadata": {"comment": [], "seed id": "17_41", "blast affiliations": ["Bacteria", "Firmicutes", "Bacilli", "Lactobacillales", "Listeriaceae", "Brochothrix", "unknown species"], "evalue": "0.4 "perc query coverage": 100.0}, {"subject": "CP023643.1319711.1321267", "taxonomy": ["Bacteria", "Firmicutes", "Bacilli", "Brochothrix", "Brochothrix thermosphacta"], "evalue": "0.0", "aln length": 497, "perc identity": 100.0, "perc query cove "CP023483.1387851.1389407", "taxonomy": ["Bacteria", "Firmicutes", "Bacilli", "Lactobacillales", "Listeriaceae", "Brochot "0.0", "aln_length": 497, "perc_identity": 100.0, "perc_query_coverage": 100.0}, {"subject": "CP023643.1330505.1332061", "Bacilli", "Lactobacillales", "Listeriaceae", "Brochothrix", "Brochothrix thermosphacta"], "evalue": "0.0", "aln length": "perc_query_coverage": 100.0}, {"subject": "CP023483.1398643.1400199", "taxonomy": ["Bacteria", "Firmicutes", "Bacilli", "Brochothrix", "Brochothrix thermosphacta"], "evalue": "0.0", "aln_length": 497, "perc_identity": 100.0, "perc_query_cove "CP023643.1325108.1326664", "taxonomy": ["Bacteria", "Firmicutes", "Bacilli", "Lactobacillales", "Listeriaceae", "Brochot "0.0", "aln_length": 497, "perc_identity": 100.0, "perc_query_coverage": 100.0}, {"subject": "CP023643.1248577.1250133", "Bacilli", "Lactobacillales", "Listeriaceae", "Brochothrix", "Brochothrix thermosphacta"], "evalue": "0.0", "aln_length": "perc_query_coverage": 100.0}, {"subject": "CP023483.1393248.1394804", "taxonomy": ["Bacteria", "Firmicutes", "Bacilli", "Brochothrix", "Brochothrix thermosphacta"], "evalue": "0.0", "aln length": 497, "perc identity": 100.0, "perc query cove "CP023483.1316717.1318273", "taxonomy": ["Bacteria", "Firmicutes", "Bacilli", "Lactobacillales", "Listeriaceae", "Brochot "0.0", "aln_length": 497, "perc_identity": 100.0, "perc_query_coverage": 100.0}, {"subject": "CP023643.722570.724126", "t

The biom file is not a human readable format. It is only very useful for bioinformaticians. To read the abundance table you have to transform the BIOM file in TSV file thanks to **BIOM_to_TSV tool**.

The TSV format: tabular separated Value. Universal format, ideal for different spreadsheets.

This file contain the abundance table and information about affiliation of ASVs.

blast_taxonomy	blast_subject	b ast_perc_identity	blast_perc_query_coverage
Bacteria;Firmicutes;Bacilli;Lactobacillales;Listeriaceae;Brochothrix;Brochothrix thermosphacta	multi-subject	100	100
Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Vibrionaceae; Photobacterium; unknown species	FJ456662.1.1555	100	100
Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Multi-affiliation	multi-subject	100	100
Bacteria; Actino bacteriota; Actino bacteria; Propioni bacteriales; Propioni bacteriaceae; Cutibacterium; Multi-affiliation and the second s	multi-subject	100	100
Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Leuconostoc;Multi-affiliation	multi-subject	100	100
Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Lactococcus piscium	AM943029.1.1242	99.799	100
Bacteria;Firmicutes;Bacilli;Erysipelotrichales;Erysipelotrichaceae;ZOR0006;unknown species	HG792212.1.1536	94.203	100
Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Multi-affiliation	multi-subject	100	100
Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Weissella;Weissella ceti	FN813251.1.1,61	99.799	100
	Bacteria;Firmicutes;Bacilli;Lactobacillales;Listeriaceae;Brochothrix;Brochothrix thermosphacta Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Vibrionaceae;Photobacterium;unknown species Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Multi-affiliation Bacteria;Actinobacteriota;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Cutibacterium;Multi-affiliation Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Leuconostoc;Multi-affiliation Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Lactococcus piscium Bacteria;Firmicutes;Bacilli;Erysipelotrichales;Erysipelotrichaceae;ZOR0006;unknown species Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Multi-affiliation	Bacteria;Firmicutes;Bacilli;Lactobacillales;Listeriaceae;Brochothrix;Brochothrix thermosphactamulti-subjectBacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Vibrionaceae;Photobacterium;unknown speciesFJ456662.1.1555Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Multi-affiliationmulti-subjectBacteria;Actinobacteriota;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Cutibacterium;Multi-affiliationmulti-subjectBacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Leuconostoc;Multi-affiliationmulti-subjectBacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Lactococcus pisciumAM943029.1.1242Bacteria;Firmicutes;Bacilli;Erysipelotrichales;Erysipelotrichaceae;ZOR0006;unknown speciesHG792212.1.1536Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Multi-affiliationmulti-subject	Bacteria;Firmicutes;Bacilli;Lactobacillales;Listeriaceae;Brochothrix;Brochothrix thermosphactamulti-subject100Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacterales;Vibrionaceae;Photobacterium;unknown speciesFJ456662.1.1555100Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Multi-affiliationmulti-subject100Bacteria;Actinobacteriota;Actinobacteria;Propionibacteriales;Propionibacteriaceae;Cutibacterium;Multi-affiliationmulti-subject100Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Leuconostoc;Multi-affiliationmulti-subject100Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Lactococcus pisciumAM943029.1.124299.799Bacteria;Firmicutes;Bacilli;Erysipelotrichales;Erysipelotrichaceae;ZOR0006;unknown speciesHG792212.1.153694.203Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Multi-affiliationmulti-subject100

blast_evalue	blast_aln_length	seed_id	seed_sequence	observation_name	observation_sum	BHT0.LOT01	BHT0.LOT03	BHT0.LOT04	BHT0.LOT05	BHT0.LOT06	BHT0.LOT07	BHT0.LOT08
0	497	17_41	GACGAACGCTGGCGGC	Cluster_1	84849	791	402	433	911	1232	653	441
0	492	17_611	ATTGAACGCTGGCGGC	Cluster_2	31333	22	4	23	18	19	20	29
0	520	17_595	GACGAACGCTGGCGGC	Cluster_3	40711	342	70	71	218	81	199	114
0	468	17_257	GACGAACGCTGGCGGC	Cluster_4	22275	146	1251	263	327	180	118	293
0	497	17_4	GATGAACGCTGGCGGC	Cluster_5	29355	1842	217	1243	1799	1623	1374	954
0	497	17_23	GACGAACGCTGGCGGC	Cluster_6	21301	2408	603	1372	2231	2597	2218	1981
0	483	57_5	GATGAACGCTGGCGGC	Cluster_7	15272	0	0	0	0	0	0	0
0	499	17_420	GACGAACGCTGGCGGC	Cluster_8	16252	54	33	51	10	72	1	50
0	497	57_3	TGCAAGTCGAACGCAC	Cluster_9	11525	0	0	0	0	0	0	0

Answer 6

a. how would you qualify the alignment between the ASV3 (cluster_3) seed and the sequences of the silva database?

Alignment is perfect ! 100% identity and 100% coverage between ASV3 (cluster 3) seed and the 520 nucleotides of sequence from silva database

b. What does it mean e-value = 0?

The expect value is a parameter that describes the number of hits one can "expect" to see by chance when searching a database of a particular size. The lower the e-value, or the closer it is to zero, the more "significant" the match is.

c. What is the header of column that shows the sequence of ASV seed ?

Seed_sequence

d. How many sequences have ASV3 (cluster_3) in total ?

40711 found in column " observation_sum"

e. How many sequences have ASV3 (cluster_3) in MVT0.LOT10 ? What is the sample where ASV3 (cluster_3) is absent ?

MVT0.LOT10	CDT0.LOT02	
4	64	
0	1	We can remark that ASV3 is particularly present in MV
6722	0	samples and rare in CD samples
13	0	samples and rare in CD samples
20	3	

Answer 7

a. Why ASV3 (cluster_3) has a multiaffiliation for species ?

In multi-affiliations.tsv file, for cluster_3, we observe that 75 affiliations are possible for this ASV at species rank.

All strictly equivalent 100% identity and 100% coverage with 75 different sequences of silva database.

