

C - Training on Galaxy: Metabarcoding March 2024 - Webinar

STATISTICS Practice

🔊 🖸 Bioinfo

LUCAS AUER, MARIA BERNARD, LAURENT CAUQUIL, MAHENDRA MARIADASSOU, GÉRALDINE PASCAL

GIGENAE GenPhySE 🛲 MaiAGE GABI

*i*NTERACTIONS

miggile

FROGSSTAT with Phyloseq R package

R package (McMurdie and Holmes, 2013) to analyse community composition data in a phylogenetic framework

It uses other R packages:

- Community ecology functions from vegan, ade4
- Tree manipulation from ape
- Graphics from ggplot2
- Differential analysis from DESeq2

→ At the end of FROGS pipeline, what kind of data do we have ?

→ At the end of FROGS pipeline, what kind of data do we have ?

FROGS biom containing:

- ASV count tables (required)
- ASV description : taxonomy

Phylogenetic tree in Newick format

Metadata: sample description in TSV file

→ Take a look at the metadata

→ Take a look at the metadata

FoodType:

Meat or Seafood

EnvType: 8 environment types

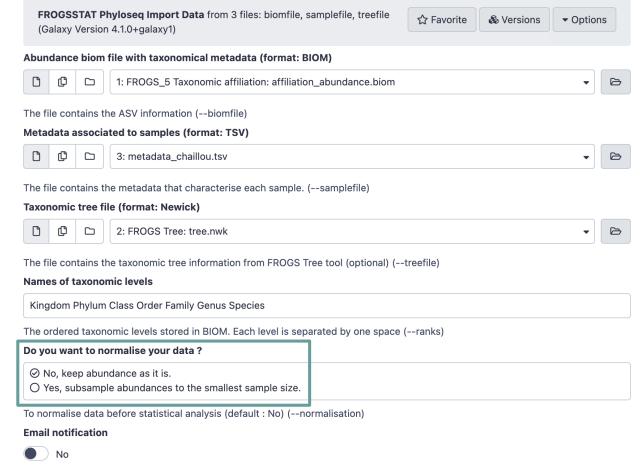
EnvType Description FoodType Description FoodType EnvType DLT0.LOT01 DesLardons LOT1 Meat DLT0.LOT03 DesLardons LOT3 Meat DLT0.LOT04 LOT4 DesLardons Meat DLT0.LOT05 LOT5 DesLardons Meat DLT0.LOT06 DesLardons LOT6 Meat DLT0.LOT07 DesLardons LOT7 Meat DLT0.LOT08 LOT8 DesLardons Meat DLT0.LOT10 DesLardons LOT10 Meat MVT0.LOT01 MerguezVolaille LOT1 Meat MVT0.LOT03 MerguezVolaille LOT3 Meat MVT0.LOT05 MerguezVolaille LOT5 Meat MVT0.LOT06 MerguezVolaille Meat LOT6 MVT0.LOT07 MerguezVolaille LOT7 Meat MVT0.LOT08 MerguezVolaille LOT8 Meat MVT0.LOT09 MerguezVolaille LOT9 Meat MVT0.LOT10 MerguezVolaille LOT10 Meat BHT0.LOT01 **BoeufHache** LOT1 Meat BHT0.LOT03 BoeufHache LOT3 Meat

Meat \rightarrow Ground Beef, Ground veal, Poultry sausage, Diced bacon Seafood \rightarrow Cooked schrimps, Smoked salmon, Salmon filet, Cod filet

Phyloseq Import Data tool

PHYLOSEQ OBJECT CREATION

Phyloseq : Data import


- 1. Statistical analysis is done in R, so an R object called Rdata must be created.
- 2. Run PhyloSeq Data import

The FROGS biom format contains:

- ASV count tables (required)
- ASV description : taxonomy

Others information used in FROGSSTAT are:

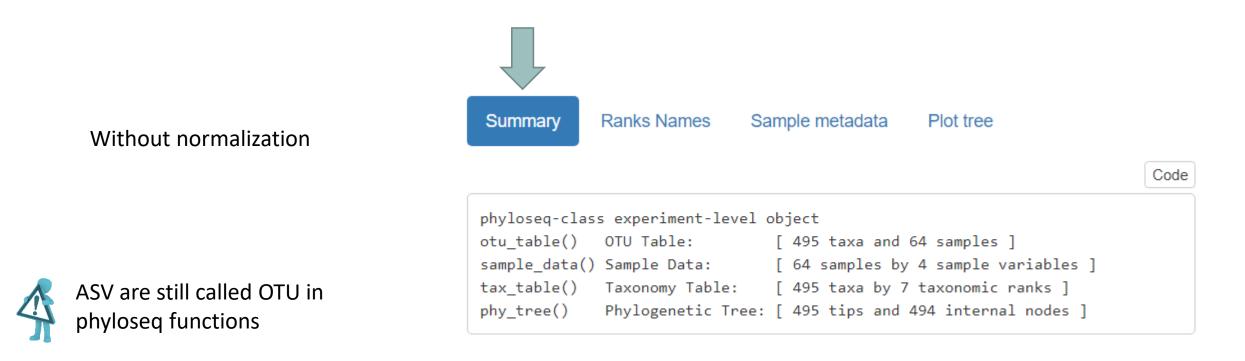
- sample description in TSV file
- phylogenetic tree in Newick format (nwk or nhx)
- 3. Create 2 phyloseq objects, with and without normalization (rename them)

Send an email notification when the job completes

🗸 Execute

1. What are the resulting datasets ?

2. What is the difference between the resulting objects with and without normalization ?


3. Explore the HTML results

1. What are the resulting datasets ?

 \rightarrow asv_data.Rdata file: R object used by phyloseq package for statistics

 \rightarrow HTML report: summary of the phyloseq object

2. What is the difference between the resulting objects with and without normalization ?

2. What is the difference between the resulting objects with and without normalization?

Summary

Ranks Names

With normalization (rarefaction)phyloseq-class experiment-level object
otu_table() OTU Table: [495 taxa and 64 samples]
sample_data() Sample Data: [64 samples by 4 sample variables]
tax_table() Taxonomy Table: [495 taxa by 7 taxonomic ranks]
phy_tree() Phylogenetic Tree: [495 tips and 494 internal nodes]

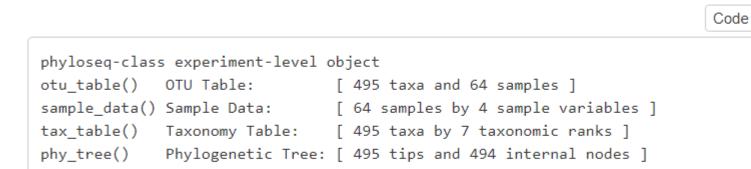
Minimum number of sequences kept in each sample

Number of sequences in each sample after normalization: 7638

Sample metadata

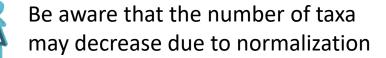
Plot tree

Code


Code

2. What is the difference between the resulting objects with and without normalization?

Summary


Ranks Names

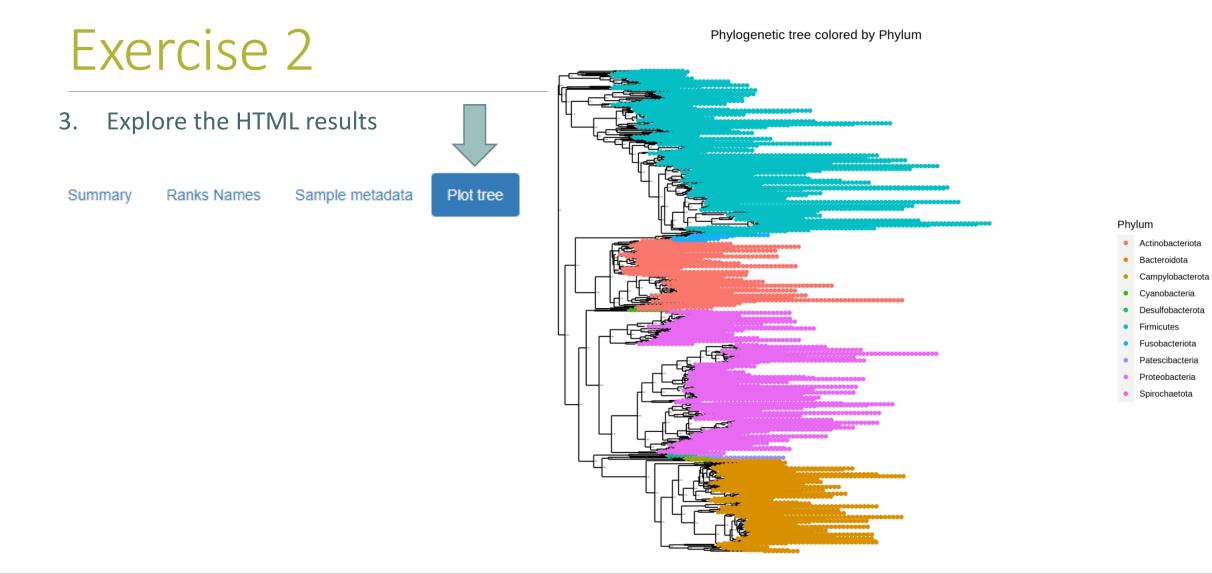
With normalization (rarefaction)

Sample metadata

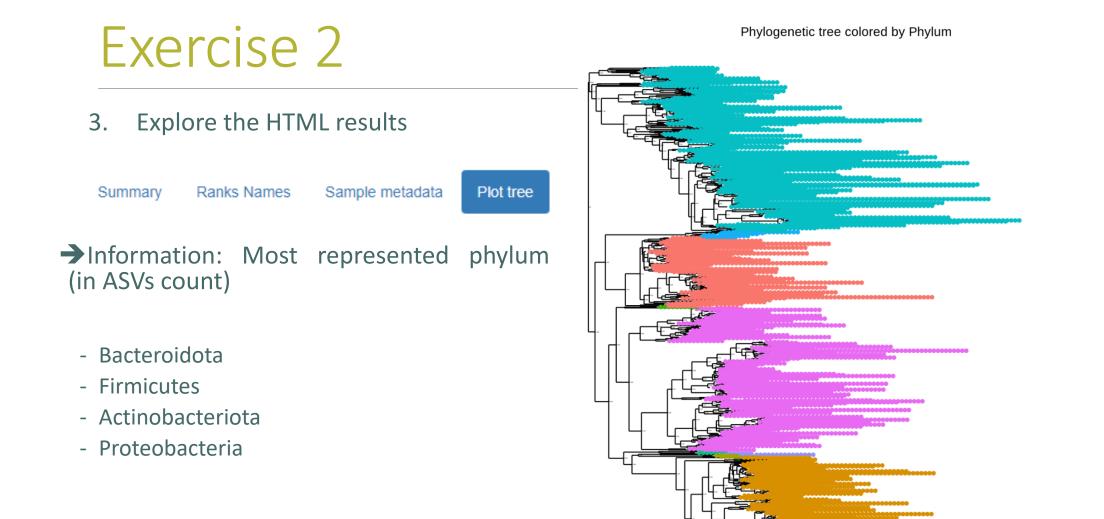
Plot tree

Number of sequences in each sample after normalization: 7638

14


Code

3. Explore the HTML results



Explore the HTML results 3. Script R Variable names the different modalities for each qualitative Summary Ranks Names Sample metadata Plot tree variable Code Sample variables: EnvType, Description, FoodType, SampleID Code Warning ! EnvType : DesLardons, MerguezVolaille, BoeufHache, VeauHache, SaumonFume, FiletSaumon, FiletCabillaud, Crevet te Metadata order (in each sample variable) are used to Description : LOT1, LOT3, LOT4, LOT5, LOT6, LOT7, LOT8, LOT10, LOT9, LOT2 organize graphics. FoodType : Meat, Seafood So take extra care when you construct your SampleID : DLT0.LOT01, DLT0.LOT03, DLT0.LOT04, DLT0.LOT05, DLT0.LOT06, DLT0.LOT07, DLT0.LOT08, DLT0.LOT10, MV T0.LOT01, MVT0.LOT03, MVT0.LOT05, MVT0.LOT06, MVT0.LOT07, MVT0.LOT08, MVT0.LOT09, MVT0.LOT10, BHT0.LOT01, BHT sample metadata file 0.LOT03, BHT0.LOT04, BHT0.LOT05, BHT0.LOT06, BHT0.LOT07, BHT0.LOT08, BHT0.LOT10, VHT0.LOT01, VHT0.LOT02, VHT0. LOT03, VHT0.LOT04, VHT0.LOT06, VHT0.LOT07, VHT0.LOT08, VHT0.LOT10, SFT0.LOT01, SFT0.LOT02, SFT0.LOT03, SFT0.LO

It may make sense to order the metadata file i.e. the meats are together and the seafood together

Phylum

- Actinobacteriota
- Bacteroidota
- Campylobacterota
- Cyanobacteria
- Desulfobacterota
- Firmicutes
- Fusobacteriota
- Patescibacteria
- Proteobacteria
- Spirochaetota

Biodiversity analysis

The points we will cover on biodiversity analysis

- 1. Exploring sample composition
- 2. Notions of biodiversity
- 3. α-diversity analysis
- 4. β-diversity analysis

