

Training on Galaxy: Metabarcoding

April 2023 - Webinar

FROGS Practice on function inference

LUCAS AUER, MARIA BERNARD, LAURENT CAUQUIL, VINCENT DARBOT, MAHENDRA MARIADASSOU, GÉRALDINE PASCAL & OLIVIER RUÉ

What metabolic functions are present in the environment?

Concepts

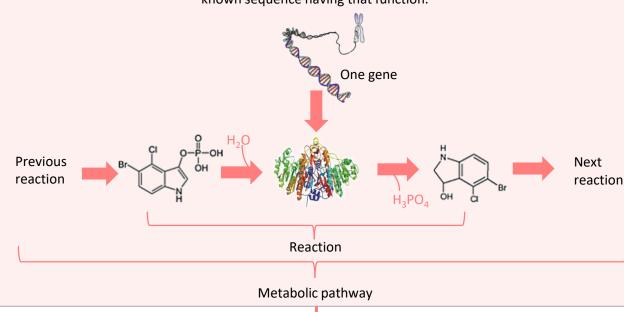
Metabarcoding principle

Determine the diversity of a environment by amplification and sequencing of a genetic marker.

Microorganism genomes

PCR amplification of marker (16S, 18S, ITS...)

analysis with


FROGS

Abundancy table displaying microbial diversity per samples

	Taxonomic affiliation	Sample1	Sample2	Sample3
ASV1	Species A	3500	6300	210
ASV2	Species B	0	460	36
ASV3	Species C	400	700	500

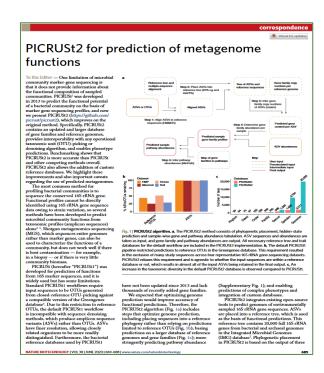
Functional inference

Assuming that an organism has a metabolic function by the presence in the organism's genome of a known sequence having that function.

What metabolic functions are presents in a microbial community?

Based on PICRUSt2

PICRUSt (Phylogenetic investigation of communities by reconstruction of unobserved states) is an open-source tool.


It is a software for predicting functional abundances based only on marker gene sequences.

PICRUSt2 is composed of 4 python applications.

No graphic interface exists to run PICRUSt2 for non-expert users.

Douglas, G.M., Maffei, V.J., Zaneveld, J.R. *et al.* **PICRUSt2** for prediction of metagenome functions. *Nat Biotechnol* 38, 685–688 (2020).

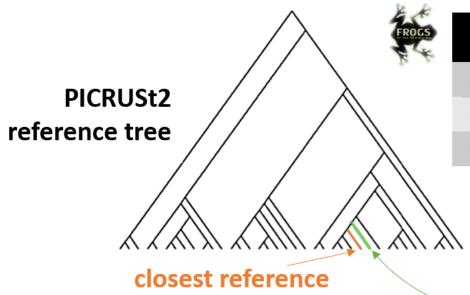
https://doi.org/10.1038/s41587-020-0548-6

How it works?

 Places the ASVs into a reference phylogenetic tree and predicts of marker copy number in each ASV.

FROGSFUNC_1_placeseqs_copynumber

 Predicts number of function copy number in each ASV and calculates functions abundances in each sample and ASV abundances according to marker copy number.

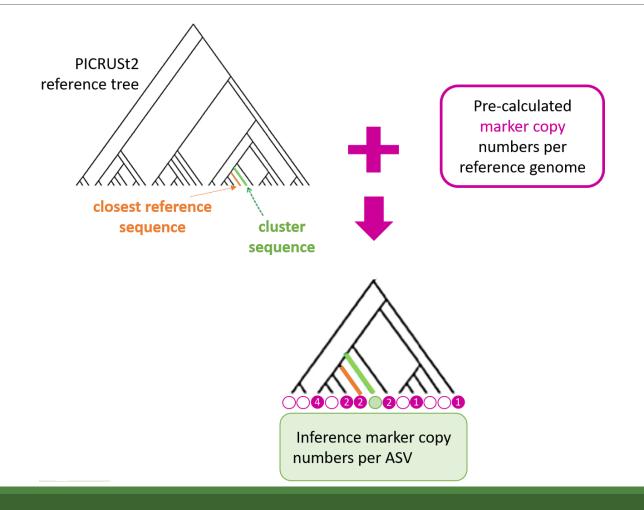

FROGSFUNC_2_functions

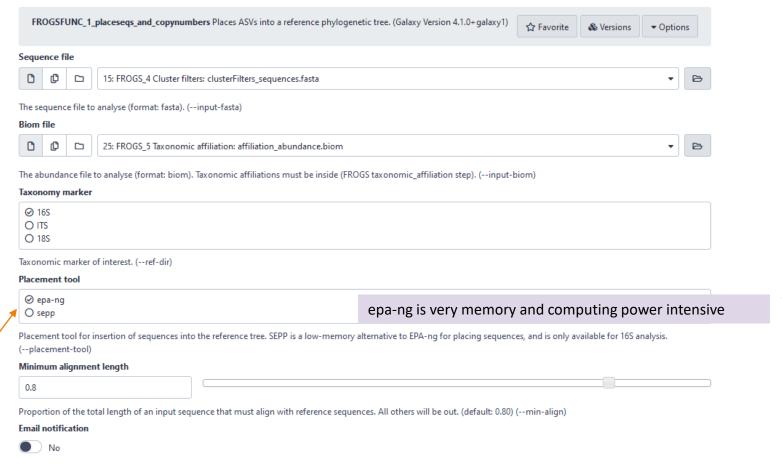
3. Calculates pathway abundances in each sample.

FROGSFUNC_3_pathways

It runs only on 16S, ITS or 18S

- **FROGSFUNC_1_placeseqs_copynumber** is the first step of PICRUSt2.
- It inserts your studied sequences into a <u>reference tree</u>.
- By default, this reference tree is based on 20,000 16S sequences from genomes in the <u>Integrated Microbial Genomes database</u>.
- Prediction of the copy numbers of the marker gene (16S, ITS or 18S) in order to normalize the ASV abundances table thereafter.


sequence


	taxonomic affiliation	fasta sequences	sample1	sample2	sample3
ASV1	species A	>AGGAG	3500	6300	210
ASV2	species B	>ATGAG	0	460	36
ASV3	species C	>AGGCT	400	700	500

cluster sequence

2 input files are required for FROGSFUNC_1_placeseqs_copynumber analysis:

- fasta file of ASV sequences (it can be from FROGS_4 cluster_filters step)
- **biom file** of ASV abundances with taxonomic affiliation information (it can be from FROGS 5 taxonomic affiliation step)

epa-ng is the only choice for ITS and 18S Since epa-ng is greedy then it may force to reduce the dataset to run.

Send an email notification when the job completes.

Input files

- Sequences file: The ASV fasta sequence file.
- **biom file**: The ASV <u>biom</u> file. Taxonomic affiliations must be done before (biom file form FROGS_5_taxonomic_affiliation tool).
- **taxonomy marker**: 16S, ITS and 18S only available.

If your ASVs are based on another marker, you cannot use this tool.

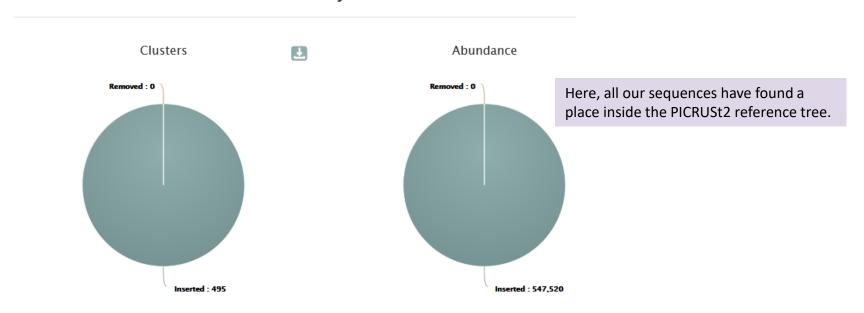
- placement tool: EPA-NG or SEPP are placement tools for insertion of sequences into the PICRUSt2 reference tree. SEPP is a low-memory alternative to EPA-ng for placing sequences. So, if the tool crashes with EPA-ng, try again with SEPP.
- minimum alignment length: Proportion of the total length of an input sequence that must align with reference sequences. All other will be out.