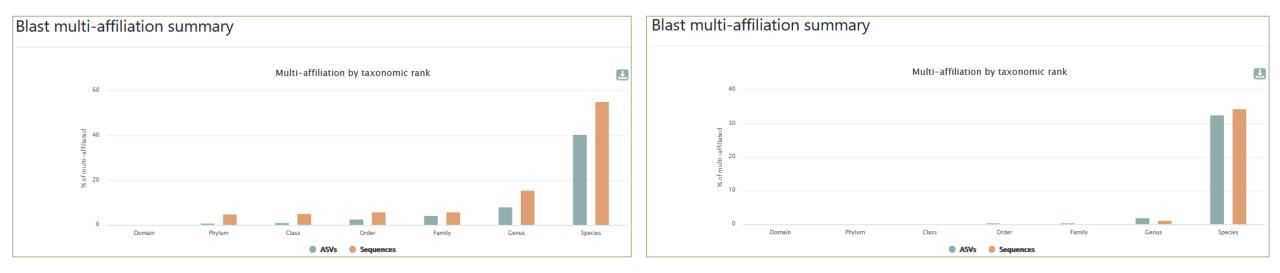
CP025206 1448122 1449699	100	100	0	520
			•	
CP020806.1000690.1002267	100	100	0	520
CP025839.1959094.1960671	100	100	0	520
KF601977.1.1550	100	100	0	520
CP020806.811637.813214	100	100	0	520
CP020806.1103805.1105382	100	100	0	520
CP020806.1109220.1110797	100	100	0	520
	KF601977.1.1550 CP020806.811637.813214 CP020806.1103805.1105382	CP020806.1000690.1002267 100 CP025839.1959094.1960671 100 KF601977.1.1550 100 CP020806.811637.813214 100 CP020806.1103805.1105382 100	CP020806.1000690.1002267 100 100 CP025839.1959094.1960671 100 100 KF601977.1.1550 100 100 CP020806.811637.813214 100 100 CP020806.1103805.1105382 100 100	CP020806.1000690.1002267 100 100 0 CP025839.1959094.1960671 100 100 0 KF601977.1.1550 100 100 0 CP020806.811637.813214 100 100 0 CP020806.1103805.1105382 100 100 0

b. Why "Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakei" is present 74 times ?

Because these are 74 different strains of *L. sakei*. They have blast ID different.

Silva pintail or not pintail ?

Pintail* represents the probability that the rRNA sequence contains anomalies or is a chimera, where 100 means that the probability for being anomalous or chimeric is low.


4 ranks of available databases in FROGS: 50 pintail, 80 pintail or 100 pintail or no pintail filter.

silva138.1 16S silva138.1 pintail100 16S silva138.1 pintail80 16S silva138.1 pintail50 16S silva138.1 18S silva138.1 23S silva138.1 28S

* http://aem.asm.org/content/71/12/7724.abstract

Silva pintail or not pintail ?

Exemple between silva 138.1 and silva 138.1 pintail 100

130 identical blast best hits on SILVA 138.1 pintail 100 databank

- Cluster_4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes
- Cluster_4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes 6609
- Cluster_4 Bacteria; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes C1
- Cluster_4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes KPA171202
- Cluster_4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes TypeIA2 P.acn17
- Cluster_4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes TypeIA2 P.acn31
- Cluster_4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes TypeIA2 P.acn33

Exemple between silva 138.1 and silva 138.1 pintail 100

267 identical blast best hits on SILVA 138.1 full databank

Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Corynebacteriales; Corynebacteriaceae; Corynebacterium; unknown species Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Aureobasidium melanogenum Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes 266 Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes 6609 Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes C1 Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes hdn-1 Cluster 4 Bacteria; Actinobacteriota; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes HL096PA1 Cluster 4 Bacteria; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes KPA171202 Cluster 4 Bacteria; Actinobacte ctinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes SK137 Cluster 4 Bacteria; Actinobacte ctinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; unknown species terium;Cutibacterium acnes TypeIA2 P.acn17 Cluster 4 Bacteria; Actinobacte Induces a multi-affiliation up to phylum rank Cluster 4 Bacteria; Actinobacteriota; Actinopacteria; Propionipacteriales; Propionipacteriaceae; Cutipacterium; Cutibacterium acnes TypeIA2 P.acn31 Cluster 4 Bacteria; Actinobacteria; Propionibacteriales; Propionibacteriaceae; Cutibacterium; Cutibacterium acnes TypeIA2 P.acn33 Cluster 4 Bacteria; Firmicutes; Bacilli; Lactobacillales; Carnobacteriaceae; Dolosigranulum; unknown species

sequence sequence alignment pintail accession taxonomy organism name SILVA 10 number length quality quality quality KF100699 uncultured bacterium Bacteria Firmicutes Bacilli... 1341 168

How choose the good affiliation ?

Cluster_64	Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus xylosus	
Cluster_64	Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus xylosus	
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus saprophyticus	

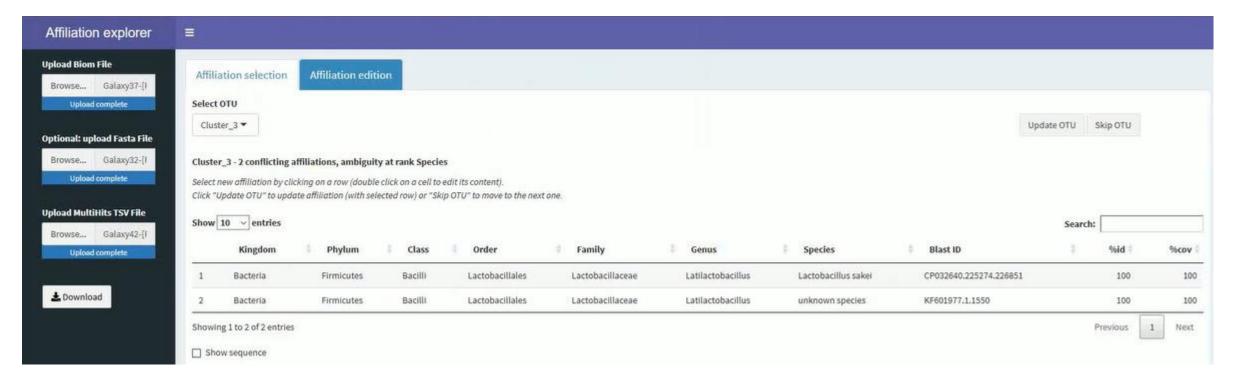
D83374.1.1477	100	100	0	499
CP007208.2831760.2833315	100	100	0	499
CP007208.1649831.1651386	100	100	0	499
CP007208.1426849.1428404	100	100	0	499
CP007208.1544187.1545742	100	100	0	499
LT963439.723352 2 choi	ces f	or cl	liste	or 64
CP013922.158796	CC3 I		usic	
CP013922.2356345.2857902	100	100	0	499
CP013922.2851139.2852696	100	100	0	499
CP013922.2904966.2906523	100	100	0	499
C-013922.2899760.2901317	100	100	0	499
CP013922.1470936.1472493	100	100	0	499
CP013922.1685669.1687226	100	100	0	499
EU855225.1.1531	100	100	0	499

How choose the good affiliation ?

Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria;Firmicutes;Bacilli;Staphylococcales;Staphylococcaceae;Staphylococcus;Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus xylosus
Cluster_64	Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus saprophyt

D83374.1.1477	100	100	0	499
CP007208.2831760.2833315	100	100	0	499
CP007208.1649831.1651386	100	100	0	499
CP007208.1426849.1428404	100	100	0	499
CP007208.1544187.1545742	100	100	0	499
LT963439.723352.724884	100	100	0	499
CP013922.1587968.1589525	100	100	0	499
CP013922.2856345.2857902	100	100	0	499
CP013922.2851139.2852696	100	100	0	499
CP013922.2904966.2906523	100	100	0	499
CP013922.2899760.2901317	100	100	0	499
CP013922.1470936.1472493	100	100	0	499
CP013922.1685669.1687226	100	100	0	499
EU855225.1.1531	100	100	0	499