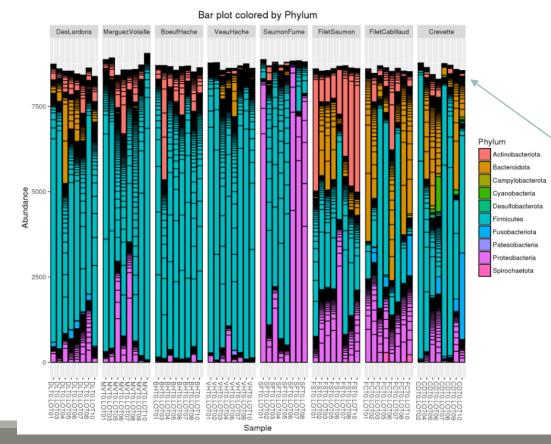
I. Biodiversity analysis

COMPOSITION VISUALIZATION

Exploring biodiversity : visualization

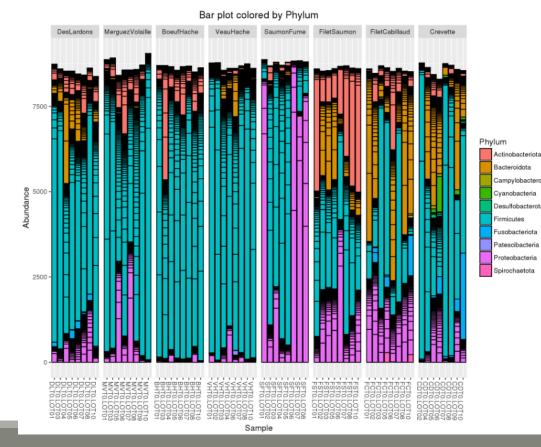
FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot (Galaxy Version 4.1.0+galaxy1)	☆ Favorite & Versions ▼ Options			
Phyloseq object (format rdata) Image: Constraint of the second state of the second state of the second state state state of the second state state state of the second state stat	•	Explore the s	ample RA	W or NORMALISED count
This is the result of FROGS Phyloseq Import Data tool. Grouping variable EnvType Experimental variable used to group samples (Treatment, Host type, etc). (varExp)				ble to organize be or FoodType
Taxonomic level to filter your data Kingdom Ex: Kingdom, Phylum, Class, Order, Family, Genus, Species (taxaRank1)	At what taxonomic ran to study?			
Taxa (at the above taxonomic level) to keep in the dataset Bacteria ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). M specified, i.e. Firmicutes Proteobacteria (taxaSet1)	On which rank do we want to group		For the first usage, let the defau	
Taxonomic level used for aggregation Phylum Ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level Number of most abundant taxa to keep			parameters	
9 Ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group -K	Number of majority gro displayed	oupings to be		22

- 1. What are the resulting datasets ?
- 2. What is the difference between Bar plot and Plot composition ?
- 3. What biological information could you extract ?
- 4. What are the perspectives for going further?


1. What are the resulting datasets ?

 \rightarrow HTML report: summary of the phyloseq object

- Bar plot
- Composition plot



2. What is the difference between Bar plot and Plot composition ?

- one rectangle is one ASV
- one color is one phylum
- y axis: number of sequences these are absolute counts
- size of rectangle depends on number of sequences

2. What is the difference between Bar plot and Plot composition ?

Limitations:

- Plot bar works at the ASV-level and displays all the ASV at the specified rank
- This may lead to cluttered graphics and unnecessary legends
- No easy way to look at a subset of the data
- Works with absolute counts (beware of unequal depths or used normalized function)

Exploring biodiversity : visualization

Another graph: plot_composition function :

- Works with **relative abundances**
- Subsets ASVs at a given taxonomic level

Taxonomic level to filter your data

Kingdom

ex: Kingdom, Phylum, Class, Order, Family, Genus, Species

Taxa (at the above taxonomic level) to keep in the dataset

Bacteria

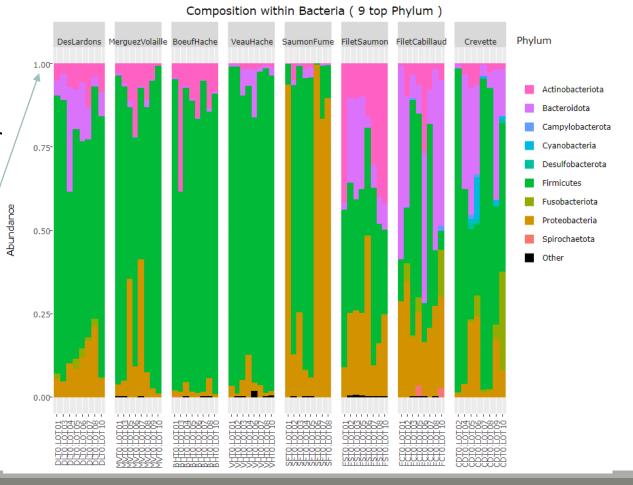
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation

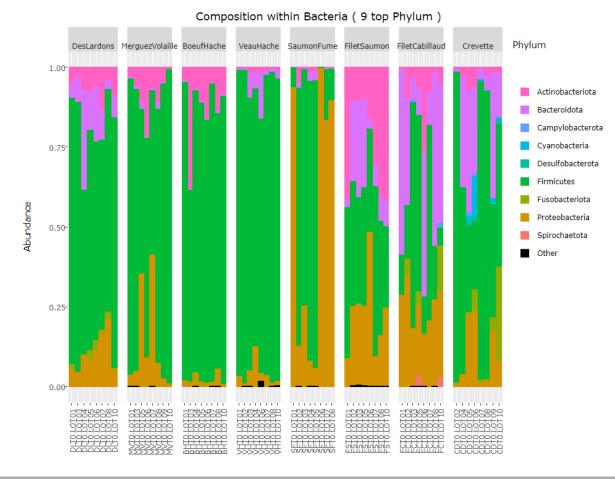
Aggregates ASVs at another taxonomic level	Phylum
	ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level

Number of most abundant taxa to keep

9

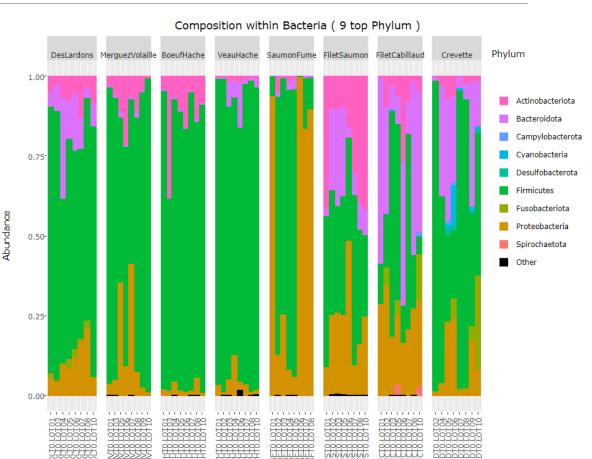

ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

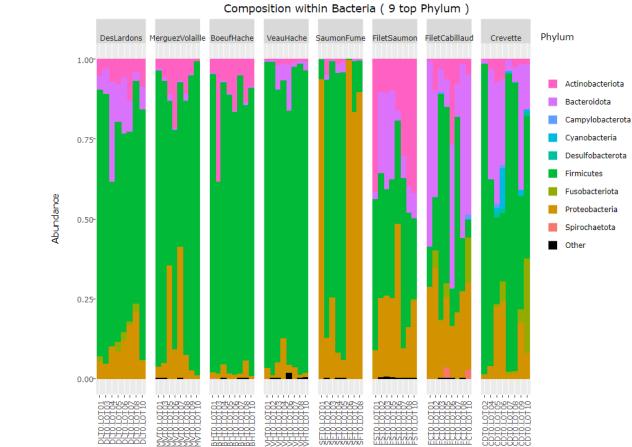
Shows only a given number of taxa


Composition plot

Bar plot

- 2. What is the difference between Bar plot and Plot composition ?
- one rectangle is one phylum (no borderline) (or any other specified taxonomy rank)
- one color is one phylum
- y axis: counts are reduced to 1, so, here, we have relative counts


3. What biological information could you extract?


3. What biological information could you extract ?

Exercise 3

- Meat types on the left share common Phylum composition, with a majority of Firmicutes (easy to remark thanks of ordered levels)
- Seafoods seem to be much more variable
- Firmicutes and Proteobacteria are present in all samples, but with a wide range of abundance

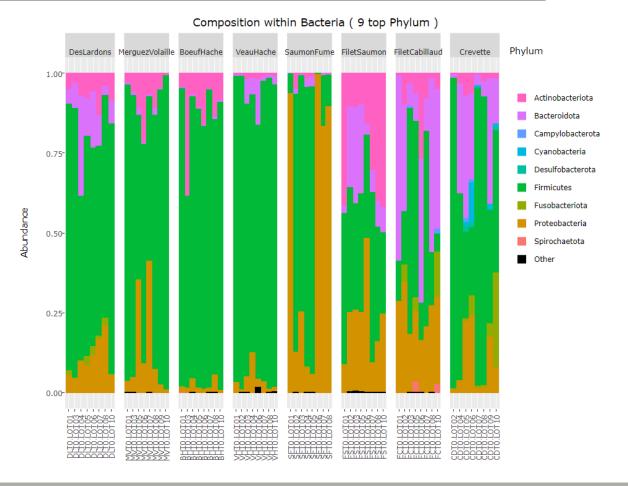
Composition plot Bar plot

งเง่นงานการ

uuuu

4. What are the perspectives for going further?

Exercise 3


- Fusobacteriota Proteobacteria Spirochaetota

Bar plot Composition plot

Exercise 3

4. What are the perspectives for going further?

- ➔ What is the composition of the 9 most abundant Families of *Firmicutes* ?
- → What is the composition of the 9 most abundant Families of *Proteobacteria* ?

1. What is the composition of the 9 most abundant Families of Firmicutes ?

2. What is the composition of the 9 most abundant Families of Proteobacteria ?

1. What is the composition of the 9 most abundant Families of Firmicutes ?

Taxonomic level to filter your data

Phylum

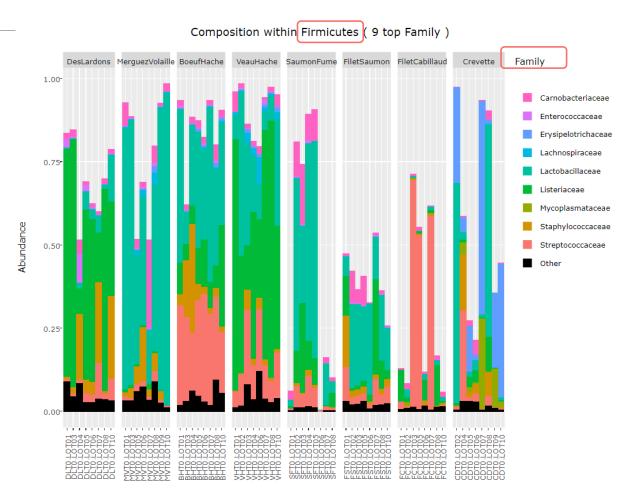
ex: Kingdom, Phylum, Class, Order, Family, Genus, Species

Taxa (at the above taxonomic level) to keep in the dataset

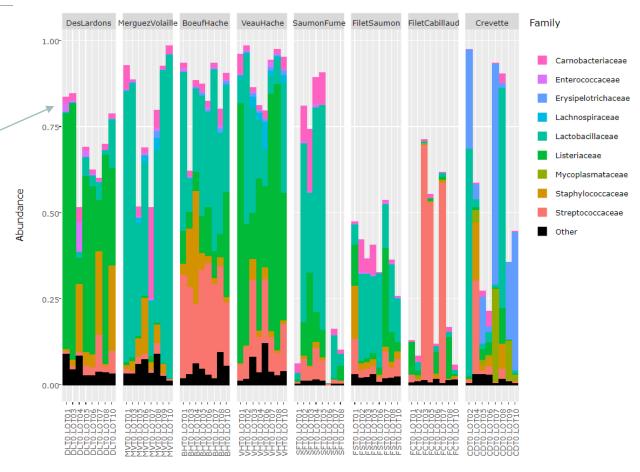
Firmicutes

ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation


Family

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.


Number of most abundant taxa to keep

9

ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

- What is the composition of the 9 most abundant Families of Firmicutes ?
 - Abundance does not reach 1 because only Phylum Firmicutes is displayed, the "missing" abundance is carried by other Phyla.
 - As seen at the Phylum level, Firmicutes are more represented in meat types than in seafoods
 - Dominant Firmicutes families are not the same in each food type

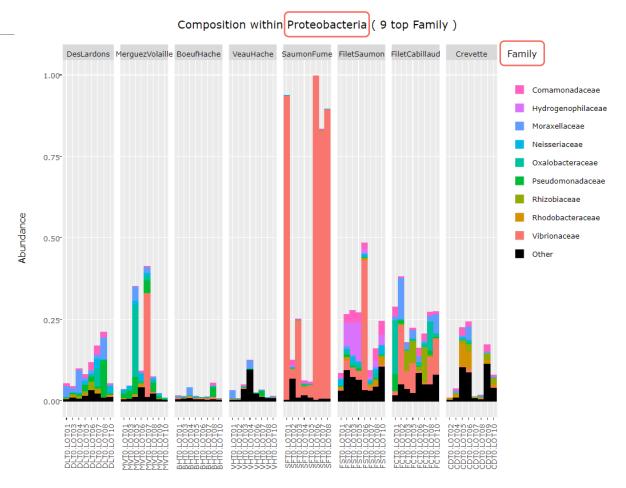
Composition within Firmicutes (9 top Family)

2. What is the composition of the 9 most abundant Families of Proteobacteria ?

Taxonomic level to filter your data

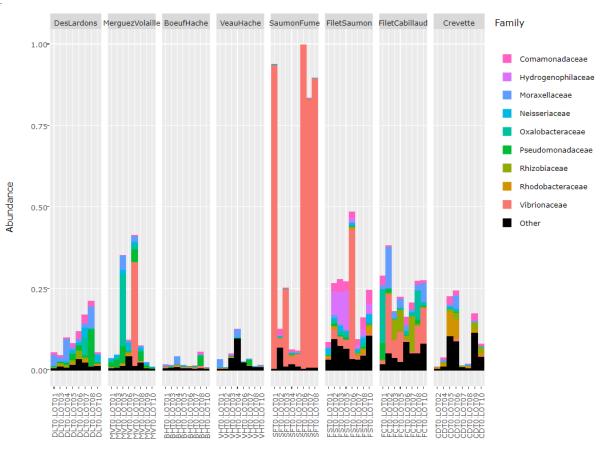
Phylum
ex: Kingdom, Phylum, Class, Order, Family, Genus, Species
Taxa (at the above taxonomic level) to keep in the dataset
Proteobacteria
ex: Bacteria (when filtering at the Kingdom level), Firmicutes (when filtering at the Phylum level). Multiple taxa (separated by a space) can be specified, i.e. Firmicutes Proteobacteria

Taxonomic level used for aggregation


Family

ex: Family (when filtering at the Phylum level). The aggregation level must be below the filtering level.