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.biom

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_closests_ref_sequences.txt

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_closests_ref_sequences.txt

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.fasta


FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_excluded.tsv

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_tree.nwk

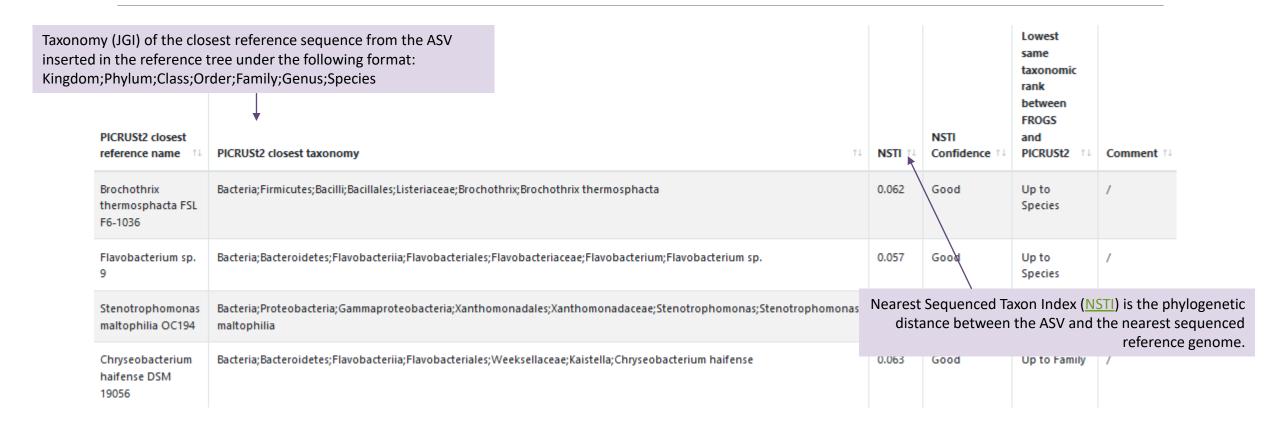
FROGSFUNC_1_placeseqs_and_copynumbers: report.html

FROGSFUNC_1: report.html

Insertion in reference tree summary

The html report file describes which ASVs are contained or not in the phylogenetic tree.

Note that PICRUSt2 uses its own reference tree to affiliate ASVs from reference sequences.


The report file indicates for each ASV which is the closest PICRUSt2 reference sequence, and compares it to the original FROGS taxonomy. Clicking on the sequence ID gives you more information about it <u>JGI</u> database.

Where are my ASVs inserted in the phylogenetic reference tree? https://jgi.doe.gov/

ASV ↑↓	Nb sequences ↑↓	FROGS Taxonomy	PICRUSt2 closest ID (JGI) 14	PICRUSt2 closest reference name 14
Cluster_1	84849	Bacteria; Firmicutes; Bacilli; Lactobacillales; Listeriaceae; Brochothrix; Brochothrix thermosphacta	2576861686	Brochothrix thermosphacta FSL F6-1036
Cluster_10	4188	Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Flavobacteriaceae; Flavobacterium; Flavobacterium sp.	2724679776	Flavobacterium sp. 9
Cluster_100	696	Bacteria; Proteobacteria; Gamma proteobacteria; Xanthomonadales; Xanthomonadaceae; Stenotrophomonas;	2639762796	Stenotrophomonas maltophilia OC194
Cluster_101	752	Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Weeksellaceae; Chryseobacterium; Chryseobacterium sp.	2600255101	Chryseobacterium haifense DSM 19056

first part of the table

Where are my ASVs inserted in the phylogenetic reference tree ?

second part of the table

Where are my ASVs inserted in the phylogenetic reference tree ?

PICRUSt2 closest reference name †4	PICRUSt2 closest taxonomy	NSTI †4	NSTI Confidence ↑↓	Lowest same taxonomic rank between FROGS and PICRUSt2	Comment †4
Brochothrix thermosphacta FSL F6-1036	Bacteria; Firmicutes; Bacilli; Bacillales; Listeriaceae; Brochothrix; Brochothrix thermosphacta	0.062	Good	Up to Species	/
Flavobacterium sp. 9	Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Flavobacteriaceae; Flavobacterium; Flavobacterium sp.	0.057	Good	Up to Species	/
Stenotrophomonas maltophilia OC194	Bacteria; Proteobacteria; Gamma proteobacteria; Xanthomonadales; Xanthomonadaceae; Stenotrophomonas; Stenotrophomonas maltophilia	0.036	Good	Up to Genus	/
Chryseobacterium haifense DSM 19056	Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Weeks ellaceae; Kaistella; Chryseobacterium haifense	0.063	Good	Up to Family	/

second part of the table

→ NSTI confidence

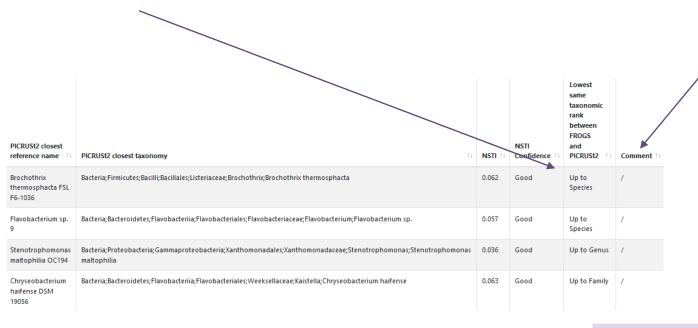
According to the NSTI score, we guide you in the confidence you can bring to the issue affiliation of PICRUSt2. Four levels are given:

- 0 < Good < 0.5
- 0.5 <= Medium < 1
- 1 <= Bad < 2
- To exclude >= 2

PICRUSt2 sets NSTI threshold to 2 per default. Some studies have shown that this threshold is permissive. Thus, it is important to see if the taxonomies between PICRUSt2 and FROGS are quite similar or not, in order to potentially choose a more stringent threshold afterwards.

For example, a NSTI lower than 0.5, with "species" as lowest common taxonomic rank between FROGS and PICRUSt2 will product a good prediction.

Where are my ASVs inserted in the phylogenetic reference tree ?


PICRUSt2 closest reference name	PICRUSt2 closest taxonomy	NSTI †↓	NSTI Confidence ↑↓	Lowest same taxonomic rank between FROGS and PICRUSt2	Comment †4
Brochothrix thermosphacta FSL F6-1036	Bacteria; Firmicutes; Bacilli; Bacillales; Listeriaceae; Brochothrix; Brochothrix thermosphacta	0.062	Good	Up to Species	1
Flavobacterium sp. 9	Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Flavobacteriaceae; Flavobacterium; Flavobacterium sp.	0.057	Good	Up to Species	/
Stenotrophomonas maltophilia OC194	Bacteria; Proteobacteria; Gamma proteobacteria; Xanthomonadales; Xanthomonadaceae; Stenotrophomonas; Stenotrophomonas maltophilia	0.036	Good	Up to Genus	/
Chryseobacterium haifense DSM 19056	Bacteria; Bacteroidetes; Flavobacteriia; Flavobacteriales; Weeksellaceae; Kaistella; Chryseobacterium haifense	0.063	Good	Up to Family	/

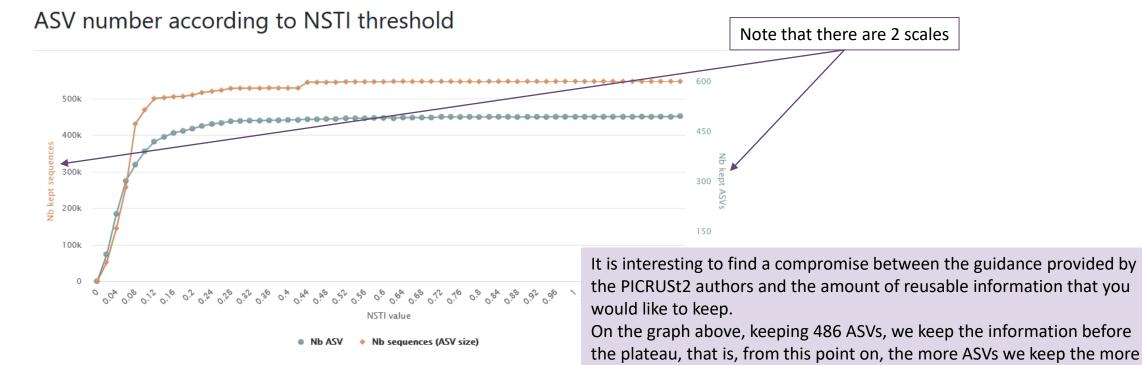
second part of the table

Where are my ASVs inserted in the phylogenetic reference tree ?

Lowest same taxonomic rank between FROGS and PICRUSt2: Lowest

common taxonomic rank between FROGS and PICRUSt2 affiliations.

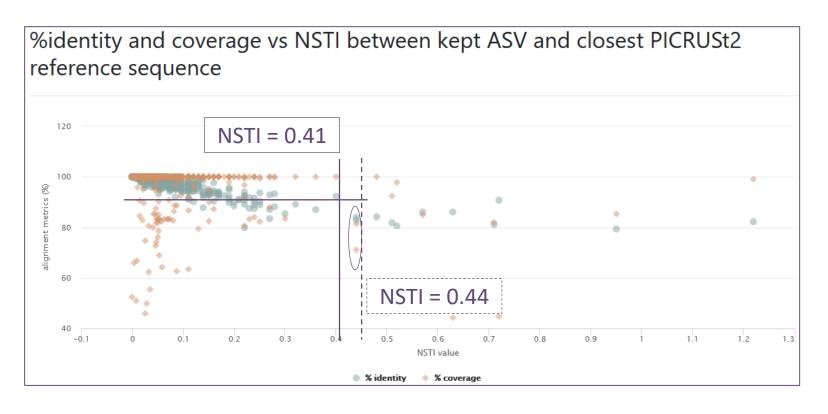
Comment:

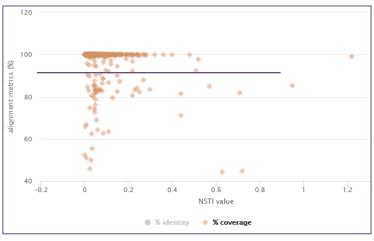

- identical taxonomy: if the FROGS and PICRUSt2 taxonomic affiliations are identical.
- *identical sequence*: if the ASV sequence is strictly the same as the reference sequence.
- it is a mark of unambiguity

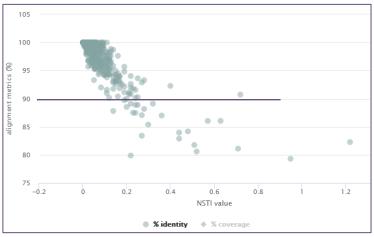
Search « up to species » for obtaining less ambigous reference

Another key for choosing NSTI threshold

N.B.: Select area to zoom in.