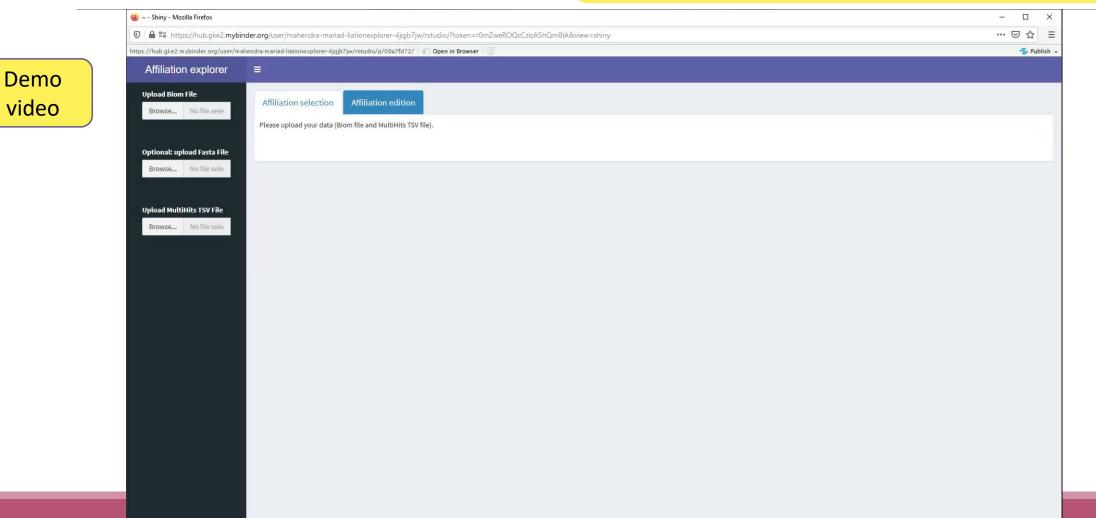
- you have a preconceived notion
- you are familiar with the environment being studied
- you are looking for specific organisms as pathogens
- you collect bibliographical information


Ex:

Staphylococcus saprophyticus is a bacterium that can cause urinary tract infections in young women and

Staphylococcus xylosus exists as a commensal on the skin of humans and animals and in the environment. It appears to be <u>much more common in animals</u> than in humans. S. xylosus has very occasionally been identified as a cause of human infection.

Affiliation explorer


https://shiny.migale.inrae.fr/app/affiliationexplorer

A very user-friendly tool, developed by Mahendra Mariadassou and his collaborators (Maiage unit - INRAE Jouy-en-Josas). It allows to modify very simply the affiliations of an abundance table from FROGS.

Affiliation explorer

https://shiny.migale.inrae.fr/app/affiliationexplorer

6- Affiliation Stat

FROGS_6_Affiliation_Stat Process some metrics on taxonomies (Galaxy Version 4.1.0+galaxy1)	☆ Favorite ▼ Options			
Abundance file				
20: FROGS_5 Taxonomic affiliation: affiliation_abundance.biom	•			
Abundances and affiliations (format: BIOM)				
Taxonomic ranks	If your ASV are affiliated with less			
Domain Phylum Class Order Family Genus Species	taxonomic ranks (species is			
The ordered taxonomic rank levels stored in BIOM. Each rank is separated by one space (taxonomic-ranks)	missing for example), change it.			
Rarefaction ranks				
Class Order Family Genus Species				
The ranks that will be evaluated in rarefaction. Each rank is separated by one space. (rarefaction-ranks)				
Affiliation processed				
FROGS Blast	-			

Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.

Practice:

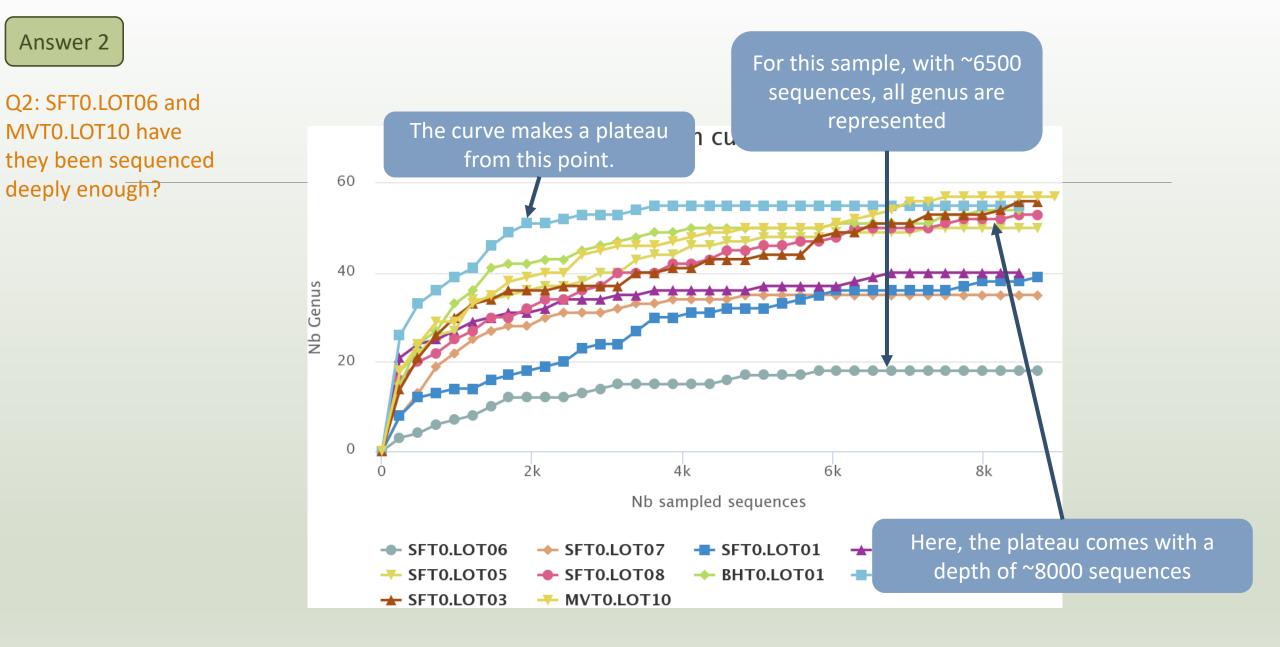
LAUNCH THE FROGS_6 AFFILIATION STAT TOOL

Exercice:

Go to history « 16S » history

Launch the « FROGS_6 Affiliation Stat » tool on last affiliation_abundance.biom

 \rightarrow objectives :

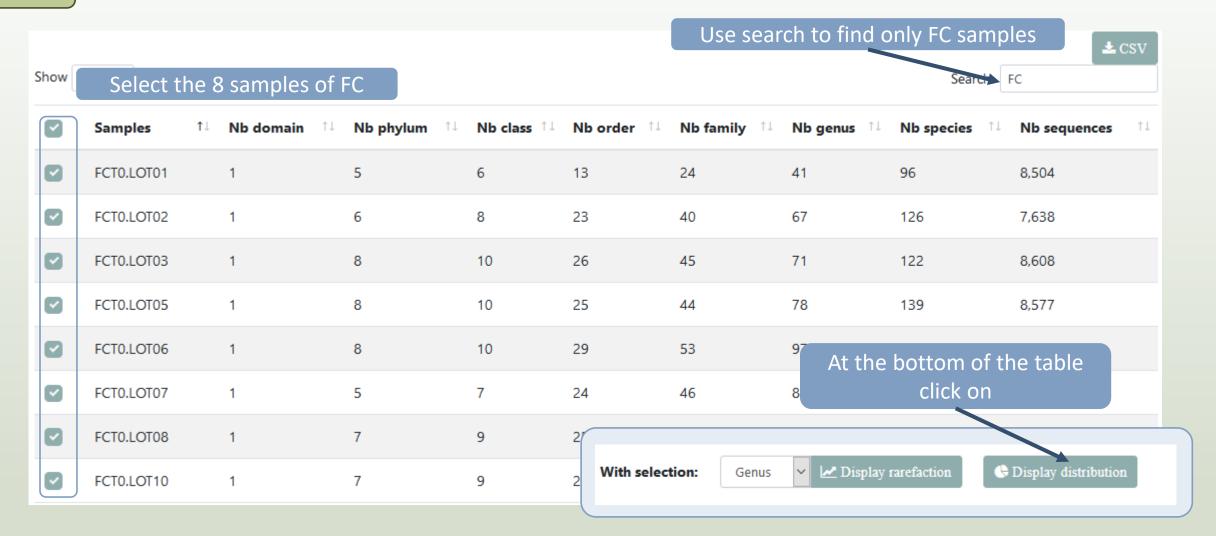

understand rarefaction curves and the diversity diagram

Exercice:

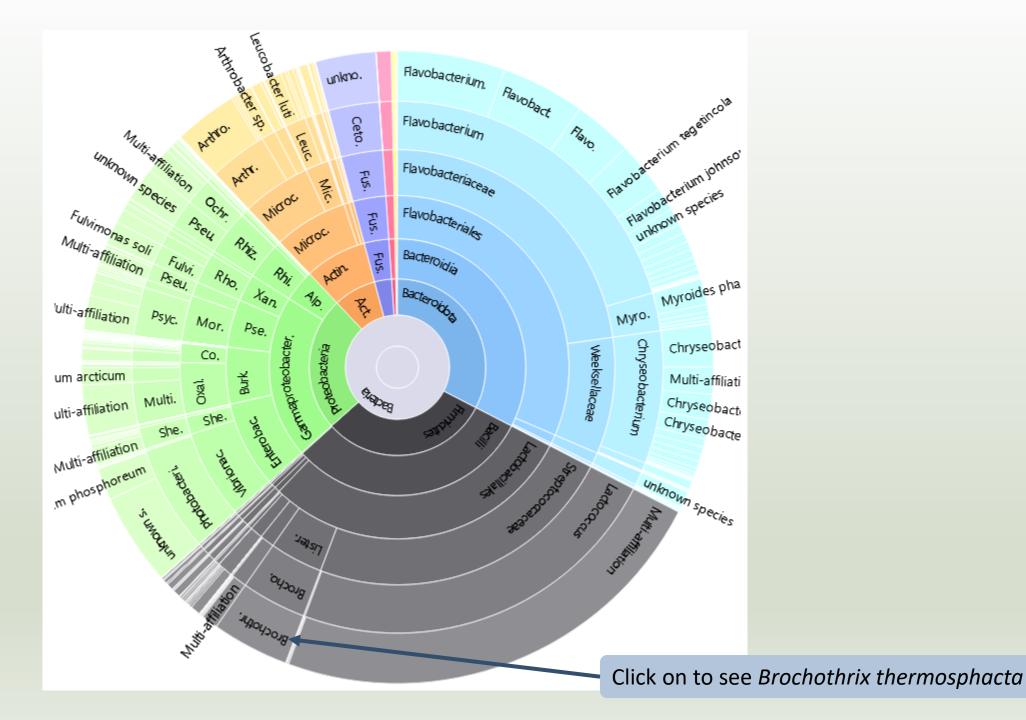
- 1. Build the **rarefaction** curve on genus rank with the 10 samples that contain the least number of different genus.
- 2. SFT0.LOT06 and MVT0.LOT10 have they been sequenced deeply enough?
- 3. Build the distribution on FC samples *i.e.* "Filet de Cabillaud"
- 4. How many sequences are some *Brochothrix thermosphacta* ?
- 5. On the total of sequences, what is the proportion affiliated to the Firmicutes?
- 6. Among Firmicutes, how many are Bacilli?
- 7. But what is the proportion of Firmicutes in the total of sequence of all sample ?
- 8. How many ASVs are align perfectly with a database sequence?


Answer 1 Q1: Build the rarefaction curve on genus rank with the 10 samples that contain the least number of different genus.

Samples 1	Nb doma	ain 🕮 Nb phylum	1↓ Nb class	î↓ Nb orde	r 🕮 Nb family	1 Nb genus	; ↑↓ Nb species	s 🌐 Nb sequences 斗
SFT0.LOT06	1	4	5	9	14	1. Sort	the table by	/ genus number
2. Select th	e 10 first	samples	5	12	26	35	57	8,821
SFT0.LOT01	1	4	6	13	27	39	63	8,859
FCT0.LOT01	1	5	6	13	24	41	96	8,504
SFT0.LOT05	1	5	7	18	32	50	95	8,728
SFT0.LOT08	1	4	6	13	33	53	77	8,788
BHT0.LOT01	1	7	9	20	35	⁵ 3. A	t the bottor	n of the table
SFT0.LOT04	1	6	8	17	34	5	click	on
SFT0.LOT03	1	5	8	1				
SFT0.LOT02	1	6	7	1 With	selection: Ger	nus 🔽 🗠 Di	isplay rarefaction	🕒 Display distribution
MVT0.LOT10	1	4	5	17	31	57	83	9,143
CDT0.LOT02	1	6	8	22	36	58	85	8,750



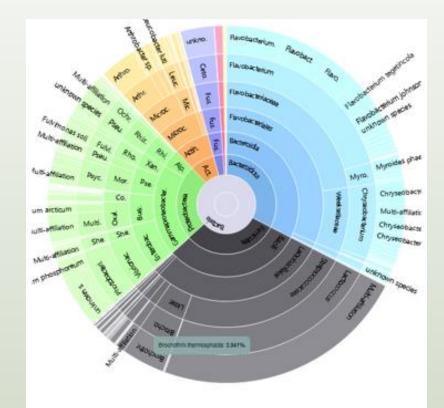
Q2: SFT0.LOT06 and MVT0.LOT10 have they been sequenced deeply enough?



With ~8000 sequences, all genus for this species are represented

Answer 3 4 & 5

Q3: Build the **distribution** on FC samples *i.e.* "Filet de Cabillaud"



Answer 3, 4, 5 & 6

A table appears

Q4: How many sequences are some *Brochothrix thermosphacta* ? Q5: On the total of sequences, what is the proportion affiliated to the Firmicutes?

Q6: Among Firmicutes, how many are Bacilli?

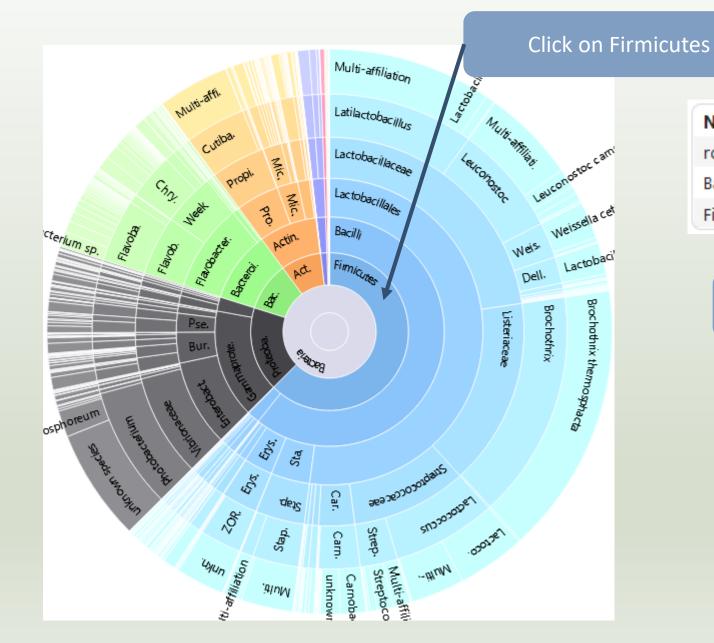
Detail on selected:

	Name	Size	Global %	Parent %
	root	67211		
_	Bacteria	67211	100.000	100.000
	Firmicutes	20741	30.860	30.860
	Bacilli	20658	30,736	99.600
	Lactobacillales	19871	29.565	96.190
	Listeriaceae	2649	3.941	13.331
	Brochothrix	2649	3.941	100.000
	Brochothrix thermosphacta	2649	3.941	100.000
	Brochothrix thermo	sphacta	nb children	0

Name	Size	Global %	Parent %
root	67211		
Bacteria	67211	100.000	100.000
Firmicutes	20741	30.860	30.860
Bacilli	20658	30.736	99.600
Lactobacillales	19871	29.565	96.190
Listeriaceae	2649	3.941	13.331
Brochothrix	2649	3.941	100.000
Brochothrix thermosphacta	2649	3.941	100.000
Brochothrix thermosphacta nb children: 0			

- 2649 sequences are some *Brochothrix thermosphacta*
- Firmicutes represent ~30% of total of sequences of these samples
- 99.6% of Firmicutes are Bacilli

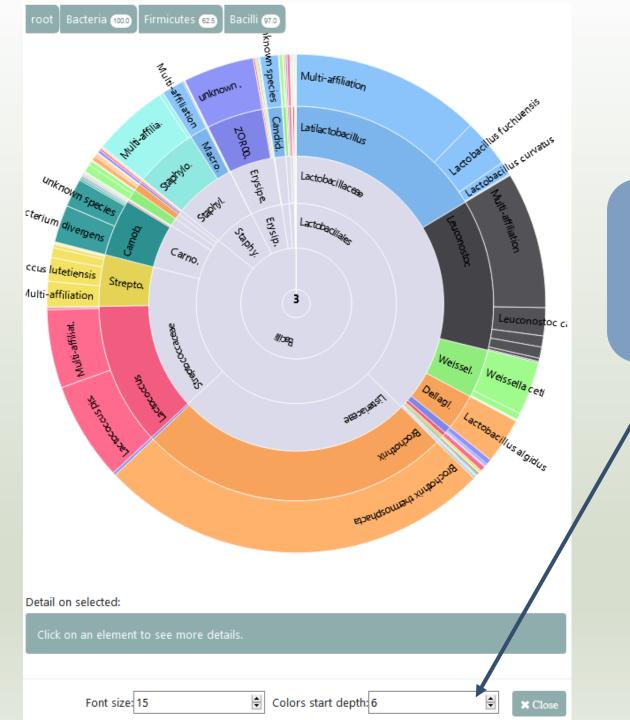
on


📥 CSV

Q7: But what is the proportion of Firmicutes in the <u>total</u> of sequence of all sample ?