Number of most abundant taxa to keep


9

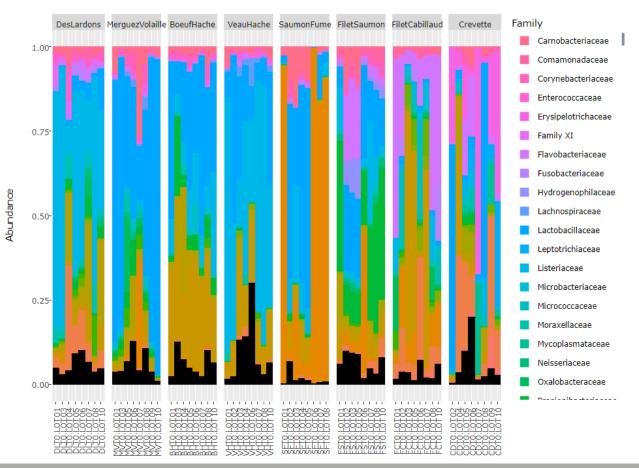
ex: 9, i.e. Tool keeps the 9 most abundant taxa and the remaining taxa are aggregated in a group 'Other'

2. What is the composition of the 9 most abundant Families of Proteobacteria ?

- As seen at the Phylum level, Proteobacteria are particularly present in seafood samples
- SaumonFume samples with extremely high levels of Proteobacteria are dominated by Vibrionaceae family, while other food types are balanced between several families

Composition within Proteobacteria (9 top Family)

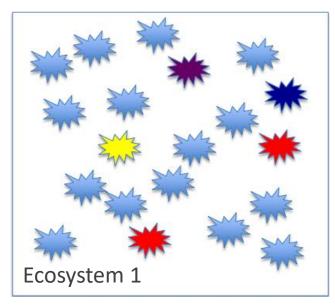
Exploring biodiversity : visualization

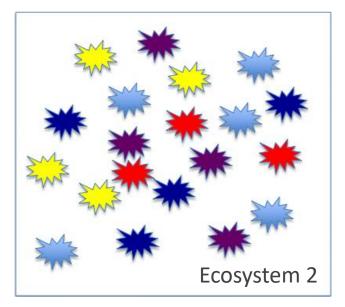

<u>Remark 1</u>: An example of what happens when sample metadata file is not sorted in a meaningful way

Exploring biodiversity : visualisation

<u>Remark 2</u>: Keep in mind that human eye cannot distinguish more than 12 colors at the same time.

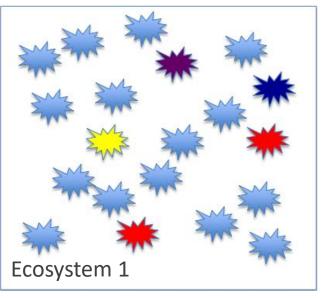
Example of the 30 most abundant Families among Bacteria

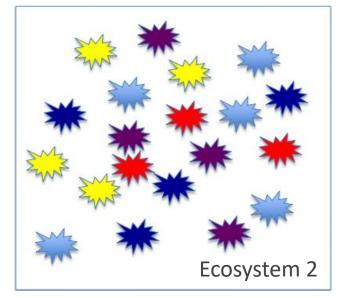

Composition within Bacteria (30 top Family)


II. Biodiversity analysis

DIVERSITY INDICES

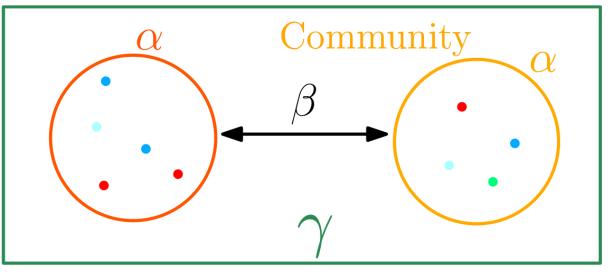
Exploring biodiversity : descriptors


- The richness corresponds to the number of ASVs or functional groups present in communities. It characterizes the composition.
- The **diversity** takes into account the relative abundancy of species. It characterizes the **structure**



Exploring biodiversity : descriptors

- The richness corresponds to the number of ASVs or functional groups present in communities. It characterizes the composition.
- The **diversity** takes into account the relative abundancy of species. It characterizes the **structure**



Richness : Eco1 = Eco2 Diversity: Eco2 > Eco1

Exploring biodiversity : statistical indices

3 levels of diversity:

- **α-diversity**: diversity within a community
- **β-diversity**: diversity between communities
 - β-dissimilarities/distances
 - dissimilarities between pairs of communities
 - often used as a first step to compute diversity
- γ-diversity: diversity at the landscape scale (blurry for bacterial communities)

Landscape

Exploring biodiversity : statistical indices

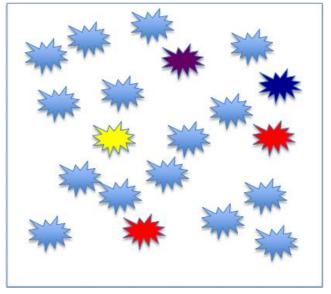
There are qualitative, quantitative and phylogenetic indices:

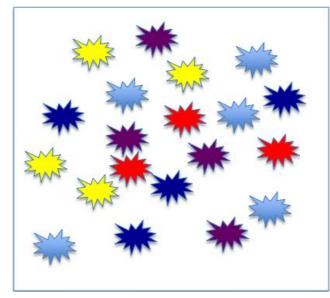
Qualitative (Presence/Absence) vs. Quantitative (Abundance)

- Qualitative indices give equal weight to all species, dominant or rare
- Qualitative indices are more sensitive to differences in sampling depths
- Qualitative indices emphasize differences in taxa diversity while quantitative are more sensitive to increases in composition differences

Phylogenetic indices

- Require a phylogenetic tree
- phylogeny allows to attenuate clustering errors because 2 different ASVs can be phylogenetically close

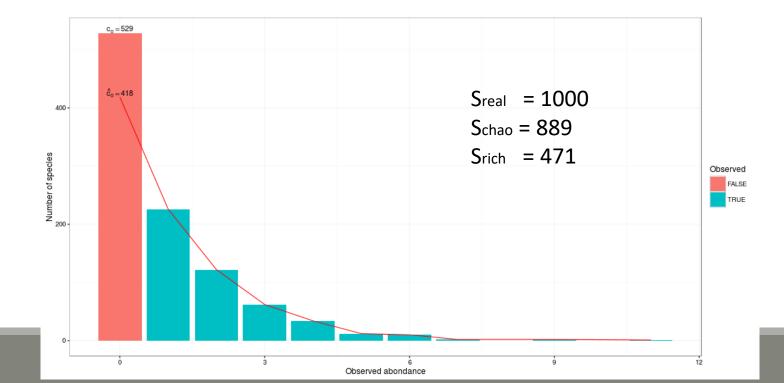

III. Biodiversity analysis


 α -DIVERSITY INDICES

4α -diversity indices

- 1. Richness
- 2. Chao
- 3. Shannon
- 4. Inv-Simpson

Richness


Richness : Eco1 = Eco2

Richness

Number of observed species

α -diversity: Chao1

Richness	Chao
Number of observed species	Richness + (estimated) number of unobserved species

48

α -diversity: Chao1

Chao1 is an abundance-based estimator. This means that the data it needs relate to the abundance of taxa in the sample.

This index estimates the number of unobserved species from those that have only been observed once or twice. This diversity index is a minimum estimator. In order for it to fit the dataset, it is necessary that singletons and duplicates represent a significant part of the information

Many taxa, species, are represented by a few individuals (rare species) and others can be represented by many individuals (abundant species).

Well, chao1 is based on the rare species.

So we need to know how many species are represented by 1 individual (singleton) and how many species are represented by 2 individuals (doubletons):

 $S_{est} = S_{obs} + F2/2G$

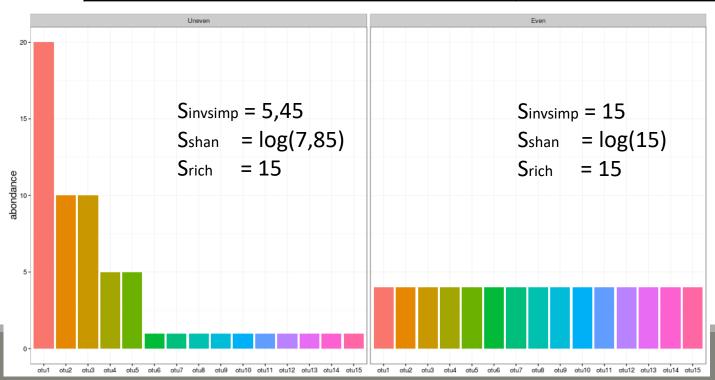
S_{est} (nb of species we want to estimate), S_{obs} (nb of species observed), F (nb of singletons) and G (nb of doubletons)

If the chao1 is close to the richness \rightarrow the part of the missed ASVs is low \rightarrow the sequencing depth is good.

α -diversity: Chao1

Example of a abundance table, after FROGS processing, with ASVs filtering with 0.005% threshold:

observation_name	observation_sum	complexe-ADN-1	echantillon1-1	echantillon1-2	echantillon1-3	echantillon2-1	echantillon2-2	echantillon2-3
Cluster_1	298637	56	227	234	120	36754	59089	56534
Cluster_2	155012	688	20604	38077	45508	8417	10464	10655
Cluster_3	52753	2469	14	76	68	37	8	19
Cluster_4	34062	3459	5041	11458	12799	0	37	84
Cluster_5	30263	3	10	13	13	570	806	800
Cluster_6	26805	1301	7	51	35	21	6	16
Cluster_7	25237	1015	7	30	34	16	5	14
Cluster_8	20483	893	6	34	19	18	1	16
Cluster_9	26069	2504	32	60	87	26	<u>с</u> -	22
Cluster_10	17383	712	5	23	17	19	8	13
Cluster_11	16674	715	6	27	25	26	2	7
Cluster_12	11420	0	37	76	79	19	24	13
Cluster_13	9414	189	0	24	12	6	0	8
Cluster_14	7972	498	3	7	11	7		5
Cluster_15	7267	13	0	19	12	11	2	7
Cluster_16	7131	150	3	8		11	0	2
Cluster_17	6407	4953	22	7	1	0	13	لي
Cluster_18	6538	28	1	10	18	16	0	6
Cluster_19	5633	3	12	12	45	24	<u> </u>	3
Cluster_20	5223	183	0	5	12	8	1	1
Cluster_21	4078	12	0	6	9	6	0	4
Cluster_22	4507	0	10	13	20	13	0	2
Cluster_23	4232	3	0	10	8	9		4
Cluster_24	3404	160	1	4	6	4	1	0
Cluster_25	3857	1		3	6	_10_	0	2
Cluster_26	2616	1926	16	12	9	2	8	9
Cluster_27	2781	2182	7	2	0	0	6	1


singletons and doubletons

 \rightarrow Chao1 computation possible

α -diversity: Shannon and Inv-Simpson

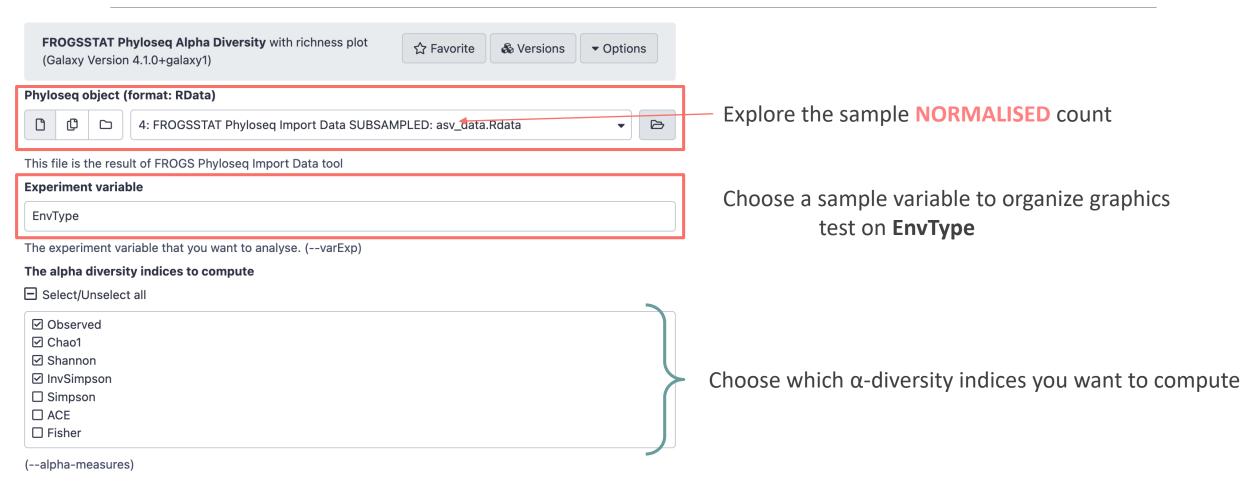
α -diversity is equivalent to the richness : number of species