This graph allows you to set the "NSTI cut-off" parameter of the next tool


we degrade the accuracy. So, here NSTI = 0.44

But this depends strongly on the datasets.

Another key for choosing NSTI threshold

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_marker.tsv

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.biom

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_closests_ref_sequences.txt

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.fasta

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_excluded.tsv

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_tree.nwk

FROGSFUNC_1_placeseqs_and_copynumbers: report.html

FROGSFUNC_1: tree.nwk

```
(2609460310:0.0708,2713896746:0.079553):0.020861):0.018755):0.049721,2667528167:0.021242):0.05
(2634166173:0.020087,((2630968917:0.042097,(2695420983:0.0414,((641380439:0.006668,(2751185746
(2630968293:0.07529,(2634166307:0.010503,2545824761:0.03788):0.019526):0.024717):0.015629):0.0
((2630968881:0.054077,2654587584:0.013434):0.046038,2585427602:0.014665):0.024954):0.022354):€
((2526164557:0.215838,((2524023070:0.051755,(2627853707:0.116778,2509276063:0.03521):0.033363)
((2627853601:0.074019,
((640963037:0.107024,2675903215:0.024681):0.038088,2728369219:0.027685):0.020008):0.023448,274
0.021443):0.036439,((((2600255390:0.00005,Cluster 103:0.022437):0.088344,(2617271337:0.049512,
(2585427837:0.000001,2693429891:0.001563):0.000001):0.00005, Cluster 29:0.031725):0.013777):0.0
(((((2700988729:0.065717,2695420957:0.031748):0.022352,(2698536752:0.009476,((((2695421021:0.
((2643221790:0.0157,2728368985:0.008527):0.014802,(2695420960:0.010196,Cluster 188:0.040768):0
(2738541279-cluster:0.000001,((2636415472:0.00924,(2648501293:0.00005,Cluster 202:0.029009):0.
((((((2734482184:0.025815,2648501732:0.010421):0.005141,
(2513020052:0.021475,2695420959:0.057031):0.010852):0.005258,2754412712:0.020212):0.011771,269
((2700988712:0.032914,2695420925-cluster:0.003371):0.007089,(((2619618807:0.048997,(2523533607
(2693429909:0.000001, cluster 192:0.14387):0):0.017851,((2684622654:0.032648,(2551306066:0.0026
(2693429883:0.000001, Cluster 321:0.05075):0):0.019173):0.006793):0.012944):0.039508):0.029699,
(2523533550:0.002444, cluster 37:0.02644):0.010937):0.020635):0.038474):0.000001,2643221667:0.0
((((2739367857-cluster:0.001694.2585427836:0.026929):0.008262.((((2619618994:0.089002.((2524)
```

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_marker.tsv

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.biom

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_closests_ref_sequences.txt

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.fasta

 $FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_excluded.tsv$

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_tree.nwk

FROGSFUNC_1_placeseqs_and_copynumbers: report.html

This file contains all the ASVs that could not be placed in the PICRUSt2 reference tree.

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_marker.tsv

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.biom

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_closests_ref_sequences.txt

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.fasta

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_excluded.tsv

FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_tree.nwk

FROGSFUNC_1_placeseqs_and_copynumbers: report.html

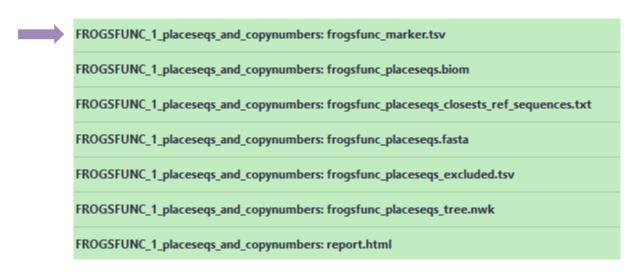
This file contains all the ASVs fasta file (without those that may be excluded)

In this table, you will find all the details of the correspondences between your sequences and those of PICRUSt2.

FROGSFUNC_1: closest_ref_sequences.txt

#Cluster	Nb sequences	FROGS Taxonomy	PICRUSt2 closest ID
Cluster_1	84849	Bacteria; Firmicutes; Bacilli; Lactobacillales; Listeriaceae; Brochothrix; Brochothrix thermosphacta	2576861686
Cluster_2	31333	Bacteria; Proteobacteria; Gamma proteobacteria; Enterobacterales; Vibrionaceae; Photobacterium; unknown species	2724679053
Cluster_3	40711	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Lactobacillus sakei	2728369693
Cluster_4	22275	Bacteria; Actino bacterio ta; Actino bacteria; Propioni bacteria les; Propioni bacteria ceae; Cutibacterium; unknown species	2537562124
Cluster_5	29355	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Leuconostoc; Leuconostoc inhae KCTC 3774	641522636

PICRUSt2 closest reference name	PICRUSt2 closest taxonomy
Brochothrix thermosphacta FSL F6-1036	Bacteria; Firmicutes; Bacilli; Bacillales; Listeriaceae; Brochothrix; Brochothrix thermosphacta
Photobacterium kishitanii 201212X	Bacteria; Proteobacteria; Gamma proteobacteria; Vibrionales; Vibrionaceae; Photobacterium; Photobacterium kishitanii alle vibrionales; Vibrionales; Vibrionaceae; Photobacterium; Photobacterium kishitanii alle vibrionales; Vi
Lactobacillus curvatus JCM 1096, DSM 20019	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Latilactobacillus; Latilactobacillus curvatus
Cutibacterium acnes SK182	Bacteria; Actino bacteria; Actino mycetia; Propioni bacteriales; Propioni bacteria ceae; Cutibacterium; Cutibacterium acnes actional contractorium across actions and actions across actions and actions across actions and actions across actions across actions and actions across actions across actions across actions actions actions actions across actions ac
Leuconostoc citreum KM20	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Leuconostoc; Leuconostoc citreum


NSTI	NSTI Confidence	FROGS and PICRUSt2 lowest same taxonomic rank	Comment	Cluster sequence
0.062	Good	Up to Species	/	GACGAACGCTGGCGGCGTC
0.05	Good	Up to Genus	/	ATTGAACGCTGGCGGCAGG
0.068	Good	Up to Genus	/	GACGAACGCTGGCGGCGTC
0.039	Good	Up to Genus	identical sequence	GACGAACGCTGGCGGCGT(
0.072	Good	Up to Genus	/	GATGAACGCTGGCGGCGTG

PICRUSt2 closest reference se	quence	9
TTAACGAGAGTTTGATCCTGGCT	rcaggacgaacgctg	10
GAGTAATGCCTGGGAATATACCC	CTGATGTGGGGGATAA	99
TTTTAATCGAGAGTTTGATCCTG	GCTCAGGACGAACGC	98
TTCCATTGGAGAGTTTGATCCTG	GCTCAGGACGAACG	10
GAGAGTTTGATCCTGGCTCAGG	ATGAACGCTGGCGGC	97

%id	%cov	score
100.0	100.0	493.5
99.75	81.91	400.0
98.84	83.27	412.0
100.0	100.0	468.0
97.17	100.0	444.5

Abundance table without those that may be excluded

Abundance table without those that may be excluded

FROGSFUNC_1: marker.tsv

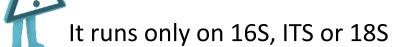
Prediction by PICRUSt2 of 16S copy number for each ASV (placed in the reference tree)

sequence	16S_rRNA_Cou	nt	metadata_NSTI
Cluster_1		1	0.062403
Cluster_10		1	0.057594000000000006
Cluster_100		1	0.036314
Cluster_101		1	0.063955
Cluster_102		1	0.019805
Cluster_103		1	0.022487
Cluster_104		1	0.074696
Cluster_105	7	7	0.0042
Cluster_106	/	1	0.048352
Cluster_107	/ 🔻	1	0.295495
Cluster_108		1	0.018517
Cluster_109		1	0.017555
Cluster_11		1	0.017435
Cluster_110		1	0.06880800000000001
Cluster_111		1	0.031835
Cluster_112		1	0.11071900000000001
Cluster_113		1	0.00972099999999999
Cluster_114		4	0.043952
Cluster_115		1	0.105228
Cluster_116		1	0.238852
Cluster_117		1	0.006305
Cluster_118		1	0.035066
Cluster_119		1	0.053155999999999995
Cluster_12		1	0.060149
Cluster_120		1	0.194218
Cluster_121		1	0.111322
Cluster_122		1	0.031979
Cluster_123		2	0.037387000000000004
Cluster_124		1	0.26648499999999997
Cluster_125		2	0.091262
Cluster_126		1	0.0518950000000000004
Cluster_127		6	0.019323
Cluster_128		4	0.0227110000000000002

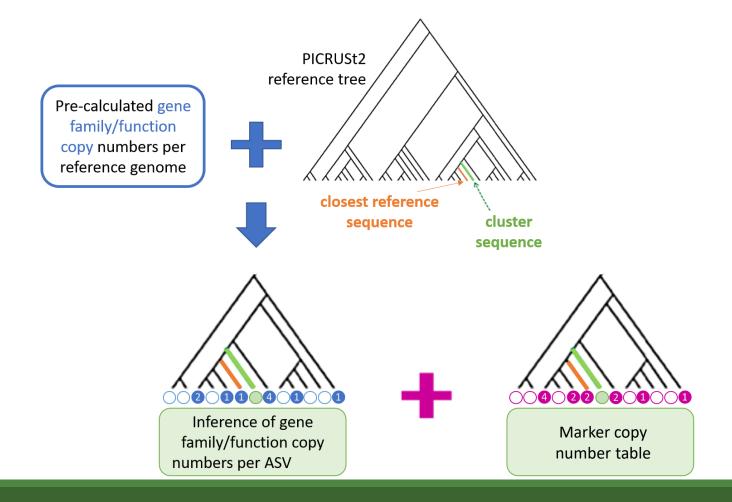
FROGSFUNC_2_functions

How it works?