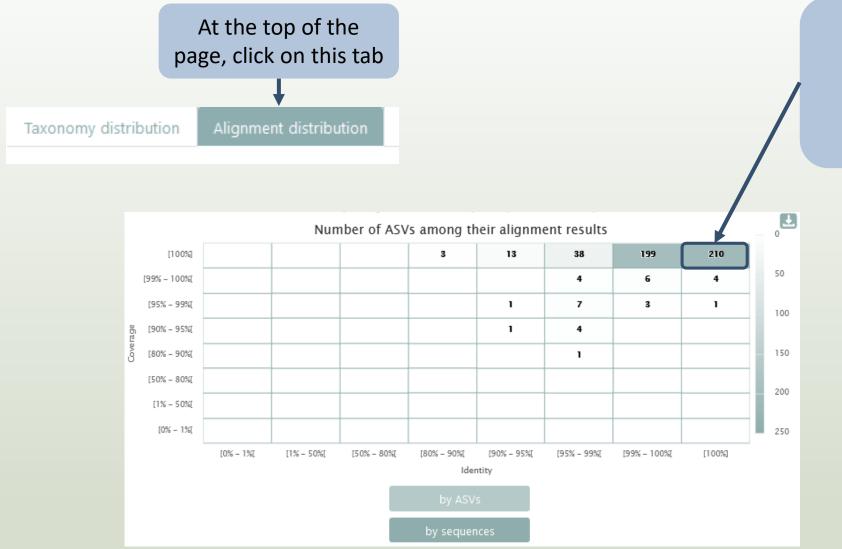
Show	10 🕈 entrie	s						Search:	
	Samples 斗	Nb domain †↓	Nb phylum †↓	Nb class ↑↓	Nb order ↑↓	Nb family ^{↑↓}	Nb genus ↑↓	Nb species 邟	Nb sequences îi
	BHT0.LOT01	1	7	9	20	35	54	77	8,690
	BHT0.LOT03	1	5	8	25	46	88	120	8,377
	BHT0.LOT04	1	7	10	27	51	89	126	8,643
	BHT0.LOT05	1	5	7	22	40	69	116	8,544
	BHT0.LOT06	1	6	10	28	47	91	125	8,646
	BHT0.LOT07	1	6	9	28	51	90	124	8,671
	BHT0.LOT08	1	6	9	27	53	109	166	8,479
	BHT0.LOT10	1	4	7	26	50	106	144	8,606
	CDT0.LOT02	1	6	8	22	36	58	85	8,750
	CDT0.LOT04	1	5	7	22	41	74	138	8,605
With	n selection:	Class 🗸	🛃 Display raref	action	🕓 Display dis	stribution			

🕒 Display global distribution


Answer 7 Q7: But what is the proportion of Firmicutes in the <u>total</u> of sequence of all sample ?

Name	Size	Global %	Parent %
root	547520		
Bacteria	547520	100.000	100.000
Firmicutes	342411	62.539	62.539

Firmicutes represent 62% of Bacteria


Q7: But what is the proportion of Firmicutes in the total of sequence of all sample ?

To focus on Firmicutes, **double click on**. After you can apply color among rank depth.

Q8: How many ASVs are align perfectly with a database sequence ?

Answer 8

210 sequences are aligned with 100% identity and 100% coverage with a sequence of silva.

7- Filters on affiliations

FROGS Affiliation Filters Filters ASVs on several affiliation criteria (Galaxy Version 4.1.0+galaxy1)	8
---	---

& Versions 🔹 Options

Sequence file

15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta

The sequence file to filter (format: FASTA)

Abundance file

00

25: FROGS_5 Taxonomic affiliation: affiliation_abundance.biom

- 🕞

.

B

The abundance file to filter (format: BIOM)

Taxonomic ranks

Domain Phylum Class Order Family Genus Species

The ordered taxonomic rank levels stored in BIOM. Each rank is separ

Filtering mode

O Hidding mode	
⊘ Deleting mode	

Do you want to delete ASV or hide affiliations?

Filter on Blast affiliations

Maximum e-value

Fill the field only if you want this treatment (--max-blast-evalue)

Minimum identity

99

Fill the field only if you want this treatment (--min-blast-identity)

Minimum coverage

99

Fill the field only if you want this treatment (--min-blast-coverage)

Minimum alignment length

Fill the field only if you want this treatment (--min-blast-length)

2 modes: hidding or deleting mode. All affiliations that enter in criteria of filter will be either hidden or deleted

- hidding: affiliation counting are not affected, affiliation are simply hidden
- deleting: all abundancies are computed again, affiliation have disappeared

FROGS Affiliation Filters Filters ASVs on several affiliation criteria (Galaxy Version 4.1.0+galaxy1)	🏠 Favorite	🚓 Versions	▼ Options
---	------------	------------	-----------

Sequence file

15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta

The sequence file to filter (format: FASTA)

Abundance file

00

25: FROGS_5 Taxonomic affiliation: affiliation_abundance.biom

The abundance file to filter (format: BIOM)

Taxonomic ranks

Domain Phylum Class Order Family Genus Species

The ordered taxonomic rank levels stored in BIOM. Each rank is separated by one space (--taxonomic-ranks)

Filtering mode

O Hidding mode

⊘ Deleting mode

Do you want to delete ASV or hide affiliations?

Fill the field only if you want this treatment (--min-blast-length)

Filter on Blast affiliations	۲
Maximum e-value	
Fill the field only if you want this treatment (max-bust-evalue)	Possibility to filter affiliations
Minimum identity	•
99	according to blast metrics
Fill the field only if you want this treatment (min-blast-identity)	
Minimum coverage	
99	
Fill the field only if you want this treatment (min-blast-coverage)	
Minimum alignment length	

B

B

•

•

Keyword filters of blast affiliation

Possibility to filter for keeping or for ignore ASV according keywords

"Ignore taxa": all Blast taxonomic

Firmicutes will be deleted or hidden

"Keep taxa": only Blast taxonomic

affiliation with the keyword i.e.

Firmicutes will be kept

affiliation with the keyword i.e.

O No filter

⊘ Ignore taxa
○ Keep taxa

Do you want to keep or ignore blast affiliation: according a keyword

Remove blast affiliations including these taxon / word

1: Remove blast affiliations including these taxon / word

Full or partial taxon name

unknow species

Example: "unknown species" or "subsp." (--ignore-blast-taxa)

2: Remove blast affiliations including these taxon / word

Full or partial taxon name

Firmicutes

Example: "unknown species" or "subsp." (--ignore-blast-taxa)

+ Insert Remove blast affiliations including these taxon / word

Filter on RDP affiliations

Possibility to filter on RDP taxonomic affiliation

Not open by default

Careful, it is case sensitive. Firmicutes it's different of firmicutes !

8

Practice:

LAUNCH THE FROGS AFFILIATION FILTER TOOL

Exercice:

1. Mask

- 1. all ASV that have not at least 95% identity and 95% coverage with a Silva sequence
- 2. and that are not a *unknown species*
- 2. Explore the report.html
 - How many ASVs remain?
 - How are impacted affiliation?

FROGS Affiliation Filters Filters ASVs on several affiliation criteria (Galaxy Version 4.1.0+galaxy1)
Sequence file
Image: Constraint of the second se
The sequence file to filter (format: FASTA)
Abundance file
Image: Constraint of the second se
The abundance file to filter (format: BIOM)
Taxonomic ranks
Domain Phylum Class Order Family Genus Species
The ordered taxonomic rank levels stored in BIOM. Each rank is separated by one space (taxonomic-ranks) Filtering mode
 ⊘ Hidding mode ○ Deleting mode
Do you want to delete ASV or hide affiliations?
Filter on Blast affiliations
Maximum e-value Fill the field only if you want this treatment (max-blast-evalue)
Minimum identity
95
Fill the field only if you want this treatment (min-blast-identity)
Minimum coverage
95
Fill the field only if you want this treatment (min-blast-coverage)
Minimum alignment length
Fill the field only if you want this treatment (min-blast-length)

Keyword filters of blast affiliation	
 ○ No filter ⊘ Ignore taxa ○ Keep taxa 	
Do you want to keep or ignore blast affiliations according a keyword ?	
Remove blast affiliations including these taxon / word	
1: Remove blast affiliations including these taxon / word	Û
Full or partial taxon name	
unknown species	
Example: "unknown species" or "subsp." (ignore-blast-taxa)	
+ Insert Remove blast affiliations including these taxon / word	
Filter on RDP affiliations	8
Email notification	
No No	
Send an email notification when the job completes.	
✓ Execute	

Abundance ASVs Ð Modified : 38 Modified : 73,965 Masked : 113 Masked : 94,469 Kept : 379,086 Kept : 344

- 344 ASV are kept without modification
- 38 ASV are kept with modification (see impacted_clusters.multi-affiliation.tsv)
- It's remain 382 ASVs !