Shannon	Inv-Simpson
Evenness of the species abundance distribution	Inverse probability that two sequences sampled at random come from the same species

Interpretation :

15 observed species, but according to Shannon, the uneven community acts like there is 7.85 equally abundant species (5.45 for invSimp)

α -diversity indices


- 1. Chao1 close to Richness \rightarrow all species have been detected
- 2. higher Shannon index \rightarrow higher homogeneity \rightarrow greater diversity
- 3. greater invsimpson index \rightarrow greater diversity

Exploring biodiversity : α -diversity

 α -diversity indices available in phyloseq :

- Species richness : number of observed ASV
- Chao1 : number of observed ASV + estimation of the number of unobserved ASV
- Shannon entropy / Jensen : the width of the ASV relative abundance distribution. Roughly, it reflects our (in)ability to predict ASV of a randomly picked bacteria.
- Simpson : 1 probability that two bacteria picked at random in the community belong to different ASV
- Inverse Simpson : inverse of the probability that two bacteria picked at random belong to the same ASV
- Other estimators of alpha diversity exist (Chao2, ACE, ICE,...), however the indices presented above allow us to understand alpha diversity with sufficient precision

Exploring biodiversity : α-diversity

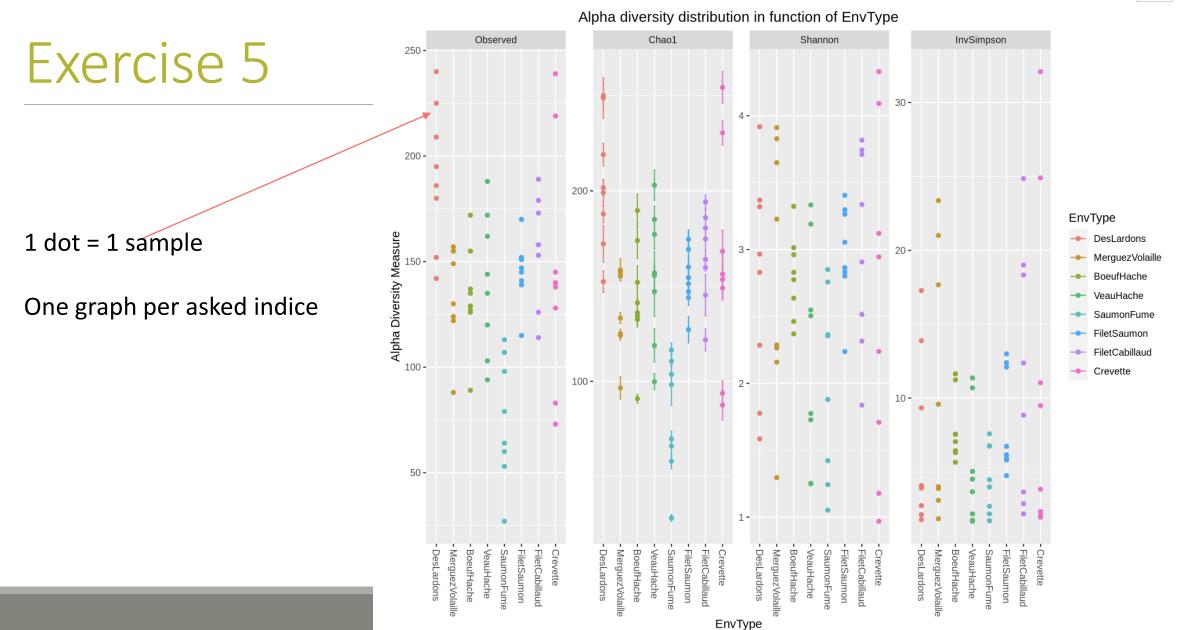
- 1. What are the output files ?
- 2. Which interpretation could you make on the boxplot results ?
- 3. Does EnvType has an impact on α -diversity indices ?

1. What are the output files ?

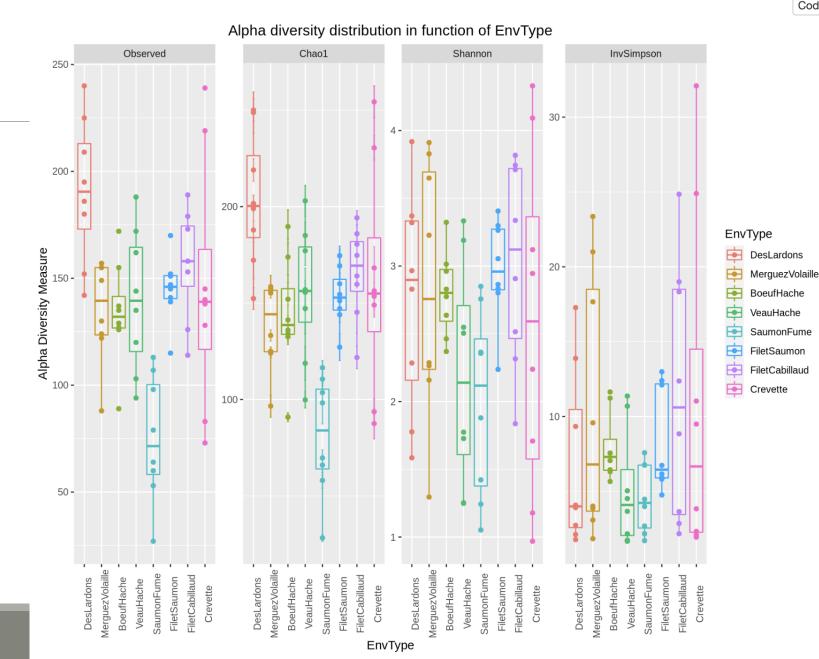
 \rightarrow Tabular file: contains the detailed value of indices in each sample

 \rightarrow HTML report: graphical and statistical results

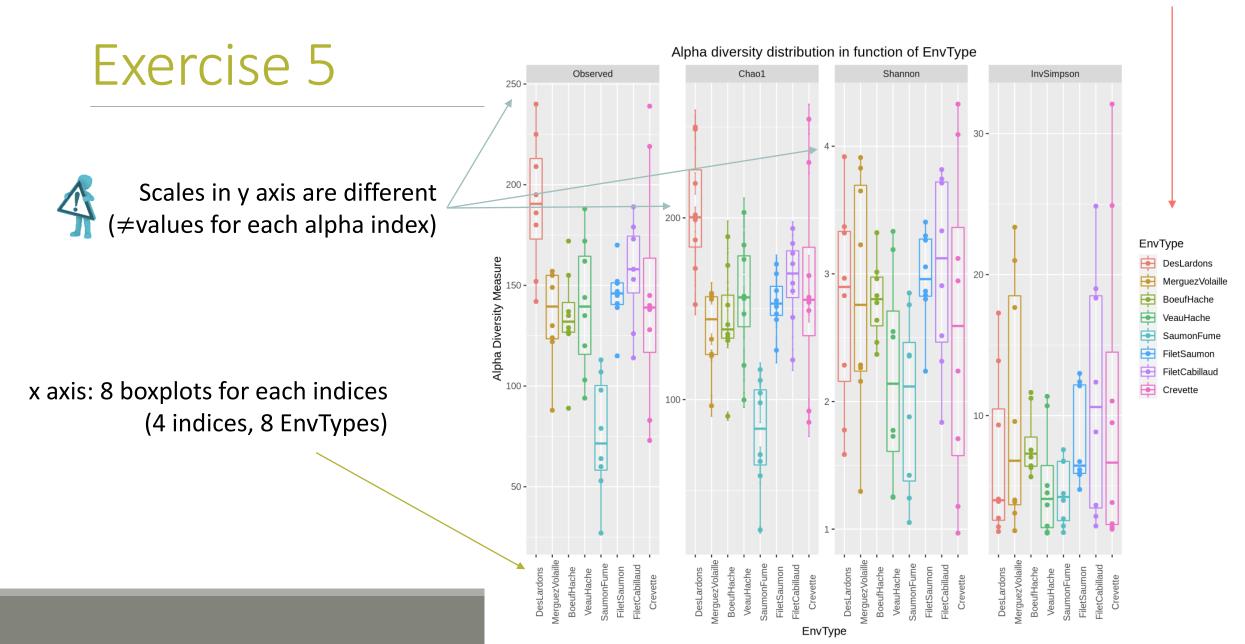
1. What are the output files ?

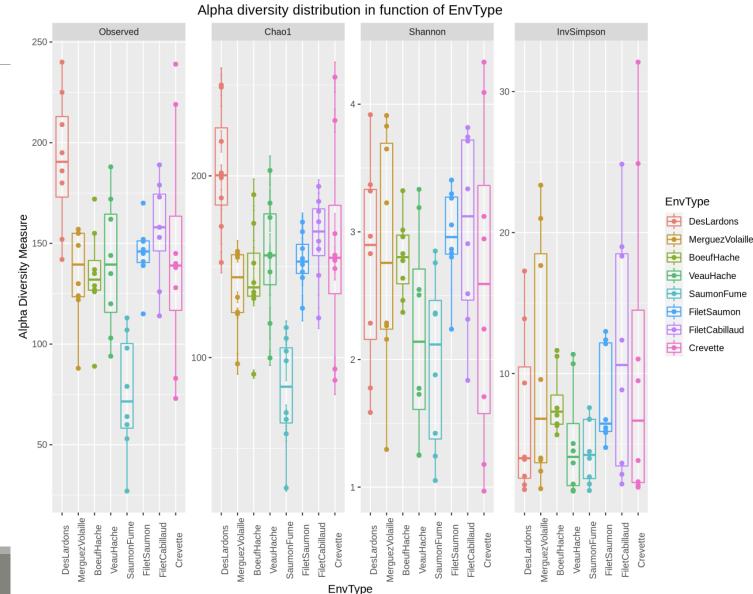

\rightarrow Tabular file: contains the detailed value of indices in each sample

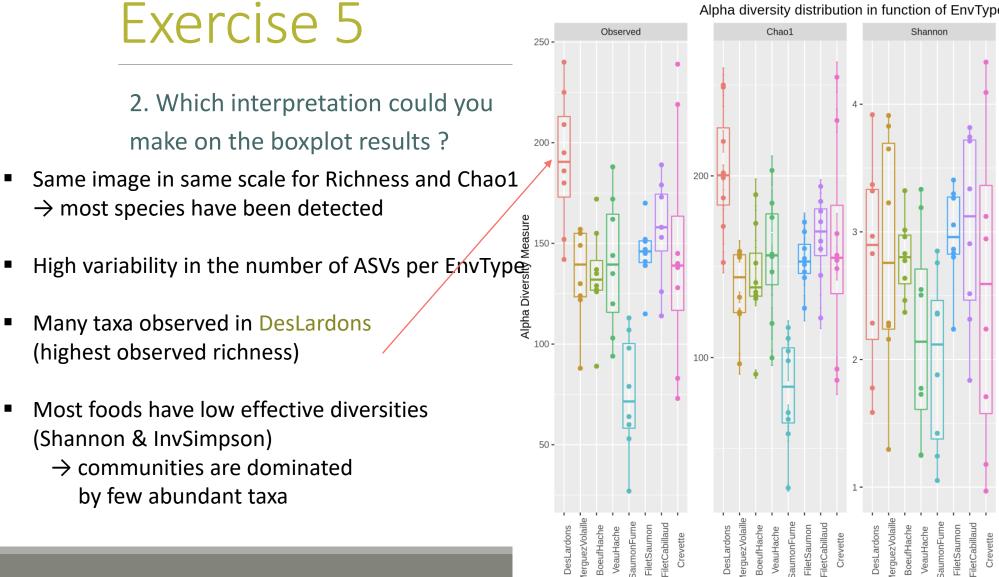
1	2	3	4	5	6
	Observed	Chao1	se.chao1	Shannon	InvSimpson
BHT0.LOT01	89	90.875	2.25640704112416	2.46283438240559	6.4374614755645
BHT0.LOT03	129	134.2	3.98819923457003	3.01399812576966	11.6378947553209
BHT0.LOT04	137	152	8.65612088483201	2.77419314445453	7.04904738429417
BHT0.LOT05	127	132.526315789474	3.97261840192821	2.82922278153272	7.54330476122993
BHT0.LOT06	135	136	1.30982775947977	2.6365904270666	6.30810073317464
BHT0.LOT07	126	141.260869565217	7.7960250320146	2.36922299088995	5.65591172677601
BHT0.LOT08	172	189.652173913043	8.66767047151361	3.32220303923076	11.229239617499
BHT0.LOT10	155	173.9	9.42281349646639	2.96129964607031	7.55645792419119
CDT0.LOT02	73	87.5263157894737	7.85749286229502	0.968874997875041	1.93691052993399
CDT0.LOT04	145	168.25	10.9999446485673	3.1208274916296	11.0298385276267