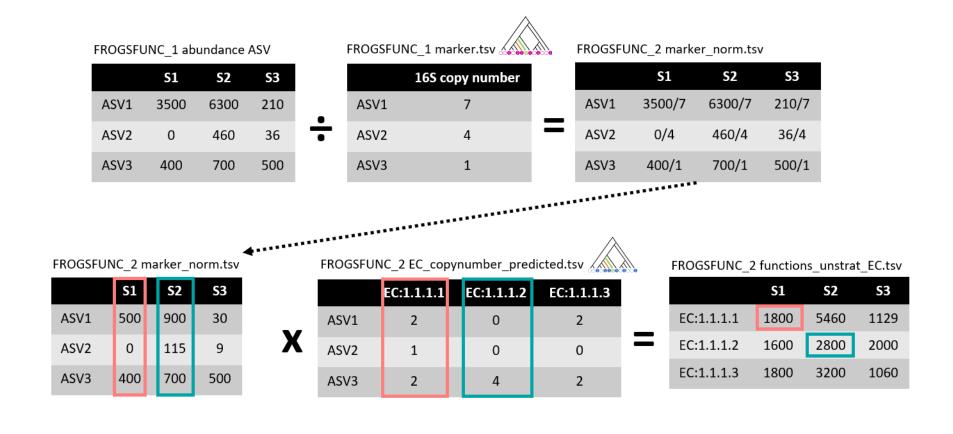
1. Places the ASVs into a reference phylogenetic tree and predicts of marker copy number in each ASV.


FROGSFUNC_1_placeseqs_copynumber

 Predicts number of function copy number in each ASV and calculates functions abundances in each sample and ASV abundances according to marker copy number.


FROGSFUNC_2_functions

3. Calculates pathway abundances in each sample.


FROGSFUNC_3_pathways

FROGSFUNC_2_functions

FROGSFUNC 2 functions

FROGSFUNC_2_functions

FROGSFUNC_2_functions Calculates functions abundances in each sample. (Galaxy Version 4.1.0+galaxy1) ♣ Versions ◆ Options					
Biom file					
□ □ □ 51: FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.biom □					
The abundance file i.e. FROGSFUNC_1_placeseqs_copynumber tool output file (frogsfunc_placeseqs.biom). (input-biom)					
Sequence file					
① □ 49: FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs.fasta ✓					
The fasta file i.e. from FROGSFUNC_1_placeseqs_copynumber tool output file (frogsfunc_placeseqs.fasta). (input-fasta)					
Tree file					
□ □ □ 47: FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_placeseqs_tree.nwk					
The file contains the tree information from FROGSFUNC_1_placeseqs_copynumber tool (frogsfunc_placeseqs_tree.nwk). (input-tree)					
Marker file					
□ □ □ □ □ □ 52: FROGSFUNC_1_placeseqs_and_copynumbers: frogsfunc_marker.tsv					
Table of predicted marker copy number i.e. FROGSEUNC_1_placeseqs_copynumber output (frogsfunc_marker.tsv). (input-marker)					
Taxonomic marker					
∅ 16S○ ITS○ 18S					

Thanks to the previous prediction of the **copy numbers** of the marker gene (16S, ITS or 18S) in FROGSFUNC_1, FROGSFUNC_2 can normalize the ASV abundances table.

Taxonomic marker of interest,

FROGSFUNC_2_functions

Prediction of the **functions abundances**, using different databases:

EC: https://enzyme.expasy.org/

KO: https://www.genome.jp/kegg/ko.html

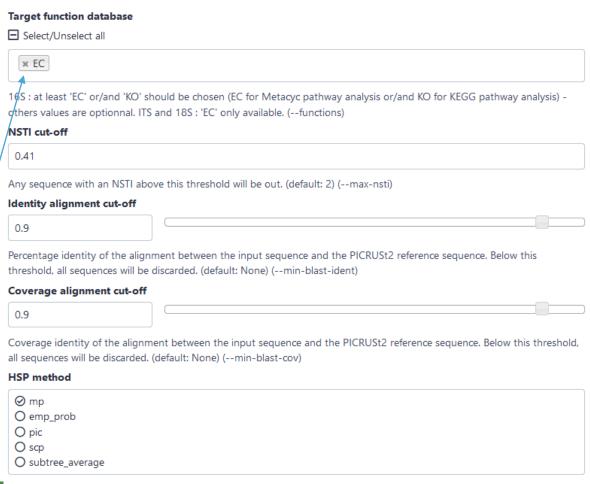
PFAM: http://pfam.xfam.org/

COG: https://www.ncbi.nlm.nih.gov/research/cog-project/

TIGRFAM: https://tigrfams.jcvi.org/cgi-bin/index.cgi

PHENO: https://phenodb.org/

_	
	Target function database ☐ Select/Unselect all
	× EC
	16S: at least 'EC' or/and 'KO' should be chosen (EC for Metacyc pathway analysis or/and KO for KEGG pathway analysis) - others values are optionnal. ITS and 18S: 'EC' only available. (functions)
	NSTI cut-off
/	0.41
	Any sequence with an NSTI above this threshold will be out. (default: 2) (max-nsti)
	Identity alignment cut-off
	0.9
	Percentage identity of the alignment between the input sequence and the PICRUSt2 reference sequence. Below this threshold, all sequences will be discarded. (default: None) (min-blast-ident)
	Coverage alignment cut-off
	0.9
	Coverage identity of the alignment between the input sequence and the PICRUSt2 reference sequence. Below this threshold, all sequences will be discarded. (default: None) (min-blast-cov) HSP method
	✓ mp✓ emp_prob✓ pic✓ scp✓ subtree_average


Hidden-state prediction method to use: maximum parsimony (mp), empirical probabilities (emp_prob), continuous traits prediction using subtree averaging (subtree_average), continuous traits prediction with phylogentic independent contrast (pic), continuous traits reconstruction using squared-change parsimony (scp) (default: mp). (--hsp-method)

FROGSFUNC_2_functions

Function table choice: Which default pre-calculated count table to use?

- For 16S rRNA gene you can choose between: 'EC', 'KO', 'PFAM', 'COG', 'TIGRFAM', and/or 'PHENO'.
 You must select at least 'EC' or 'KO' because the information from Metacyc (EC) or KEGG (KO) are required.
- For ITS and 18S markers, 'EC' is only available.

Hidden-state prediction method to use: maximum parsimony (mp), empirical probabilities (emp_prob), continuous traits prediction using subtree averaging (subtree_average), continuous traits prediction with phylogentic independent contrast (pic), continuous traits reconstruction using squared-change parsimony (scp) (default: mp). (--hsp-method)

FROGSFUNC_2_functions

Target function database ■ Select/Unselect all × EC 16S: at least 'EC' or/and 'KO' should be chosen (EC for Metacyc pathway analysis or/and KO for KEGG pathway analysis) others values are optionnal. ITS and 18S: 'EC' only available. (--functions) NSTI cut-off 0.41 Any sequence with an NSTI above this threshold will be out. (default: 2) (--max-nsti) Identity alignment cut-off 0.9 Percentage identity of the alignment between the input sequence and the PICRUSt2 reference sequence. Below this threshold, all sequences will be discarded. (default: None) (-min-blast-ident) Coverage alignment cut-off 0.9 Coverage identity of the alignment between the input sequence and the PICRUSt2 reference sequence. Below this threshold, all sequences will be discarded. (default: None) (--min-blast-cov) **HSP** method Qm D O emp_prob O pic O scp O subtree_average

NSTI = 0.41

NSTI = 0.41

100

80

40

-0.1

0

0.1

0.2

0.3

0.4

Hidden-state prediction method to use: maximum parsimony (mp), empirical probabilities (emp_prob), continuous traits prediction using subtree averaging (subtree_average), continuous traits prediction with phylogentic independent contrast (pic), continuous traits reconstruction using squared-change parsimony (scp) (default: mp). (--hsp-method)

FROGSFUNC_2_functions

Method used

for prediction.