Filters summary

42: FROGS Affili	iation Filters: impacted_clusters.multi-affiliations.tsv
Cluster 3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lacto

Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakeiinte termine
Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakei
Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakeiinte termine
Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakei
Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakeiinte termine
Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; unknown species

Exemple: Cluster_3 is an impacted clusters because

- its multi-affiliation "unknow species" was deleted
- but all other affiliation were kept.

To see the content, think to transform the BIOM to TSV file with **BIOM_to_TSV tool**

41: FROGS Affiliation Filters: impacted_clusters.tsv

#comment	status	blast_taxonomy
undesired_tax_in_blast	Affiliation_masked	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Vibrionaceae; Photobacterium; unknown species
undesired_tax_in_blast	Blast_taxonomy_changed	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Multi-affiliation
blast_identity_lt_95.0;undesired_tax_in_blast	Affiliation_masked	Bacteria; Firmicutes; Bacilli; Erysipelotrichales; Erysipelotrichaceae; ZOR0006; unknown species
undesired_tax_in_blast	Blast_taxonomy_changed	${\sf Bacteria}; {\sf Firmicutes}; {\sf Bacilli}; {\sf Lactobacillales}; {\sf Streptococcaceae}; {\sf Lactococcus}; {\sf Multi-affiliation}$
undesired_tax_in_blast	Affiliation_masked	Bacteria; Fusobacteriota; Fusobacteriia; Fusobacteriales; Leptotrichiaceae; Hypnocyclicus; unknown species
undesired_tax_in_blast	Affiliation_masked	Bacteria; Firmicutes; Bacilli; Lactobacillales; Carnobacteriaceae; Carnobacterium; unknown species
undesired_tax_in_blast	Affiliation_masked	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Vibrionaceae; Photobacterium; unknown species
undesired_tax_in_blast	Affiliation_masked	Bacteria; Firmicutes; Bacilli; Mycoplasmatales; Mycoplasmataceae; Candidatus Bacilloplasma; unknown species
undesired_tax_in_blast	Blast_taxonomy_changed	${\sf Bacteria}; {\sf Bacteroidota}; {\sf Bacteroidia}; {\sf Flavobacteriales}; {\sf Weeksellaceae}; {\sf Chryseobacterium}; {\sf Multi-affiliation}$

In impacted_ASV.tsv

- #comment: the reason(s) why ASV was hidden (or deleted)
- #status: for deleted ASV (or masked ASV), or for ASV with modified consensus taxonomy with affiliation (or multiaffiliation) was modified

Hidden mode						
#comment	blast_taxonomy	blast_subject	blast_perc_i	blast_perc_	d blast_evalu	e blast_aln_lei
no data	Bacteria;Firmicutes;Bacilli;Lactobacillales;Listeriaceae;Brochothrix;Brochothrix thermosphacta	multi-subject	100.0	100.0	0.0	497
undesired_tax_in_blast	no data	no data	no data	no data	no data	no data
undesired_tax_in_blast	Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Lactobacillus sakei	multi-subject	100.0	100.0	0.0	520
undesired_tax_in_blast	Bacteria; Actino bacteriota; Actino bacteria; Propioni bacteriales; Propioni bacteriaceae; Cutibacterium; Multi-affiliation and the second s	multi-subject	100.0	100.0	0.0	468
no data	Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Leuconostoc;Multi-affiliation	multi-subject	100.0	100.0	0.0	497
no data	Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Lactococcus piscium	AM943029.1.1242	99.799	100.0	0.0	497

Remark

in the abundance table, all information concerning the ASVs affected by the filter are removed (affiliation, metrics and count in the different samples)

Deleted mode

#comment	blast_taxonomy	blast_subject	blast_perc_i	blast_perc_o	blast_evalueb	olast_aln_lei
no data	Bacteria;Firmicutes;Bacilli;Lactobacillales;Listeriaceae;Brochothrix;Brochothrix thermosphacta	multi-subject	100.0	100.0	0.0	497
undesired_tax_in_blast	Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Latilactobacillus;Lactobacillus sakei	multi-subject	100.0	100.0	0.0	520
undesired_tax_in_blast	Bacteria; Actino bacteriota; Actino bacteria; Propioni bacteriales; Propioni bacteriaceae; Cutibacterium; Multi-affiliation, Cutibacteriaceae; Cutibacteriacea; Cutibacteriacea; Cutibacteriac	multi-subject	100.0	100.0	0.0	468
no data	Bacteria;Firmicutes;Bacilli;Lactobacillales;Lactobacillaceae;Leuconostoc;Multi-affiliation	multi-subject	100.0	100.0	0.0	497
no data	Bacteria;Firmicutes;Bacilli;Lactobacillales;Streptococcaceae;Lactococcus;Lactococcus piscium	AM943029.1.1242	99.799	100.0	0.0	497

Normalization

Normalization

Conserve a predefined number of sequence per sample:

- update Biom abundance file
- update seed fasta file

May be used when :

- Low sequencing sample
- Required for some statistical methods to compare the samples in pairs

Exercise 8

Which values are interesting to test?

Exercise 8

- 1. Normalize your data from Affiliation based on the smallest samples
- 2. Normalize your data on 2000 sequences or less
- 3. Normalize your data on 8000 sequences
- 4. What differences with or without

Q1: Normalize your data from Affiliation based on this number of sequence

FROGS Abundance normalisation Normalise ASV abundance. (Galaxy Version 4.1.0+galaxy1)	☆ Favorite	& Versions	▼ Options	
Sequence file				
□ □ 15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta			• 🖻	
Sequence file to normalise (format: fasta). (input-fasta)				
Abundance file				
C 25: FROGS_5 Taxonomic affiliation: affiliation_abundance.biom			- 6	
Abundance file to normalise (format: BIOM). (input-biom) Sampling method Sampling by the number of sequences of the smallest sample O Select a number of sequences				
Sampling by the number of sequences of the smallest sample, or select a number manually (sampling-by-min)				
Email notification				
No No				
Send an email notification when the job completes.				
✓ Execute				

Clusters distribution

FST0.LOT05

FST0.LOT02

CDT0.LOT06

DLT0.LOT10

DLT0.LOT07

CDT0.LOT05

BHT0.LOT03

MVT0.LOT05

The smallest sequenced samples

7.908

7,956

8,257

8,331

8,338

8.376

8,377

8,378

Previous

7.908

7,956

8,257

8,331

8,338

8.376

8,377

8,378

0

0

0

0

0

0

0

0

2 3 4 5 6 7 Next

Sequences count

158

149

253

222

263

240

135

158

158

149

253

222

263

240

135

158

Sequences distribution

Show 10	entries				Search:	L CSV
Sample	Total ↑↓ clusters ↑↓	Shared clusters î	Own clusters ᡝ	Total sequences ↑↓	Shared sequences îl	Own sequences îi
FCT0.LOT02	162	162	0	7,638	7,638	0
FST0.LOT03	152	152	0	7,778	7,778	0

0

0

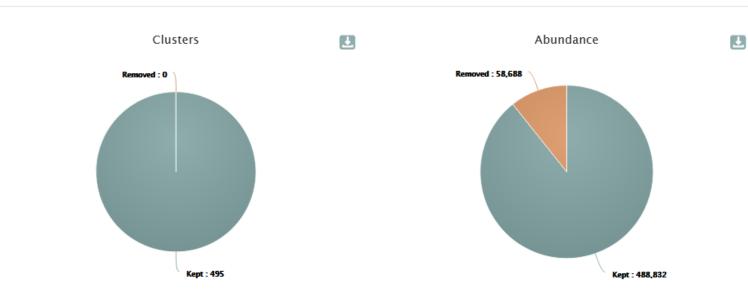
0

0

0

0

0


0

Thanks to Clusterstat output, you can know what is the size of the smallest sample. Sort by **Total sequences** *i.e.* 7638 sequences

7638 is the maximal size that you can ask for normalizing the sample sizes.