1. What are the output files ?

 \rightarrow HTML report: graphical and statistical results


Code




more readable thanks to boxplots

Same legend for all indices

2. Which interpretation could you make on the boxplot results ?

EnvType

30 -

20 -

DesLardons lerguezVolaille BoeufHache

auHache

- 3. Does EnvType has an impact on α -diversity indices ?
- What is an ANOVA used for?
- \rightarrow Test the significance of the previous observations by performing an ANOVA of alpha-diversity

indices against the covariate of interest (EnvType)

3. Does EnvType has an impact on α -diversity indices ?

Anova interpretations


```
#Perform ANOVA on Observed, which effects are significant
anova.Observed <-aov( Observed ~ Depth + EnvType, anova_data)
summary(anova.Observed)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
EnvType 7 57656 8237 7.705 1.68e-06 ***
Residuals 56 59864 1069
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Perform ANOVA on Chaol, which effects are significant anova.Chaol <-aov(Chaol ~ Depth + EnvType, anova_data) summary(anova.Chaol)

```
Df Sum Sq Mean Sq F value Pr(>F)
EnvType 7 65691 9384 8.482 4.85e-07 ***
Residuals 56 61954 1106
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Perform ANOVA on Shannon, which effects are significant anova.Shannon <-aov(Shannon ~ Depth + EnvType, anova_data) summary(anova.Shannon)

 Df Sum Sq Mean Sq F value Pr(>F)

 EnvType
 7
 7.61
 1.0866
 1.695
 0.129

 Residuals
 56
 35.89
 0.6409

#Perform ANOVA on InvSimpson, which effects are significant anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_data) summary(anova.InvSimpson)

Df Sum Sq Mean Sq F value Pr(>F) EnvType 7 392.8 56.12 1.261 0.286 Residuals 56 2492.7 44.51

3. Does EnvType has an impact on α -diversity indices ?

Anova interpretations

Does the EnvType have an effect on Observed indice ?

#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType, anova_data) summary(anova.Observed)

	Df	Sum Sq M	ean Sq 1	F value	$\Pr(>F)$		
EnvType	7	57656	8237	7.705	1.68e-06	***	
Residuals	56	59864	1069				
Signif. code	es:	0 '***'	0.001	'**' 0.0	1 '*' 0.0	05 '.	' 0.1 '

' 1

#Perform ANOVA on Chaol, which effects are significant

anova.Chaol <-aov(Chaol ~ Depth + EnvType, anova_data) summary(anova.Chaol)

	Df	Sum S	Sq M	ean	Sq	F	val	ue	P	r(>	F)					
EnvType	7	6569	91	93	384		8.4	82	4.8	5e-	07 *	* *				
Residuals	56	6195	54	11	L06											
Signif. cod	es:	0 '*	***'	0.0	001	' '	**'	0.0	1 '	* '	0.05	'.'	0.1	'	'	1

#Perform ANOVA on Shannon, which effects are significant anova.Shannon <-aov(Shannon ~ Depth + EnvType, anova_data) summary(anova.Shannon) Df Sum Sq Mean Sq F value Pr(>F) EnvType 7 7.61 1.0866 1.695 0.129 Residuals 56 35.89 0.6409

#Perform ANOVA on InvSimpson, which effects are significant anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_da summary(anova.InvSimpson)

Df Sum Sq Mean Sq F value Pr(>F) EnvType 7 392.8 56.12 1.261 0.286 Residuals 56 2492.7 44.51

3. Does EnvType has an impact on α -diversity indices ? <u>Anova interpretations</u>

 Environments differ in terms of richness but not in terms of Shannon and InvSimpson diversity

 This means that all EnvTypes have similar structures (equivalent distributions between several minor ASVs and few dominant ASVs). Even if 2 samples of "Crevette" displayed very high invSimpson (their bacteria were thus more homogeneously distributed), these two samples were not sufficient to make "Crevette" significantly different from the others EnvType.

There is no significant difference between the EnvType

#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType, anova_data) summary(anova.Observed)

			Mean Sq									
EnvType	7	57656	8237	7.	705	1.68e-	-06 3	* * *				
		59864										
Signif. code	es:	0 '**	*' 0.001	'**'	0.0)1 '*'	0.05	5'.'	0.1	'	'	1

summary(anova.Chaol)

	Dİ	Sum Sq Me	ean Sq	F value	Pr(>F)	_
EnvType	7	65691	9384	8.482	4.85e-07 **	* *
Residuals	56	61954	1106			
Signif. code	s:	0 '***'	0.001	'**' 0.0)1 '*' 0.05	'.' 0.1 ' ' 1

Residuals	56	35.89	0.6409	

#Perform ANOVA on InvSimpson, which effects are significant anova.InvSimpson <-aov(InvSimpson ~ Depth + EnvType, anova_da summary(anova.InvSimpson)

Df Sum Sq Mean Sq F value Pr(>F) EnvType 7 392.8 56.12 1.261 0.286 Residuals 56 2492.7 44.51

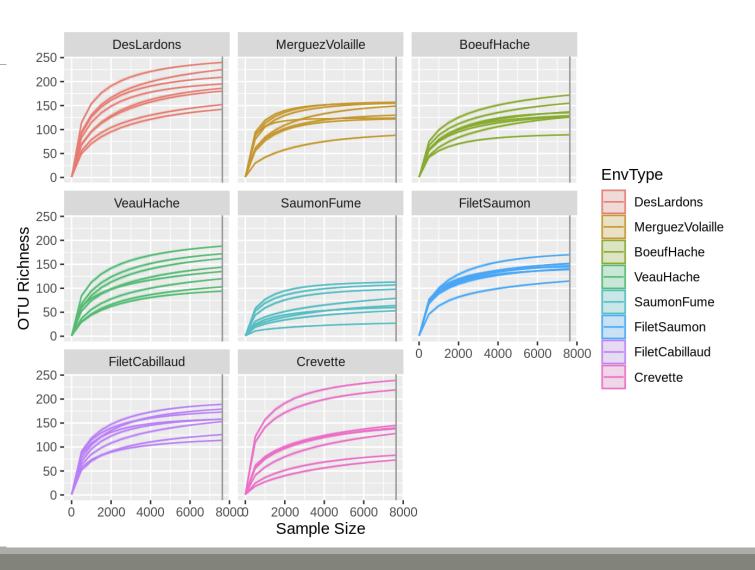
3. Does EnvType has an impact on α -diversity indices ?

Anova interpretations

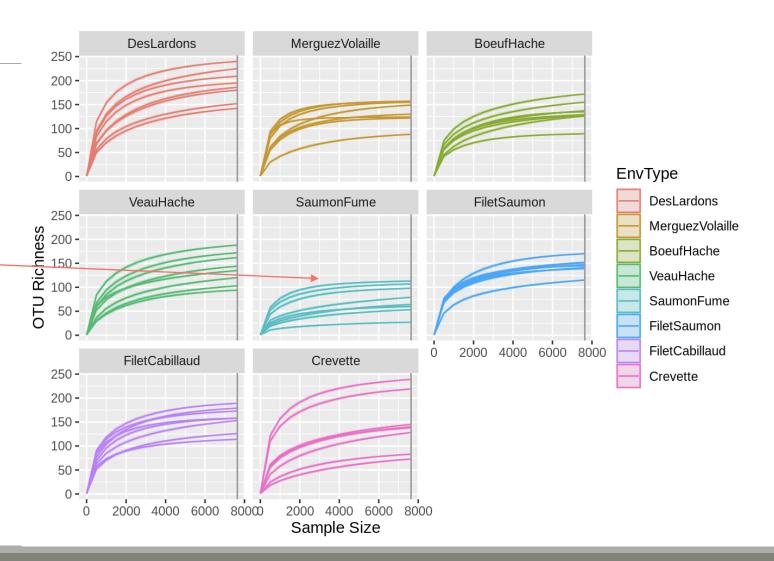
- Depth does not appear in the results, so there is no effect of depth.
- This is expected as the sequencing depth is equivalent between samples
- If Depth appears as a significant effect, you should normalize

#Perform ANOVA on Observed, which effects are significant anova.Observed <-aov(Observed ~ Depth + EnvType anova_data) summary(anova.Observed) Df Sum Sq Mean Sq F value Pr(>F) EnvType 7 57656 8237 7.705 1.68e-06 *** Residuals 56 59864 1069 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Perform AN	OVA c	on Chaol	, which	effec	ts are	signific	ant	
anova.Chaol	<-ac	ov(Chao	1 ~ D	epth +	+ EnvTyp	pe, anova	_data)	
summary(ano	va.Ch	naol)						
		Sum Sq M						
EnvType	7	65691	9384	8.48	32 4. 85e	e-07 ***		
Residuals	56	61954	1106					
Signif. cod	es:	0 '***'	0.001	'**' ().01 '*'	0.05 '.	0.1	' ' 1



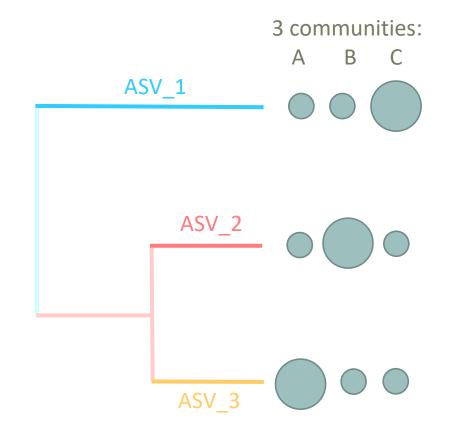
#Perform ANG							
anova.Shanno	on 🗸	<-aov(S	hannon ~	Deptl	h + Envi	ſype,	anova_data)
summary(anov	va.s	Shannon)					
	Df	Sum Sq	Mean Sq F	value	Pr(>F)		
EnvType	7	7.61	1.0866	1.695	0.129]	
Residuals	56	35.89	0.6409				


#Perform AN	OVA c	on InvS	impson,	which ef	fects a	re signifi	cant			
anova.InvSi	mpson	ı <−aov	(InvSim	pson ~	Depth ·	+ EnvType,	anova_da			
<pre>summary(anova.InvSimpson)</pre>										
1			Mean Sq							
EnvType	7	392.8	56.12	1.261	0.286					
Residuals	56 2	492.7	44.51							

Rarefaction curve interpretations

Rarefaction curve interpretations

- Most of the curves reach a plateau
- A deeper sequencing doesn't add more ASVs
- DesLardons reach the plateau later which correspond to a higher Observed

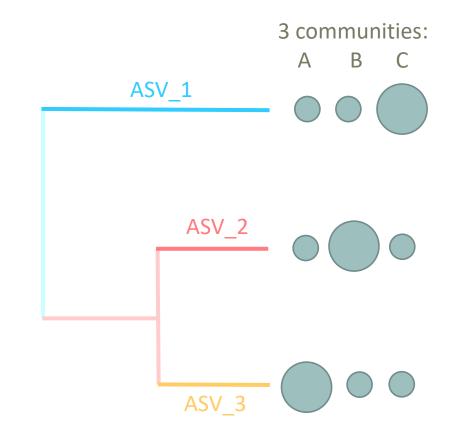

IV. Biodiversity analysis

 β -DIVERSITY INDICES

Exploring biodiversity : β-diversity

Many diversity indices are available with the Phyloseq package through the generic distance function.

Different dissimilarities capture different features of the communities.


There are different ways to measure beta diversity on a dataset, which give different results.

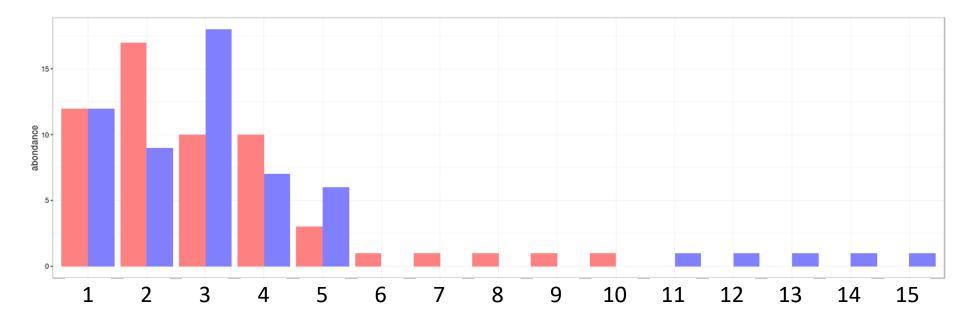
In this example, 3 ways :

- qualitatively, communities are very similar
- quantitatively, communities are very different
- phylogenetically, two communities seem to be closer than the third one.

Which distance to choose?