Target function database	
■ Select/Unselect all	
× EC	
16S: at least 'EC' or/and 'KO' should be chosen (EC for Metacyc pathway analysis or/and KO for KEGG pathway an others values are optionnal. ITS and 18S: 'EC' only available. (functions)	alysis) -
NSTI cut-off	
0.41	
Any sequence with an NSTI above this threshold will be out. (default: 2) (max-nsti)	
Identity alignment cut-off	
0.9	
Percentage identity of the alignment between the input sequence and the PICRUSt2 reference sequence. Below the threshold, all sequences will be discarded. (default: None) (min-blast-ident)	İS
Coverage alignment cut-off	
0.9	
Coverage identity of the alignment between the input sequence and the PICRUSt2 reference sequence. Below this all sequences will be discarded. (default: None) (min-blast-cov)	threshold,
HSP method	

Hidden-state prediction method to use: maximum parsimony (mp), empirical probabilities (emp_prob), continuous traits prediction using subtree averaging (subtree_average), continuous traits prediction with phylogentic independent contrast (pic), continuous traits reconstruction using squared-change parsimony (scp) (default: mp). (--hsp-method)

FROGSFUNC_2_functions: frogsfunc_functions_unstrat_EC.tsv

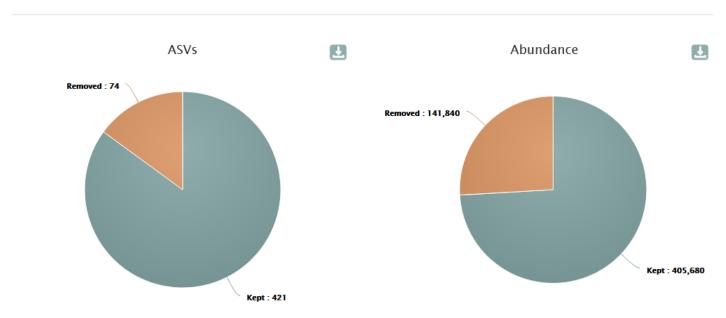
FROGSFUNC_2_functions: EC_copynumbers_predicted.tsv

FROGSFUNC_2_functions: frogsfunc_functions_excluded.tsv

FROGSFUNC_2_functions: frogsfunc_functions_weighted_nsti.tsv

FROGSFUNC_2_functions: frogsfunc_functions_marker_norm.tsv

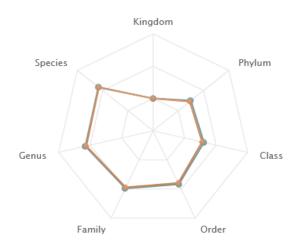
FROGSFUNC_2_functions: frogsfunc_functions.fasta


FROGSFUNC_2_functions: frogsfunc_functions.biom

FROGSFUNC_2_functions: report.html

FROGSFUNC_2 : report.html

ASVs are excluded if the associated NSTI is above the threshold, or if the alignment values are below the thresholds.


Metagenome functional profile summary

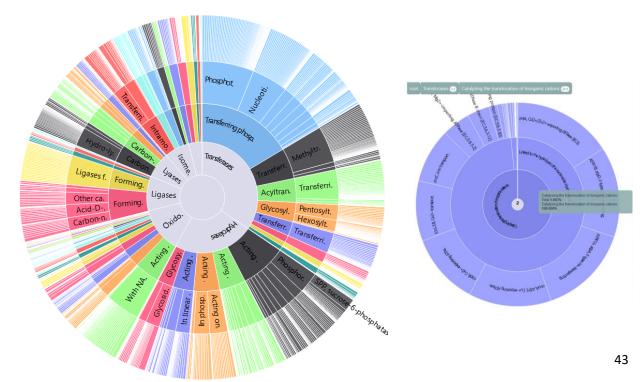
FROGSFUNC_2: report.html

Number of different taxonomic ranks before (green) and after (orange) application of the filters.

Remaining diversity after filtering for functional inference

Number of different taxonomic observations per rank before and after applying NSTI or alignments thresholds

Before


After

FROGSFUNC_2: report.html

Function abundances per sample

🕓 Display global distribution **≛** CSV ↑↓ Weighted NSTI Nb function id retrieved Samples \checkmark BHT0.LOT01 0.081 2,627 BHT0.LOT03 0.075 2,701 BHT0.LOT04 0.066 2,909 BHT0.LOT05 0.081 2.836 2,815 BHT0.LOT06 0.085 BHT0.LOT07 0.082 2,787 BHT0.LOT08 0.082 2,895 2,764 BHT0.LOT10 0.074 2,553 CDT0.LOT02 0.073 2,693 CDT0.LOT04 0.053

Gene families/function from KEGG or Metacyc databases are classified according to 4 hierarchy levels. The graph shows the proportion of each level within the selected samples.

FROGSFUNC_2_functions: frogsfunc_functions_unstrat_EC.tsv

FROGSFUNC_2_functions: EC_copynumbers_predicted.tsv

FROGSFUNC_2_functions: frogsfunc_functions_excluded.tsv

FROGSFUNC_2_functions: frogsfunc_functions_weighted_nsti.tsv

FROGSFUNC_2_functions: frogsfunc_functions_marker_norm.tsv

FROGSFUNC_2_functions: frogsfunc_functions.fasta

FROGSFUNC_2_functions: frogsfunc_functions.biom

FROGSFUNC_2_functions: report.html

ASV abundance table without excluded ASVs (NSTI, %identity or %coverage thresholds alignment).

ASV Sequence file without excluded ASVs (NSTI, blast perc identity or blast perc coverage thresholds).

FROGSFUNC_2_functions: frogsfunc_functions_unstrat_EC.tsv

FROGSFUNC_2_functions: EC_copynumbers_predicted.tsv

FROGSFUNC_2_functions: frogsfunc_functions_excluded.tsv

FROGSFUNC_2_functions: frogsfunc_functions_weighted_nsti.tsv

FROGSFUNC_2_functions: frogsfunc_functions_marker_norm.tsv

FROGSFUNC_2_functions: frogsfunc_functions.fasta

FROGSFUNC_2_functions: frogsfunc_functions.biom

FROGSFUNC_2_functions: report.html

ASV normalized abundance table

FROGSFUNC_2: marker_norm.tsv

Table with normalized abundances per marker copy number from FROGSFUNC_1 step.

Ex: cluster_123 have two 16S copies and its abundance before this normalization in BHT0.LOT01 was 35

Cluster_124	461	0	6	6	0
Cluster_123	640	35	6	55	11
Cluster_126	511	73	7	10	33

normalized	BHT0.LOT01	BHT0.LOT03	BHT0.LOT04
Cluster_1	791.0	402.0	433.0
Cluster_10	0.0	0.0	0.0
Cluster_100	0.0	0.0	0.0
Cluster_101	0.0	0.0	0.0
Cluster_102	0.0	0.0	0.0
Cluster_103	0.0	0.0	0.0
Cluster_104	0.0	0.0	0.0
Cluster_106	0.0	0.0	0.0
Cluster_108	0.0	0.0	0.0
Cluster_109	0.0	0.0	0.0
Cluster_11	3.0	0.0	4.0
Cluster_110	0.0	0.0	0.0
Cluster_111	2.0	8.0	59.0
Cluster_112	0.0	0.0	0.0
Cluster_113	0.0	4.0	5.0
Cluster_114	0.0	0.0	0.5
Cluster_115	0.0	6.0	7.0
Cluster_117	0.0	0.0	0.0
Cluster_118	0.0	46.0	6.0
Cluster_119	0.0	0.0	0.0
Cluster_12	1333.0	188.0	127.0
Cluster_120	0.0	0.0	0.0
Cluster_121	0.0	0.0	0.0
Cluster_122	0.0	0.0	0.0
Cluster_123	17.5	3.0	27.5
Cluster_125	45.5	6.0	22.5

FROGSFUNC_2_functions: frogsfunc_functions_unstrat_EC.tsv

FROGSFUNC_2_functions: EC_copynumbers_predicted.tsv

FROGSFUNC_2_functions: frogsfunc_functions_excluded.tsv

FROGSFUNC_2_functions: frogsfunc_functions_weighted_nsti.tsv

FROGSFUNC_2_functions: frogsfunc_functions_marker_norm.tsv

FROGSFUNC_2_functions: frogsfunc_functions.fasta

FROGSFUNC_2_functions: frogsfunc_functions.biom

FROGSFUNC_2_functions: report.html

sample	weighted_NSTI
BHT0.LOT01	0.0814507179687713
BHT0.LOT03	0.07523644621312382
BHT0.LOT04	0.06550232405467385
BHT0.LOT05	0.08141930786656948
BHT0.LOT06	0.08495448189855995
BHT0.LOT07	0.08161575516954905
BHT0.LOT08	0.08233567661364216

the mean of NSTI value per sample.

FROGSFUNC_2_functions: frogsfunc_functions_unstrat_EC.tsv

FROGSFUNC_2_functions: EC_copynumbers_predicted.tsv

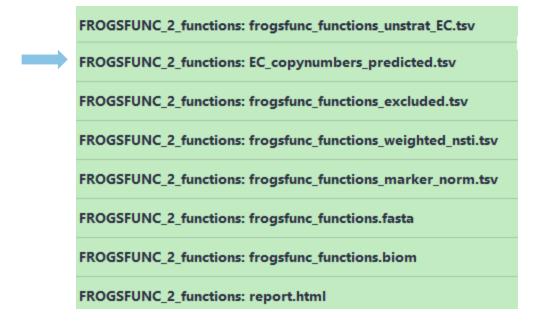
FROGSFUNC_2_functions: frogsfunc_functions_excluded.tsv