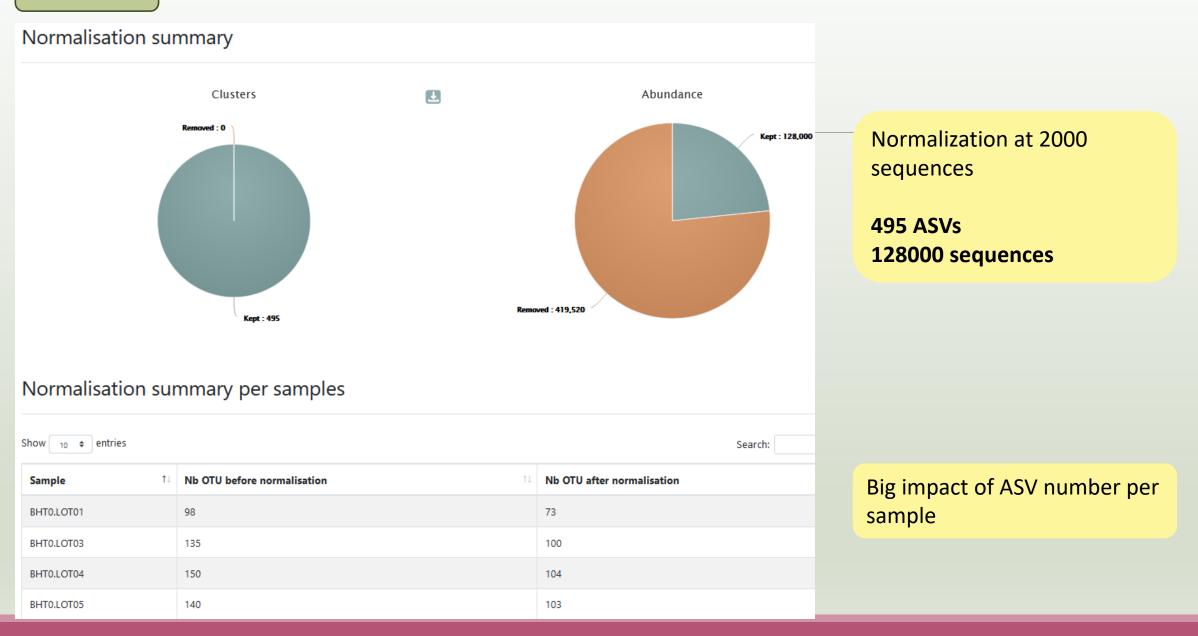
Q1: Normalize your data from Affiliation based on this number of sequence

Normalisation summary

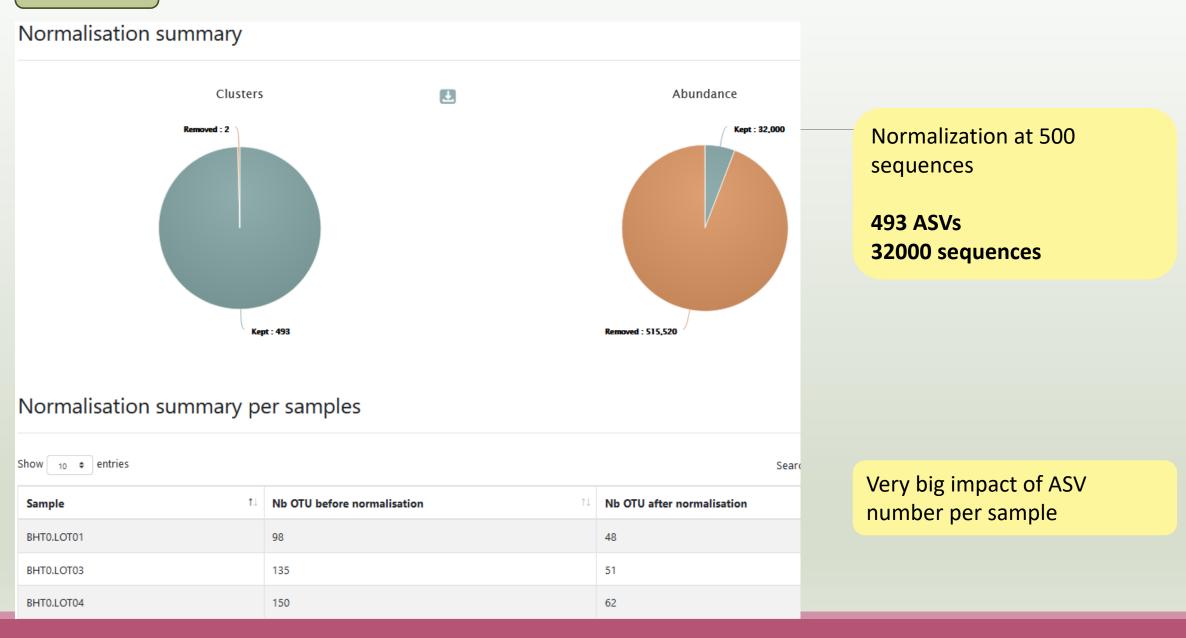
Auto-selection of the minimal number of ASVs *i.e.* 7638 sequences

495 ASVs 488832 sequences

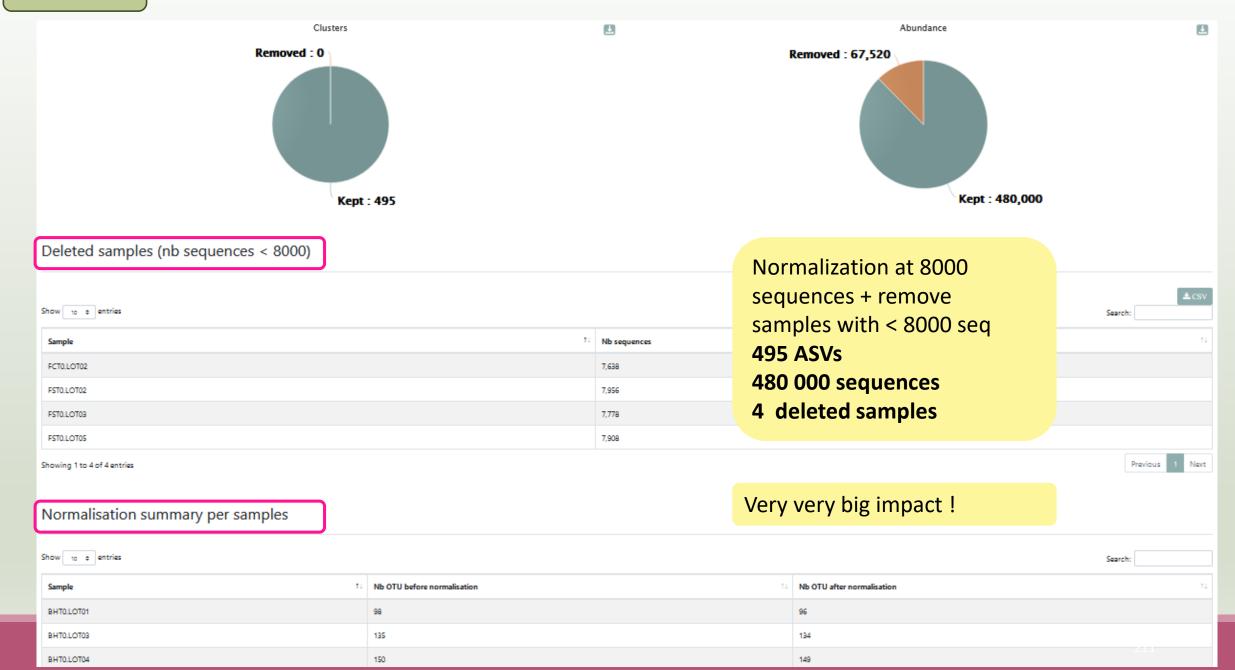
Normalisation summary per samples


Show 10 ¢ entries		Search:
Sample 11	Nb OTU before normalisation	Nb OTU after normalisation
BHT0.LOT01	98	98
BHT0.LOT03	135	133
BHT0.LOT04	150	144