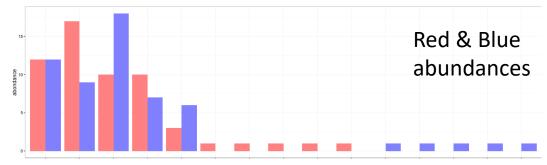
 No wrong answer. Each beta-diversity indices will characterize communities differently

If we compare 2 communities A and B:

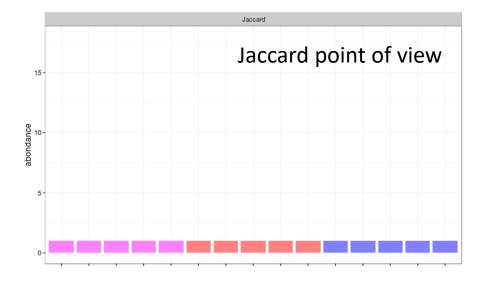

Jaccard index:

• Fraction of <u>species</u> specific to either A or $B \rightarrow \text{qualitative}$ index

Bray-Curtis index:


• Fraction of the <u>community</u> specific to either A or $B \rightarrow quantitative$ index

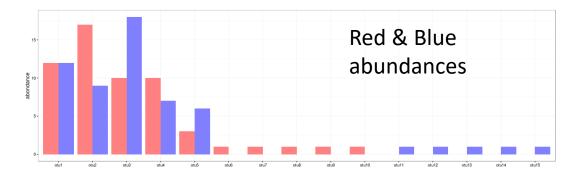
- 2 communities, Red and Blue
- 15 ASVs with different abundances in Red community and Blue community

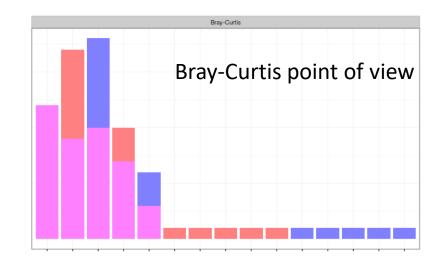

Jaccard index:

Proportion of <u>species/ASVs</u> specific to either Red or Blue
 → qualitative index

- Pink = common ASVs between the 2 communities (5)
- Red= ASVs specific to Red community (5)
- Blue= ASVs specific to Blue community (5)

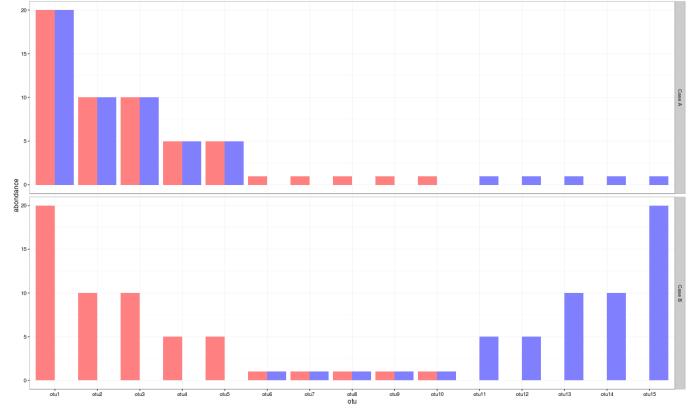
 $D_{jac} = 10/15 = 0.667$

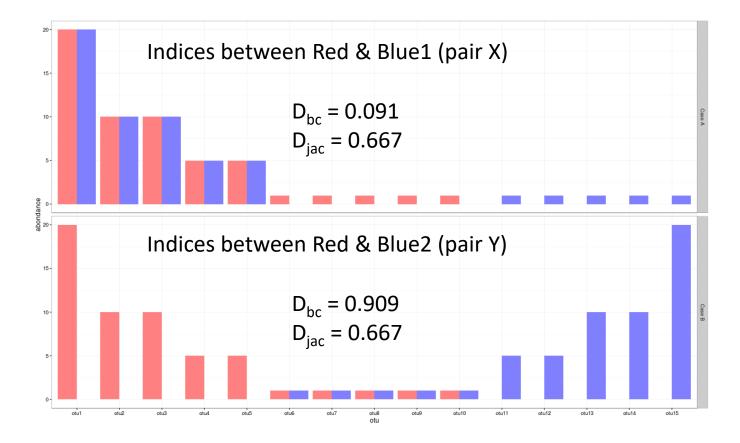



Bray-Curtis index:

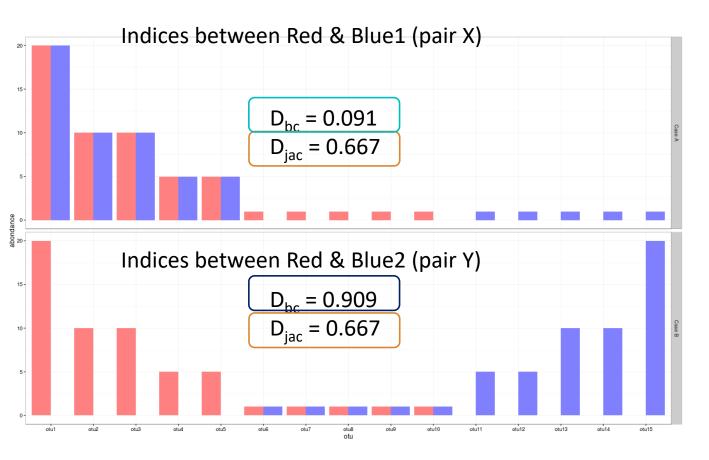
- Proportion of the <u>abundance</u> specific to either Red or Blue → quantitative index
- Ration (sum of specific abundances)/ (total abundances)
- 1st ASV does not contribute (same abundance for Red and Blue communities)
- ASV 2, 3, 4 and 5 contribute up to the excess in one of the communities (8+8+3+3+10) in the sum of specific abundances

(Pink is not taken into account in this sum)


 $D_{bc} = (8+8+3+3+10) / (24+26+28+17+9+10) = 0.281$


Indices comparison with different distributions:

- between Red & Blue1 communities



- between Red & Blue2 communities

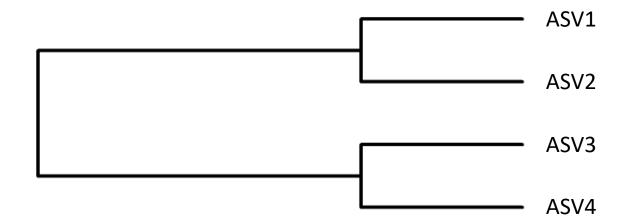
Jaccard and Bray-Curtis indices are calculated by pairs (in french "deux-àdeux") so we here compare pair X indices with pair Y indices


- Jaccard indices of X an Y are identical → same specific fraction (there are as many ASVs specific to Red or Blue1 in X, as there are ASVs specific to Red or Blue2 in Y).
- 2. Pair X: Bray-Curtis index is low because shared ASVs between Red and Blue1 communities are abundant and specific ASVs are at low abundance.
- 3. Pair Y: Bray-Curtis index is high because ASVs specific to Red or Blue2 are abundant and shared ASVs are at low abundance

3 ways to measure beta diversity with the same data set \rightarrow 3 different results.

In this example :

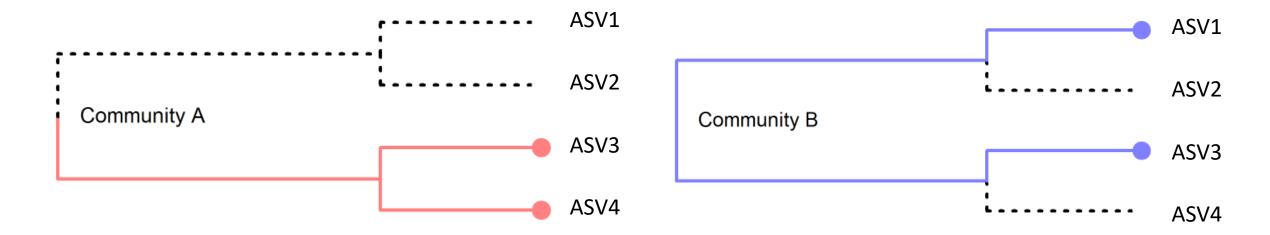
- ✓ qualitatively, communities are very similar
- ✓ quantitatively, communities are very different
- phylogenetically, two communities seem to be closer than the third one.



Unifrac index:

Fraction of <u>the tree</u> specific to either A or B

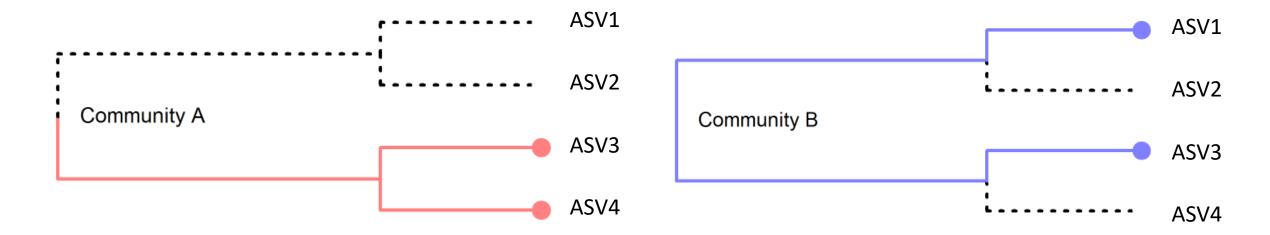
Weighted-Unifrac index :


Fraction of the <u>diversity</u> specific to either A or B

Unifrac index:

Fraction of <u>the tree</u> specific to either A or B

$$Unifrac = \frac{\sum specific_branch_length}{\sum all_branch_length}$$



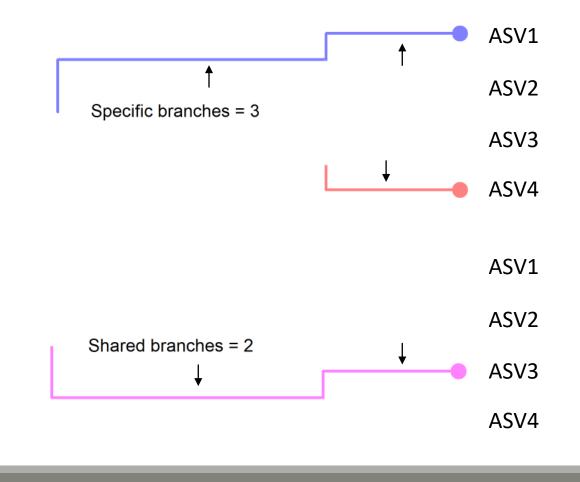
3 ASVs identified by sequencing: ASV3, ASV4 in community A and ASV1, ASV3 in community B

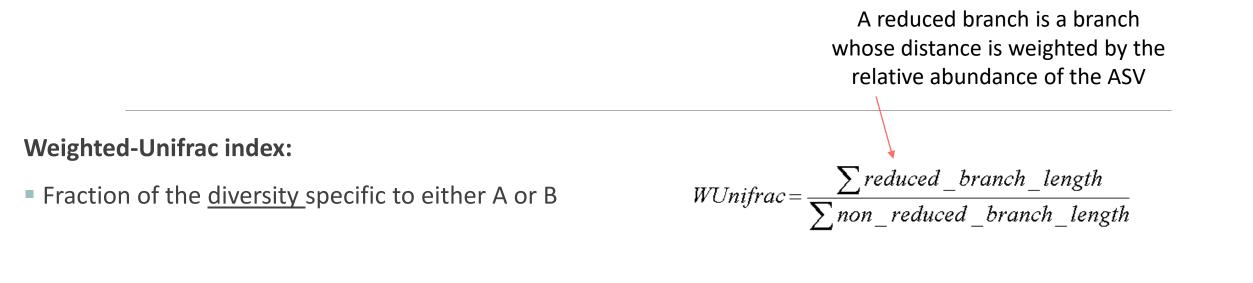
Unifrac index:

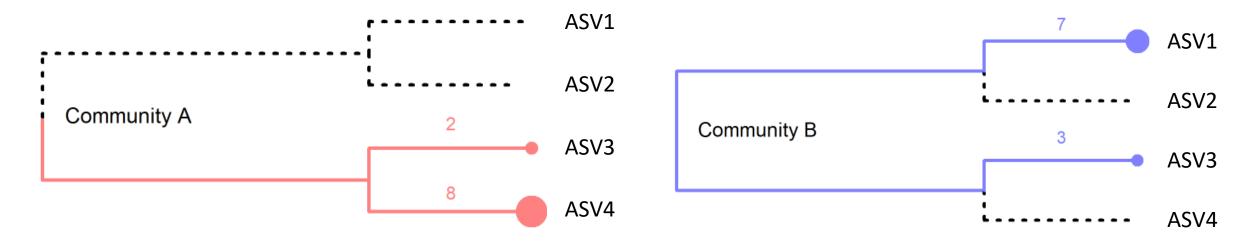
Fraction of <u>the tree</u> specific to either A or B

$$Unifrac = \frac{\sum specific_branch_length}{\sum all_branch_length}$$

ASV1 and ASV4 are specific, ASV3 is shared in the 2 communities and ASV2 are absent in the 2 communities

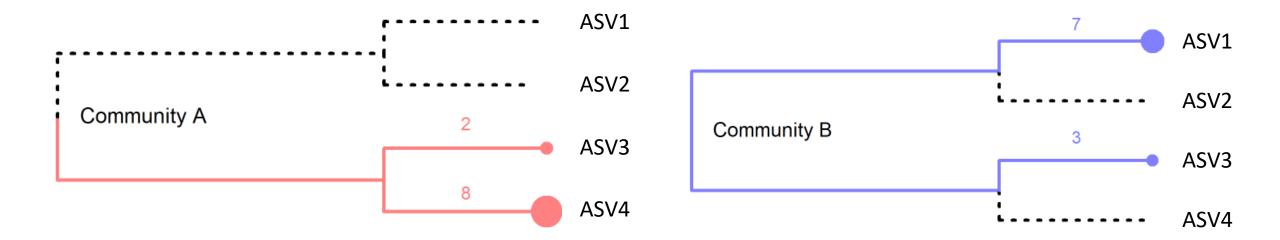

Unifrac index:


Fraction of <u>the tree</u> specific to either A or B

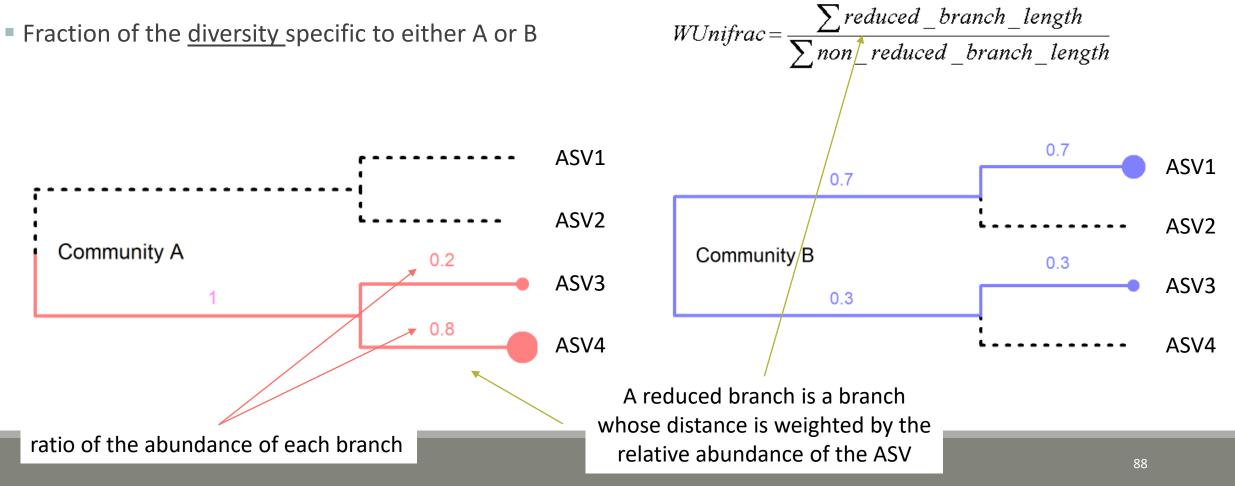

If all branch lengths are equal to 1, only branches present in at least one community are taken into account :

$$Unifrac = \frac{\sum specific_branch_length}{\sum all_branch_length} = 3/5 = 0.6$$

- Pink = common ASVs between the 2 communities
- Red= tree branch specific to A
- Blue= tree branch specific to B

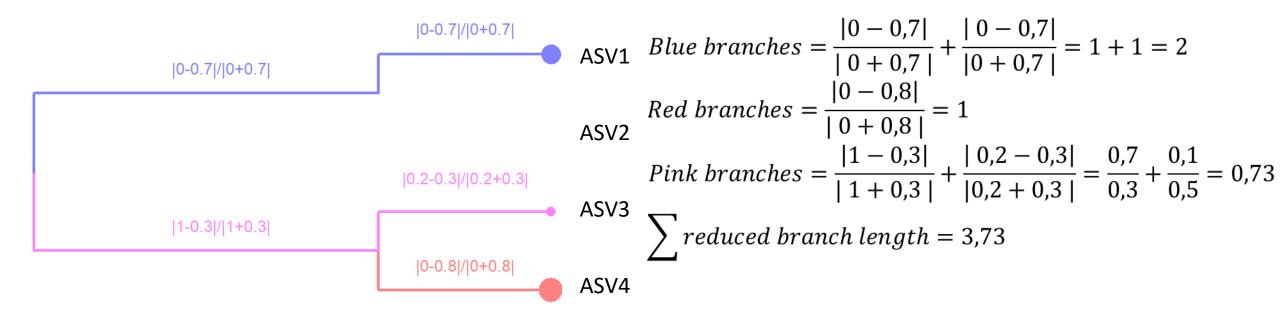


Weighted-Unifrac index:


Fraction of the <u>diversity</u> specific to either A or B

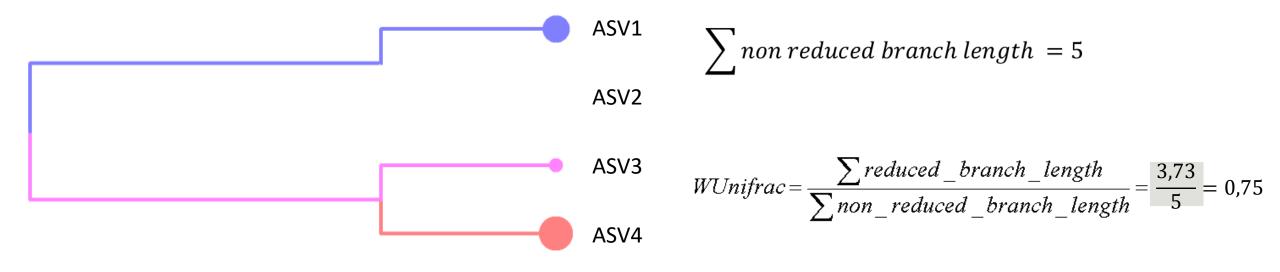
$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$

Here the specific ASVs (ASV1 and ASV4) are the most abundant and are also the most phylogenetically distant.


Weighted-Unifrac index:

Weighted-Unifrac index:

Fraction of the <u>diversity</u> specific to either A or B


$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$

Weighted-Unifrac index:

Fraction of the <u>diversity</u> specific to either A or B

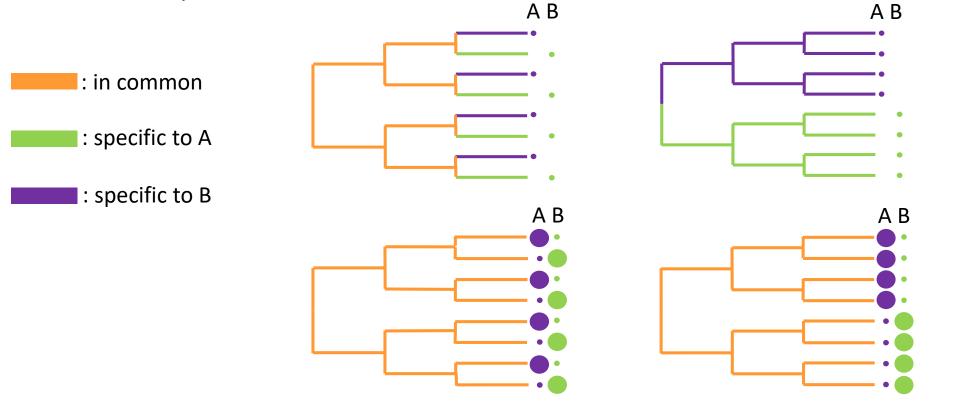
$$WUnifrac = \frac{\sum reduced_branch_length}{\sum non_reduced_branch_length}$$

Exploring biodiversity : β -diversity in brief

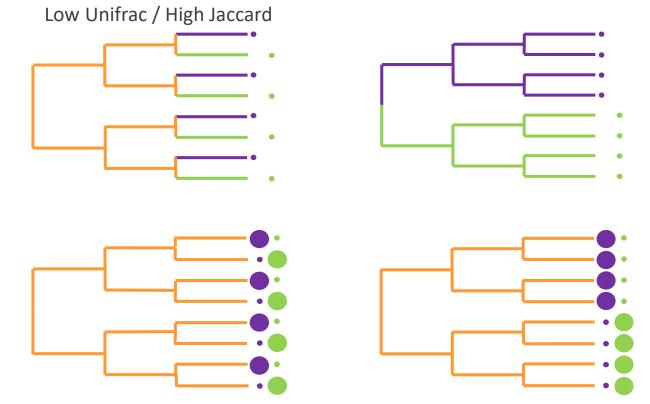
qualitative indices: presence/absence regardless of abundance

quantitative indices: compare differences in abundance of ASVs

phylogenetic indices: integrate phylogenetic information to qualitative or quantitative indices (weighted or unweighted indices)

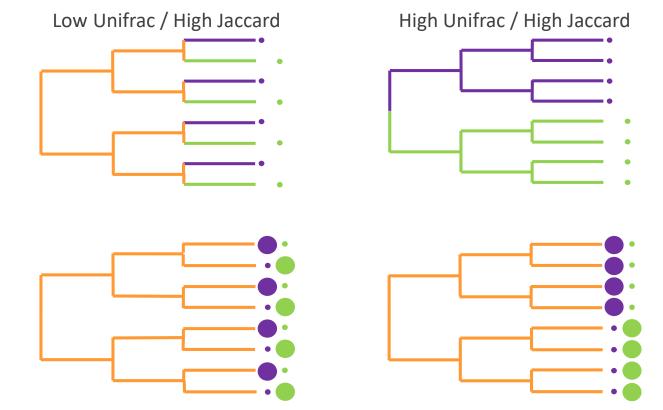

Bray-Curtis index : to evaluate the dissimilarity between two given samples, in terms of abundance of ASVs present in each sample. When Bray-Curtis index close to 0 means abundant ASVs are shared and in the same quantities between communities.

Jaccard index: beta diversity index, qualitative, takes into account the fraction of specific ASVs


Unifrac index: beta diversity index, qualitative, takes into account the fraction of specific phylogenetic branches

Weighted-Unifrac index: beta diversity index, quantitative, takes into account the relative abundance of ASVs shared between samples

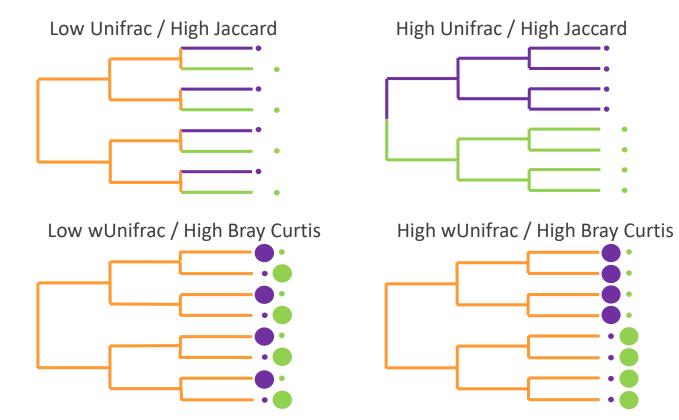
→ What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values for these 4 pairs of communities?



→ What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?


High Jaccard: same amount of specific ASVs Low Unifrac: small distance between specific branches

→ What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?


High Jaccard: all ASVs are specific to A or B High Unifrac: all the branches are specific to A or B

→ What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

High Bray-Curtis: ASVs are shared but abundant ASVs are not the same in each community Low weighted-Unifrac: abundant ASVs in a community have a phylogenetically close relative in the other community

→ What do you conclude in terms of Jaccard, Bray Curtis, Unifrac and weigthed Unifrac values?

High Bray-Curtis: ASVs are shared but abundant ASVs are not the same in each community High weighted-Unifrac: abundant ASVs in a community are phylogenetically distant to any ASV in the other community

Phyloseq supports currently 43 beta diversity distance methods, (see <u>phyloseq distanceMethodList documentation</u>)

unifrac, wunifrac,

dpcoa, jsd, manhattan, euclidean, canberra,

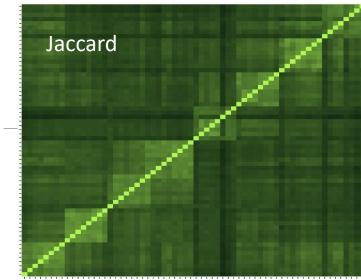
bray, kulczynski, jaccard, gower, altGower, morisita, horn, mountford, raup, binomial chao, cao...

FROGSSTAT Phyloseq Beta Diversity distance matrix (Galaxy Version 4.1.0+galaxy1) 다 Favorite	
Phyloseq object (format: RData)	Explore the sample NORMALISED count
1 1 4: FROGSSTAT Phyloseq Import Data SUBSAMPLED: asv_data.Rdata	
This is the result of FROGS Phyloseq Import Data tool.	Choose a sample variable to organize
Grouping variable	graphics.
EnvType	0. optimizer
Experimental variable used to group samples (Treatment, Host type, etc) (varExp)	
The methods of beta diversity	
Select/Unselect all	
	Choose which beta diversity distances
 ✓ Weighted Unifrac ✓ Bray-Curtis 	
✓ Jaccard (as cc method in betadiver vegan funcion)	you want to compute
N.B. if the tree is not available in your RData, you cannot choose Unifrac or Weighted Unifrac (distance-methods)	You can ask another beta-diversity method
Other method	Tod can ask another beta diversity method
The other methods of beta diversity that you want to use (comma separated value). c.f. details below.	90

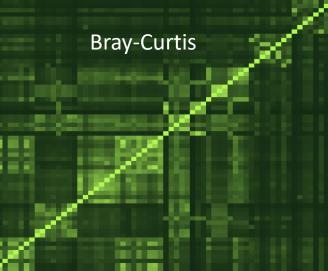
Try it with the 4 most commonly used distance methods

- 1. What are the output datasets ?
- 2. A priori, abundant ASVs are they shared among samples?
- 3. Comparing Jaccard and Unifrac, what can you conclude?
- 4. Comparing Unifrac and weighted Unifrac, what can you conclude?

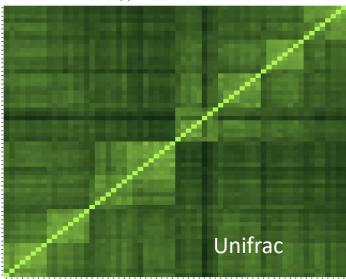
1. What are the output files ?