FROGSFUNC_2_functions: frogsfunc_functions_weighted_nsti.tsv

FROGSFUNC_2_functions: frogsfunc_functions_marker_norm.tsv

FROGSFUNC_2_functions: frogsfunc_functions.fasta

FROGSFUNC_2_functions: frogsfunc_functions.biom

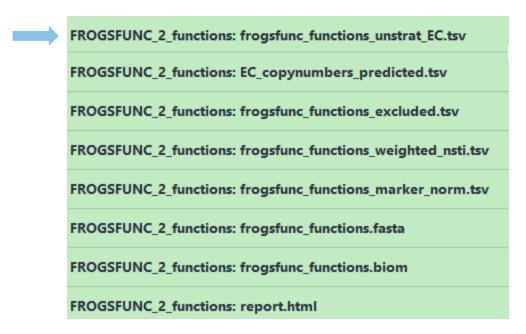

FROGSFUNC_2_functions: report.html

FROGSFUNC_2: excluded.tsv

#Cluster	FROGS_taxonomy	PICRUSt2_taxonomy
Cluster_2	Bacteria; Proteobacteria; Gamma proteobacteria; Enterobac	Bacteria; Proteobacteria; Gamma proteobacter
Cluster_3	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae;	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lacto
Cluster_7	Bacteria; Firmicutes; Bacilli; Erysipelotrichales; Erysipelotricha	Bacteria; Tenericutes; Mollicutes; Acholeplas ma
Cluster_9	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae;	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lacto
Cluster_14	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae;	Bacteria; Firmicutes; Bacilli; Lactobacillales; Lacto
Cluster_17	Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcacea є	Bacteria; Firmicutes; Bacilli; Lactobacillales; Strep

exclusion_paramater	value_parameter
min_blast_coverage	coverage = 0.819099999999999
min_blast_coverage	coverage = 0.8327
min_blast_identity,min_blast_coverage,max_nsti	identity = 0.8289, coverage = 0.711, nsti = 0.43916499999999997
min_blast_coverage	coverage = 0.8632
min_blast_coverage	coverage = 0.8327
min_blast_coverage	coverage = 0.668700000000001

Information (FROGS taxonomy, PICRUSt2 taxonomy, exclusion_parameter, value_parameter) on deleted ASV that are out of the cut-off values selected in this step.



FROGSFUNC_2: EC_copynumber_predicted.tsv

ASV	EC:1.1.1.1	EC:1.1.1.10	EC:1.	1.1.100 EC:1.1	.1.101 EC:1.1	1.102 EC:1.1	.1.103 EC:1.:	1.1.105
Cluster_1		2	0	2	0	0	0	0
Cluster_10		1	0	4	0	0	0	0
Cluster_100		2	0	8	0	0	1	0
Cluster_101		0	0	2	0	0	0	1
Cluster_102		0	0	3	0	0	0	1
Cluster_103		0	0	2	0	0	0	0
Cluster_104		0	0	2	0	0	0	0
Cluster_105		1	0	3	0	0	0	0
Cluster_106		1	0	4	0	0	0	0
Cluster_107		3	0	4	0	0	0	0
Cluster_108		3	0	10	0	0	0	0
Cluster_109		0	0	2	0	0	0	0
Cluster_11		5	0	5	0	0	1	0
Cluster_110		0	0	2	0	0	0	0
Cluster_111		5	0	5	0	0	1	0
Cluster_112		2	0	1	0	0	0	0
Cluster_113		4	0	3	0	0	0	0
Cluster_114		2	0	3	0	0	0	0

Output table of predicted function copy numbers per ASV.

One per chosen target function database (EC, KO, PFAM, COG, TIGRFAM, PHENO).

FROGSFUNC_2: unstrat_EC.tsv

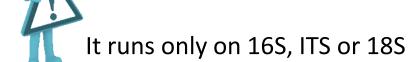
classification	db_link	observation_name	BHT0.LOT01	BHT0.LOT03	BHT0.LOT04
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC:1.1.1.1	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.1	EC:1.1.1.1	13205	15364	13783
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC:1.1.1.100	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.100	EC:1.1.1.100	20029	21513	23461
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC:1.1.1.103	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.103	EC:1.1.1.103	177	2011	334
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC:1.1.1.105	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.105	EC:1.1.1.105	0	0	0
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC:1.1.1.108	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.108	EC:1.1.1.108	142	194	127
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC: 1.1.1.11	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.11	EC:1.1.1.11	2	10	2
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC:1.1.1.122	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.122	EC:1.1.1.122	16	109	54
Oxidoreductases; Acting on the CH-OH group of donors; With NAD+ or NADP+ as acceptor; EC: 1.1.1.125	https://www.genome.jp/dbget-bin/www_bget?EC:1.1.1.125	EC:1.1.1.125	2218	505	1656

From this table of abundance it is quite possible to make statistical analyses to understand the information.

FROGSFUNC_3_pathways

How it works?

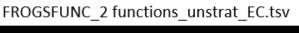
1. Places the ASVs into a reference phylogenetic tree and predicts of marker copy number in each ASV.

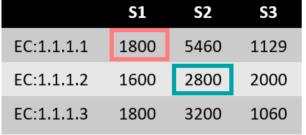

FROGSFUNC_1_placeseqs_copynumber

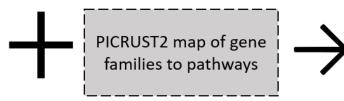
2. Predicts number of function copy number in each ASV and calculates functions abundances in each sample and ASV abundances according to marker copy number.

FROGSFUNC_2_functions

3. Calculates pathway abundances in each sample.


FROGSFUNC_3_pathways




FROGSFUNC_3

FROGSFUNC_3_pathways infers MetaCyc/KEGG pathway abundances based on EC/KO number abundances.

- Regroups EC/KO numbers to MetaCyc/KEGG reactions.
- Infers which MetaCyc/KEGG pathways are present based on these reactions with MinPath.
- Calculates and returns the abundance of pathways identified as present.

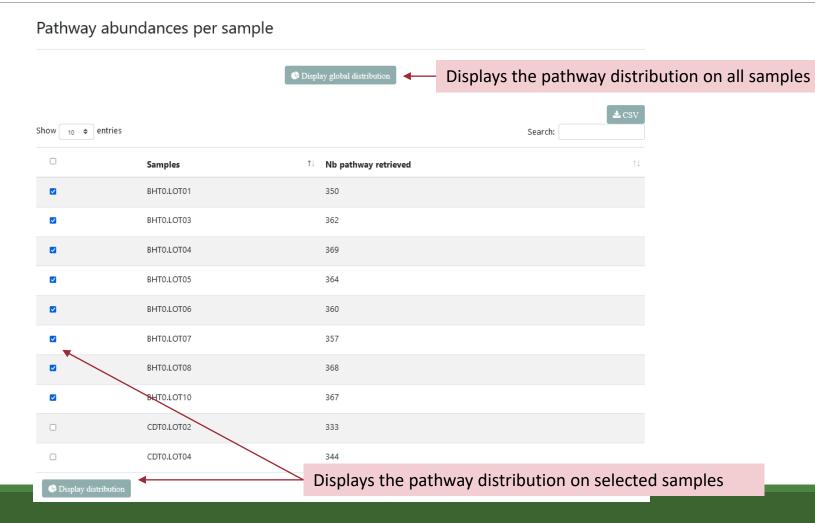
FROGSFUNC_3 pathways_unstrat per sample and per reference

Pathways	S 1	S2	S3
1CMET2-PWY	1289.7451	1485.2474	1233.5908
ANAEROFRUCAT-PWY	904.7455	1565.5453	1227.6231
ANAGLYCOLYSIS-PWY	1501.0804	1805.3271	1544.3206
ARG+POLYAMINE-SYN	0	49.3391	45.6559

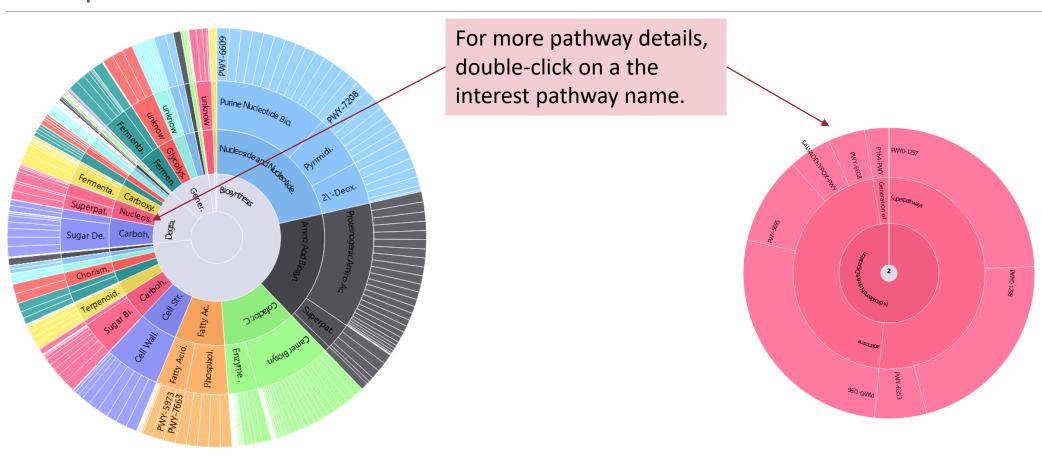
FROGSFUNC_3

FROGSFUNC_3_pathways Co. (Galaxy Version 4.1.0+galaxy)	alculates pathway abundances in each sample. 🏠 Favorite	▼ Options
Function abundance file		
□ □ □ 61: FROGSF	UNC_2_functions: frogsfunc_functions_unstrat_EC.tsv	▼
	om FROGSFUNC_2_functions tool, FROGSFUNC_2_functions_unstrat_EC.tsv for tions_unstrat_KO.tsv for Kegg database (unstratified table). (input-file)	Metacyc
Ø 16SØ ITSØ 18S Taxonomic marker of interest.		
Pathway reference Metacyc Kegg	Metacyc is the only choice for ITS and 18S	
For 16S marker, choose Metacyc For ITS or 18S marker, Metacyc i	or KEGG in accordance with your choice in the FROGSFUNC_1_placeseqs_copyn s the only valid option.	umbers tool.
Do you want to normalize the	final output table ?	
● No ◆		
Values are divided by sum of colu	umns, then multiplied by 10^6 (CPM values). (normalisation)	

normalization: values are divided by sum of columns, then multiplied by 10⁶ (Count Per Million values).