The minimum impact of ASV number per sample


Q2: Normalize your data on 2000 sequences or less

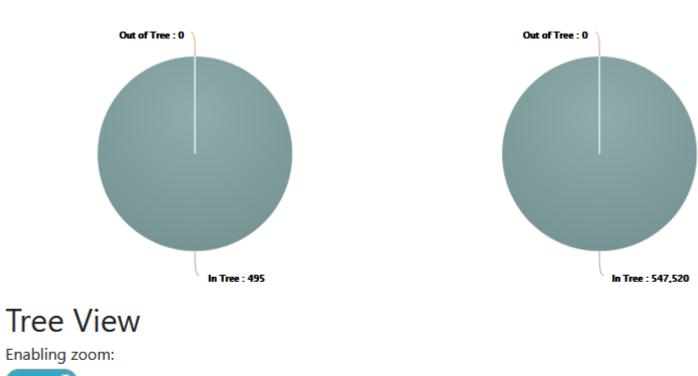
FROGS #	Abunda	nce normalisation Normalise ASV abundance. (Galaxy Version 4.1.0+galaxy1)	☆ Favorite	& Versions	♥ Options
Sequence f	ïle				
00		15: FROGS_4 Cluster filters: clusterFilters_sequences.fasta			• 🖻
Sequence f	ile to n	ormalise (format: fasta). (input-fasta)			
Abundance	e file				
0 0		25: FROGS_5 Taxonomic affiliation: affiliation_abundance.biom			- 🖻
Abundance	e file to	normalise (format: BIOM). (input-biom)			
Sampling n					
O Sampli	ng by tl	he number of sequences of the smallest sample			
⊘ Select a	a numb	er of sequences			
Sampling b	y the n	umber of sequences of the smallest sample, or select a number manually (sampling-by-min)			
Number o	of reads	5			
2000					
The final	number	r of reads per sample. (num-reads)			
		that have an initial number of reads below the number of reads to sample ?			
	-	pling threshold need to at most equal to the smallest sample]
		bling threshold may be greater than the smallest sample			
(delete-s	samples	5)			
Email notifi		-			
No No					
	ail noti	ification when the job completes.			
Jena an en		includer inter the job completest			


Q2: Normalize your data on 2000 sequences or less

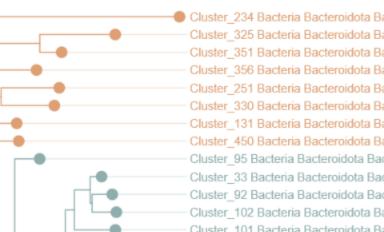
Q2: Normalize your data on 2000 sequences or less

Answer 3 Q3: Normalize your data on 8000 sequences – with option "removing sample"

FROGS Tree

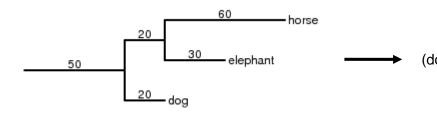

CREATE A PHYLOGENETICS TREE OF ASVS

FROGS Tree

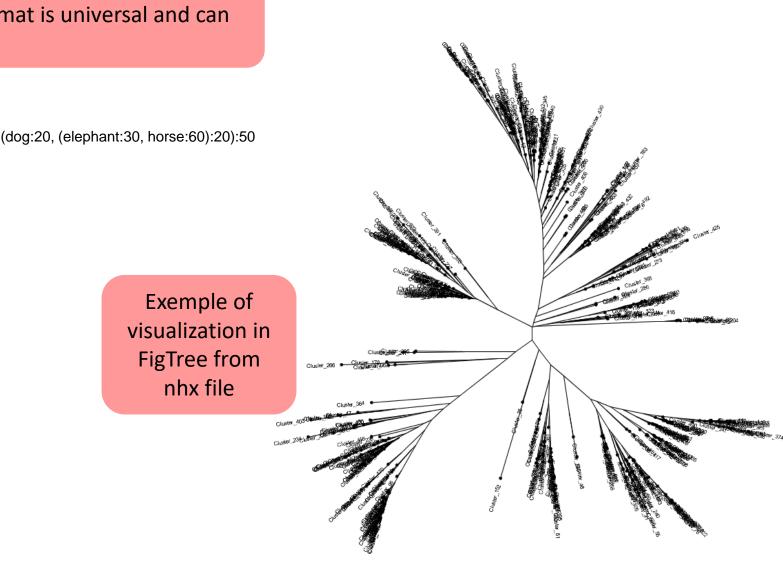

This tool builds a phylogenetic tree thanks to affiliations of ASVs contained in the BIOM file

It uses MAFFT for the multiple alignment and FastTree for the phylogenetic tree.

FROGS Tree Reconstruction of phylogenetic tree (Galaxy Version 4.1.0+galaxy1)	☆ Favorite	& Versions	Options
Sequence file			
Image: Constraint of the second se			• 🖻
Sequence file (format: FASTA). Warning: FROGS Tree does not work on more than 10000 sequences!			
Biom file			
C C 25: FROGS_5 Taxonomic affiliation: affiliation_abundance.biom			• 6
The abundance file (format: BIOM)			
Email notification			
No No			
Send an email notification when the job completes.			
✓ Execute		5	ROGS Tre
	2 outputs:	F	ROGS Tre


ASVs

Cluster_234 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_325 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_351 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_356 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster 251 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_330 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_131 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_450 Bacteria Bacteroidota Bacteroidia Bacteroi Cluster_95 Bacteria Bacteroidota Bacteroidia Flavobacl Cluster 33 Bacteria Bacteroidota Bacteroidia Flavobact Cluster_92 Bacteria Bacteroidota Bacteroidia Flavobacl Cluster_102 Bacteria Bacteroidota Bacteroidia Flavoba Cluster 101 Bacteria Bacteroidota Bacteroidia Flavoba


2nd output

The phylogentic tree in Newick format *i.e.* each mode is represented between brackets. This format is universal and can be used with all tree viewer

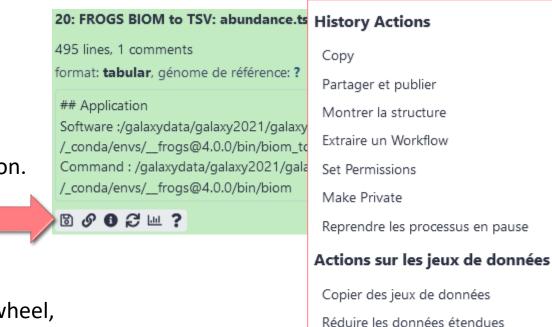
Our tree in nhx (= nwk) format

((((((((((((((((((((((((())) Cluster_234:0.25278,(Cluster_325:0.09784,Clu 67)0.972:0.02504, (Cluster_468:0.0269, (Cluster_138:0.0016 .782:0.00832,Cluster_277:0.01601)1.000:0.06764,Cluster_4 ter_47:0.13954, (Cluster_166:0.16129, (Cluster_403:0.22934 72:0.01332, (Cluster_400:0.00545, Cluster_473:0.01483)1.00)0.829:0.01282,Cluster_240:0.12227)0.717:0.02027)0.981:0 uster_478:0.00249)0.000:0.00055,(Cluster_193:0.00055,Clu 359, Cluster_484:0.01913) 0.880:0.03155) 0.993:0.08088) 0.45 0989)0.827:0.01144)0.870:0.01235,((Cluster_81:0.08926,Cl 05)0.862:0.00658,(Cluster_303:0.04337,Cluster_398:0.0311 237)0.953:0.01895,(Cluster_346:0.0235,((Cluster_369:0.01 Cluster_402:0.12402, (Cluster_309:0.02202, (Cluster_284:0. .00054, (Cluster_427:0.00054, (Cluster_14:0.00402, Cluster_ 0.791:0.02141, (Cluster_93:0.00054, Cluster_340:0.01463)0. :0.03373)0.847:0.03692,Cluster_406:0.16125)0.831:0.03655 :0.04264)0.321:0.00907)0.487:0.01277,Cluster 129:0.06386 02802)0.763:0.02715, (Cluster_16:0.1183, (Cluster_63:0.062

Practice:

Exercice:

1. Create the phylogenetic tree that will be used for statistical analyses.


Download your data

In order to share resources as well as possible, files that have not been accessed for more than 120 days are regularly purged. The backup of data generated using of Galaxy is <u>your responsibility</u>.

You have 2 backup possibilities:

1. Save your datasets one by one using the "floppy disk" icon.

 Or export each history.
 To export a history, from the "History" menu, click on the wheel, then "Export History to File":

Afficher les données cachées

Supprimer les données cachées

Purger les données supprimées

Exporter les citations des outils

Exporter l'Historique dans un fichier

Télécharger

Export history archive

Link for download ready http://vm-galaxy-prod.toulouse.inra.fr/galaxy_frogsdev/history/export_archive?id=d413a19dec13d11e&jeha_id=f2db41e1fa331b3e (view job details). Use this link to download the archive or import it on another Galaxy server.