This normalization allows to compare the samples between them. But to perform more precise statistical analysis, some tools as **DESeq2 need the non-normalized abundance table** to perform the normalization by themselves.

So be careful which table to use for further analysis.


FROGSFUNC_3_pathways: frogsfunc_pathways_unstrat.tsv

FROGSFUNC_3_pathways: report.html

FROGSFUNC_3: report.html

What is the distribution of pathway abundances in the samples ?

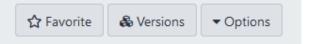
FROGSFUNC_3_pathways: frogsfunc_pathways_unstrat.tsv

FROGSFUNC_3_pathways: report.html

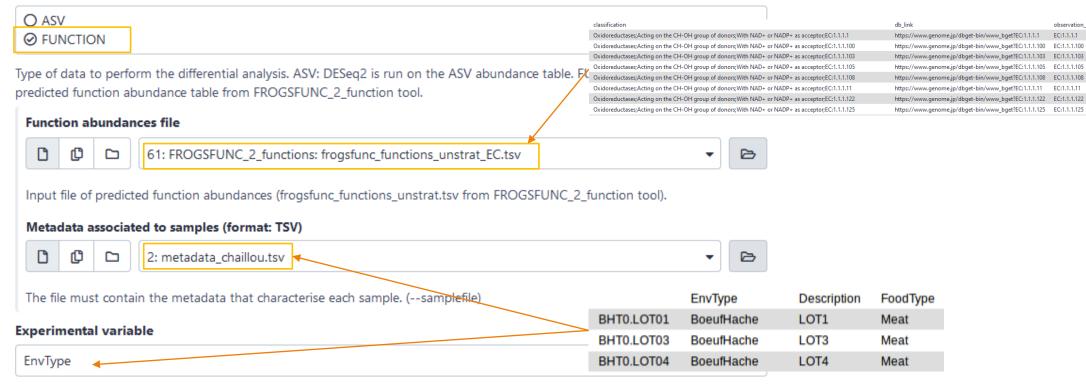
pathways abundance predictions of metagenome per sample.

FROGSFUNC_3: Pathway abundance tables

External link on the pathway


From this table of abundance it is quite possible to make statistical analyses on it to understand the information.

Statistics


DIFFERENTIAL ANALYSIS

FROGSSTAT DESeq2 preprocess

FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis (Galaxy Version 4.1.0+galaxy1)

Type of analysis

The factor that could have an effect on ASV/FUNCTION abundances. Ex: Treatment, etc.

Do you want to correct a confounding factor?

False

If yes, specify the counfouding factor

Email notification

Send an email notification when the job completes.

Outputs

FROGSSTAT DESeq2 Preprocess: function_data.Rdata

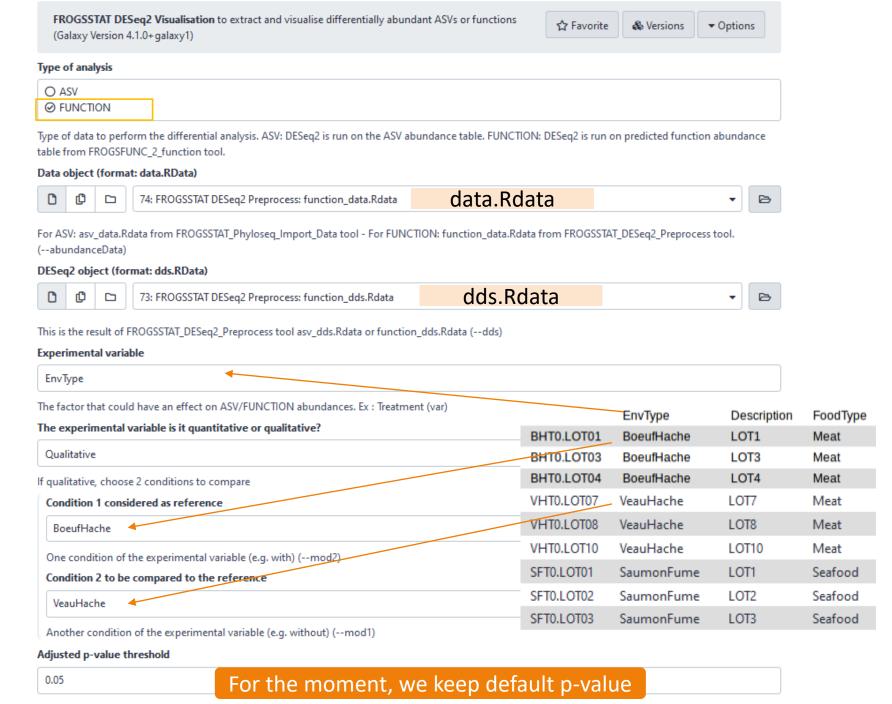
FROGSSTAT DESeq2 Preprocess: function_dds.Rdata

BHT0.LOT01

2218

observation name

BHT0.LOT03

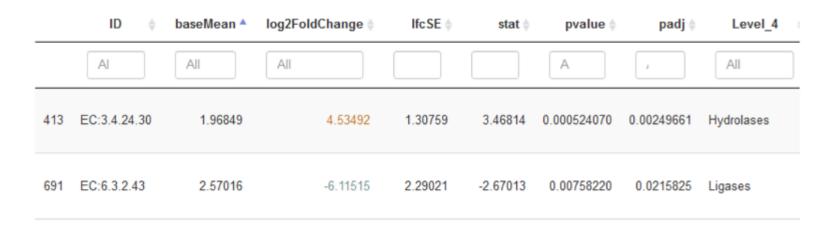

21513

194 10

505

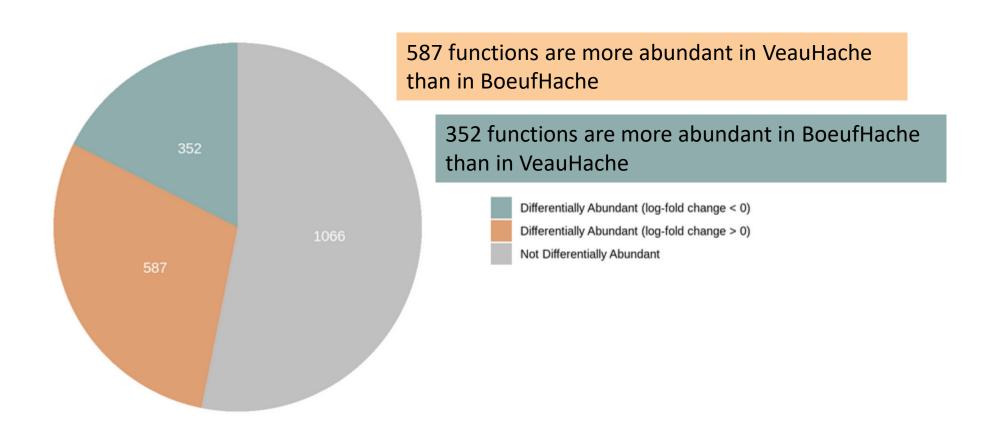
1656

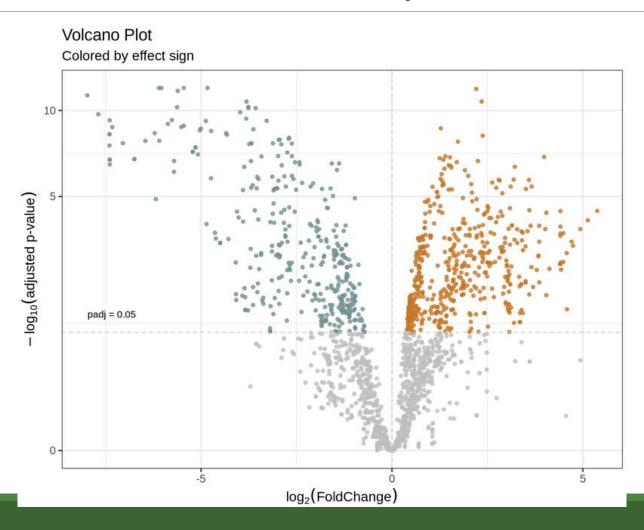
FROGSSTAT DESeq2 visualisation

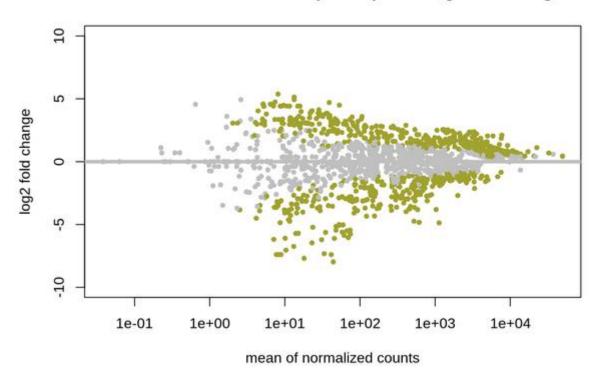

Threshold used for statistical significance of the differentially abundant ASV/FUNCTION analysis (--padj)

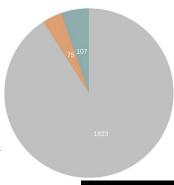
FROGSSTAT DESeq2 Visualisation: ipath_under.tsv

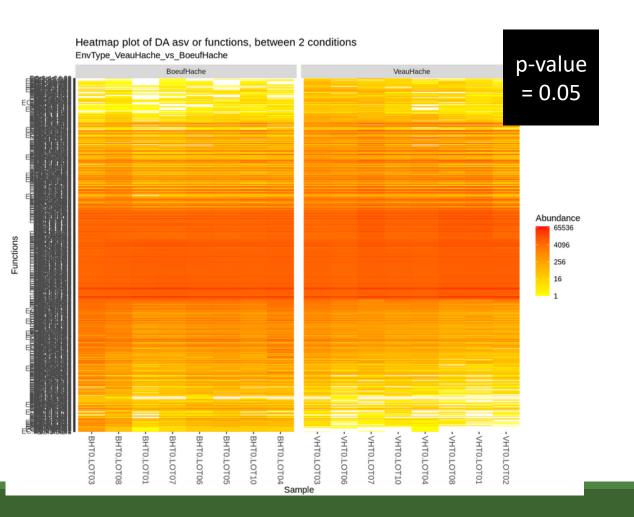
FROGSSTAT DESeq2 Visualisation: ipath_over.tsv

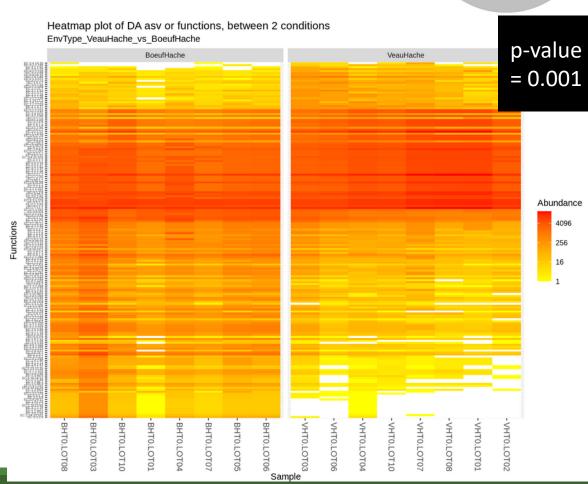

FRO


FROGSSTAT DESeq2 Visualisation: report.nb.html

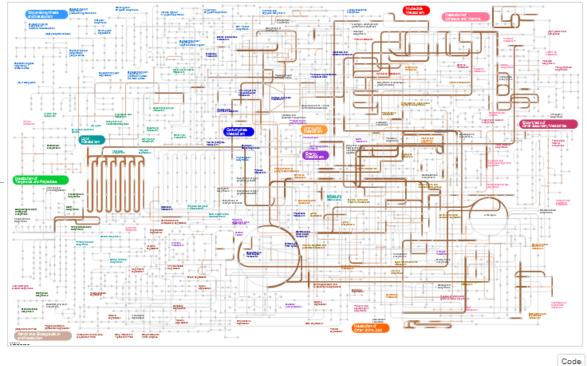

You chose to compare VeauHache to the reference modality BoeufHache. This implies that a positive log2FoldChange means more abundant in VeauHache than in BoeufHache.

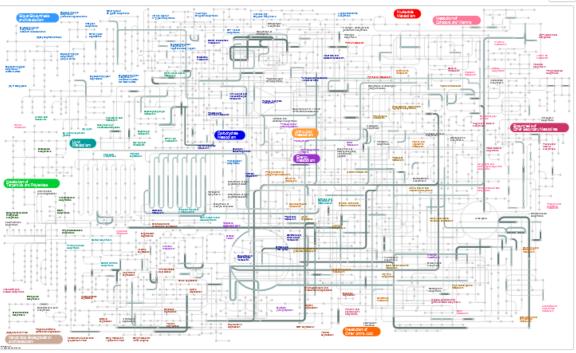

Pie chart to view ASVs or FUNCTIONs number of Differential Abundance test

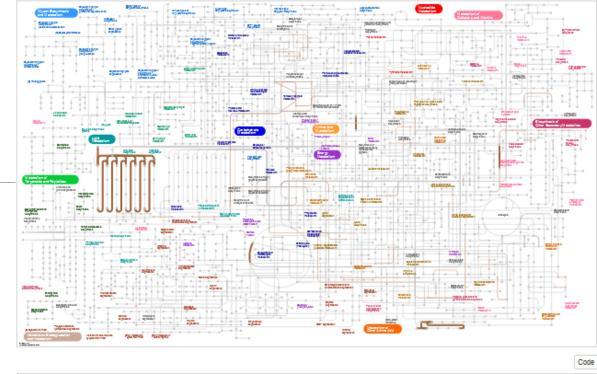


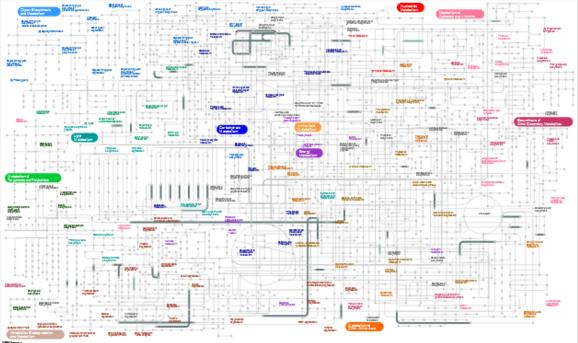


Post Normalisation DESeq2: MA plot of log2FoldChange








You chose to compare VeauHache to the reference modality BoeufHache. This implies that the overabundants pathways (first image) and underabundant pathways (second image) are involved in VeauHache condition.


The darker the path, the higher the log2 fold change (<1, <2, or >2).

To visualise and explore metabolic pathways with IPATH3 website

Go to IPATH3

ID Color Width

EC2.6.1.1 #637978	W12
EC2.7.8.8 #637978	W12
EC2.2.1.1 #8EADAC	W12
EC4.1.1.65 #637978	W12
EC4.1.99.3 #8EADAC	W12
EC2.2.1.2 #8EADAC	W12
EC4.2.1.118 #637978	W12
EC2.2.1.7 #8EADAC	W12
EC4.99.1.1 #8EADAC	W12
EC2.5.1.17 #8EADAC	W12

ipath_over.tsv

ID Color Width

EC1.3.99.4 #DE894E W12

EC2.7.1.175 #DE894E W12

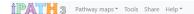
EC3.4.25.1 #DE894E W12

EC1.3.99.5 #DE894E W12

EC3.3.2.8 #DE894E W12

EC2.7.7.53 #DE894E W12

EC2.5.1.68 #DE894E W12

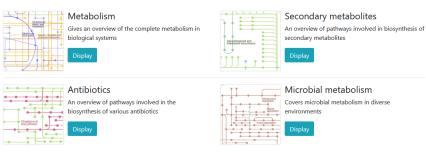

EC1.14.14.12 #DE894E W12

EC2.1.1.219 #DE894E W12

EC2.1.1.220 #DE894E W12

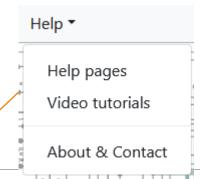
ipath_under.tsv

https://pathways.embl.de/

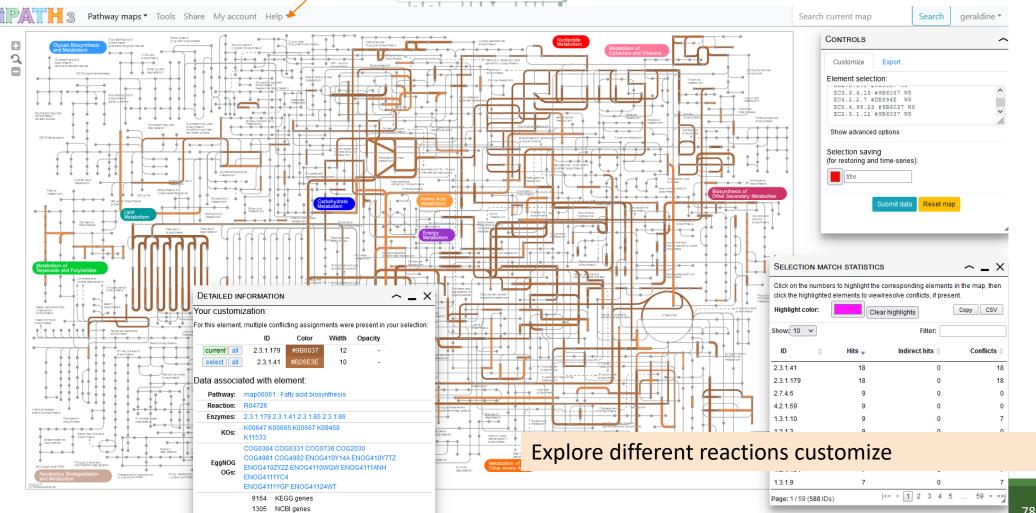


Interactive Pathways Explorer v3

Interactive Pathways Explorer (iPath) is a web-based tool for the visualization, analysis and customization of various pathway maps.


iPath provides extensive map customization and data mapping capabilities. Colors, width and opacity of any map element can be changed using various types of data (for example KEGG KOs, COGs or EC numbers). Our help pages provide the full list of supported data types and required formats. Check the video tutorials to get started. All maps in iPath can be easily converted to various bitmap and vector graphical formats for easy inclusion in your documents or further processing.

Available maps


Legacy versions of iPath are available at http://pathways2.embl.de

Create a free account and paste "over" or "under" data

Go to IPATH3

4 STRING proteins