→ Tabular file: a tabular file per distance method containing the "all samples against all" matrix of beta diversity distance

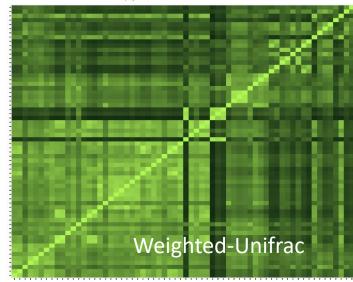
 \rightarrow HTML report: heatmap representing the distance matrix computed

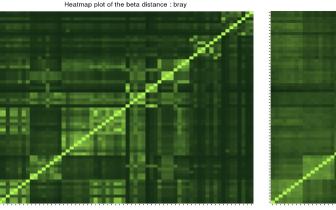

Heatmap plot of the beta distance : bray

Heatmap plot of the beta distance : cc

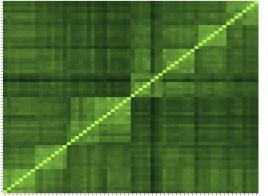


Exercise 6


FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html


Heatmap plot of the beta distance : unifrac

Heatmap plot of the beta distance : wunifrac



- Each square represents a comparison between 2 samples
- Lighter means more similar
- The diagonal represents the comparison of a sample with itself
- Along the diagonal we can spot clearer square structures
- We can assume that these are the different EnvTypes as the samples are ordered.

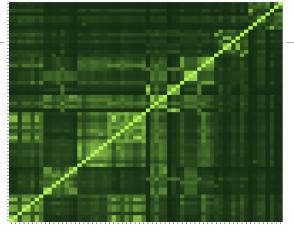
Heatmap plot of the beta distance : unifrac

Bray-Curtis

Heatmap plot of the beta distance : wunifrac

Jaccard

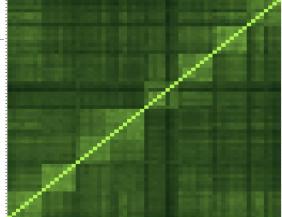
Heatmap plot of the beta distance : cc

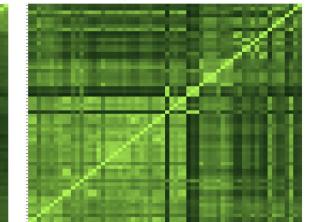

Unifrac

Weighted-Unifrac

2. *A priori*, are abundant ASV shared among samples ?

Bray-Curtis


Heatmap plot of the beta distance : bray

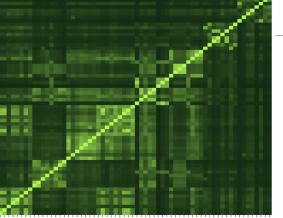

Heatmap plot of the beta distance : unifrac

Heatmap plot of the beta distance : cc

Heatmap plot of the beta distance : wunifrac

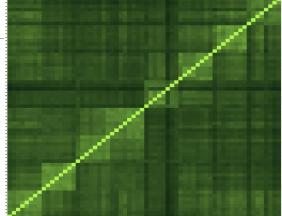
Weighted-Unifrac

2. *A priori*, are abundant ASV shared among samples ?

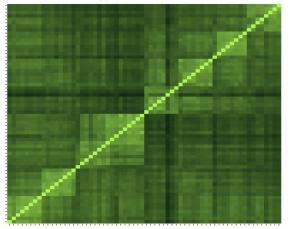

- Jaccard lower than Bray-Curtis
- Weighted-Unifrac is lower than Unifrac

→ The abundance accentuates the differences i.e. the distances are greater, i.e. the images are darker

→ abundant ASVs are community specific

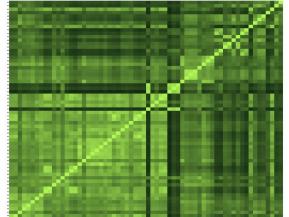

Bray-Curtis

Heatmap plot of the beta distance : bray



Jaccard

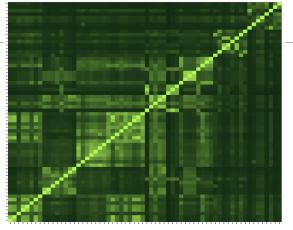
Heatmap plot of the beta distance : cc



Heatmap plot of the beta distance : unifrac

Unifrac

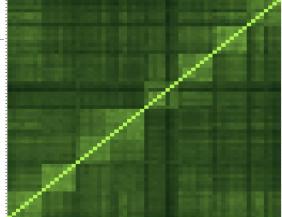
Heatmap plot of the beta distance : wunifrac

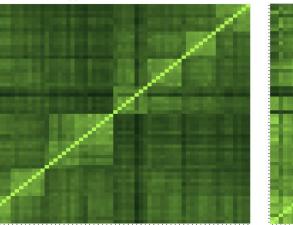


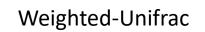
Weighted-Unifrac

3. Comparing Jaccard and Unifrac, what can you conclude ?

Bray-Curtis

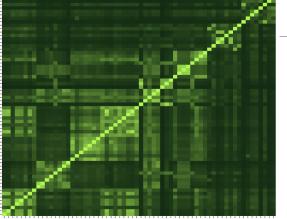

Heatmap plot of the beta distance : bray


Heatmap plot of the beta distance : unifrac

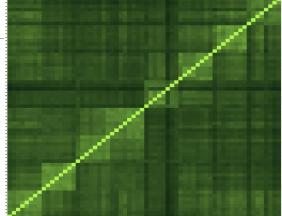


Heatmap plot of the beta distance : cc

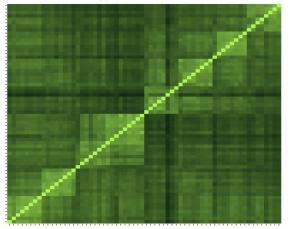
Heatmap plot of the beta distance : wunifrac



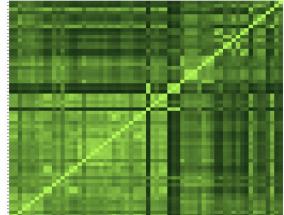
- 3. Comparing Jaccard and Unifrac, what can you conclude ?
- Jaccard and Unifrac are close.
- the phylogenetic distances do not accentuate the qualitative data of the Jaccard (neither darker, nor lighter), the species are thus close
- → ASVs are distinct but phylogenetically related


Bray-Curtis

Heatmap plot of the beta distance : bray

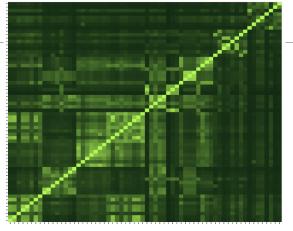


Jaccard


Heatmap plot of the beta distance : cc

Heatmap plot of the beta distance : unifrac

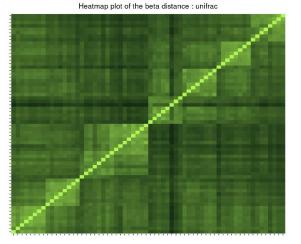
Heatmap plot of the beta distance : wunifrac



Weighted-Unifrac

4. Comparing Unifrac and weighted Unifrac, what can you conclude ?

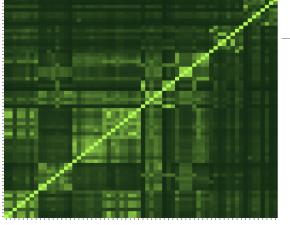
Bray-Curtis


Heatmap plot of the beta distance : bray

Jaccard

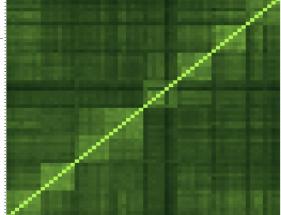
Heatmap plot of the beta distance : cc

Heatmap plot of the beta distance : wunifrac

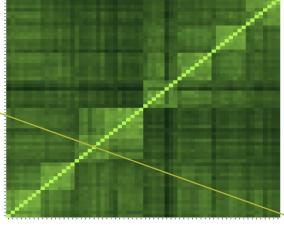


4. Comparing Unifrac and weighted Unifrac, what can you conclude ?

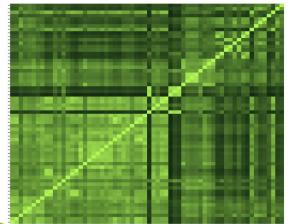
- Unifrac higher/darker than weighted Unifrac so distance between samples are more important
- taking into account the abundances makes the samples less distant (lighter)
- abundant ASVs in both communities are phylogenetically closed.


Bray-Curtis

Heatmap plot of the beta distance : bray



Jaccard


Heatmap plot of the beta distance : cc

Heatmap plot of the beta distance : unifrac

Heatmap plot of the beta distance : wunifrac

Exploring biodiversity : β -diversity

In general, qualitative diversities (Jaccard, Unifrac) are more sensitive to factors that affect presence/absence of organisms (such as pH, salinity, depth, etc) and therefore are useful to study and define bioregions (regions with little of no flow between them)...

•... whereas quantitative distances (Bray-Curtis, weighted-Unifrac) focus on factors that affect relative changes (seasonal changes, nutrient availability, concentration of oxygen, depth, etc.) and therefore useful to monitor communities over time or along an environmental gradient.

Different distances capture different features of the samples.

There is no "one size fits all"

Exploring the structure

We will try to identify structures, relationships between samples related to environmental factors

I. Structure Visualisation

ORDINATION AND HEATMAP PLOTS

We have calculated distances now, we will use ordination methods to explore them.

Structure visualization : with PCA ?

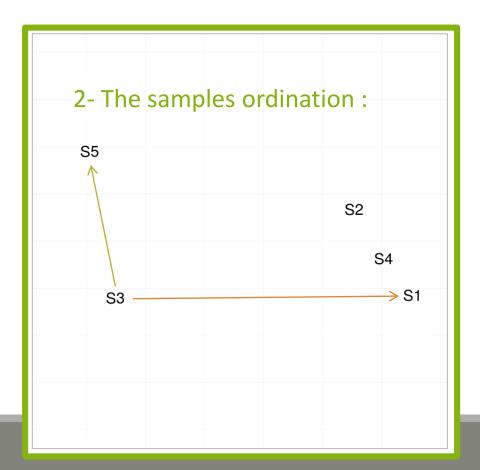
Each community can be described by its ASV abundances, which could be used for a PCA, but high number of ASV make interpretations difficult

 Moreover, PCA maximizes variance and can therefore emphasize differences of rare ASVs between samples instead of giving a good representation of resemblances.
 Variance is not a very good measure of β-diversity.

PCA is not design to use diversity indices and/or distances as it requires independency between variables and does not fit to distance matrix, which is not constructed with samples and variables.

 β -diversity indices thus required dedicated PCA-like methods.

Purpose of the tool : ordinate samples based on β -diversity indices and offer tools to visualize it: produce ordination plots and heatmaps.

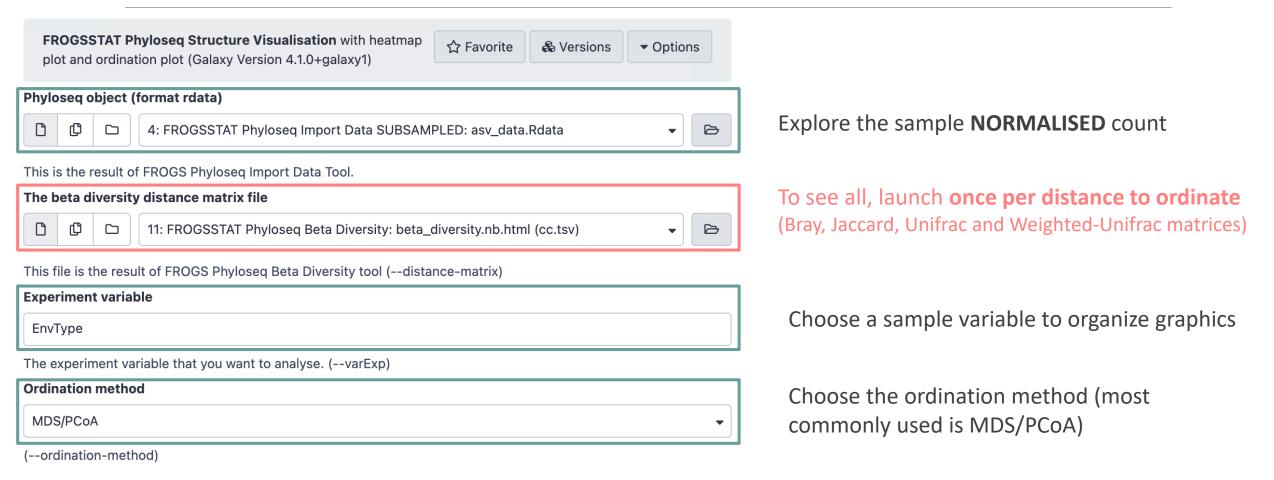

Structure visualization : Ordination plot

The Multidimensional Scaling (**MDS** or **PCoA**) is equivalent to a Principal Component Analysis (PCA) but preserves the β-diversity instead of the variance.

The MDS tries to represent samples in two dimensions while preserving the distances

1- calculation of a distance matrix.

	Distance Matrix					
	S1	S2	S3	S4	S5	
S1	0.00	2.21	6.31	0.99	7.50	
S2	2.21	0.00	5.40	1.22	5.74	
S3	6.31	5.40	0.00	5.75	3.16	
S4	0.99	1.22	5.75	0.00	6.64	
S5	7.50	5.74	3.16	6.64	0.00	

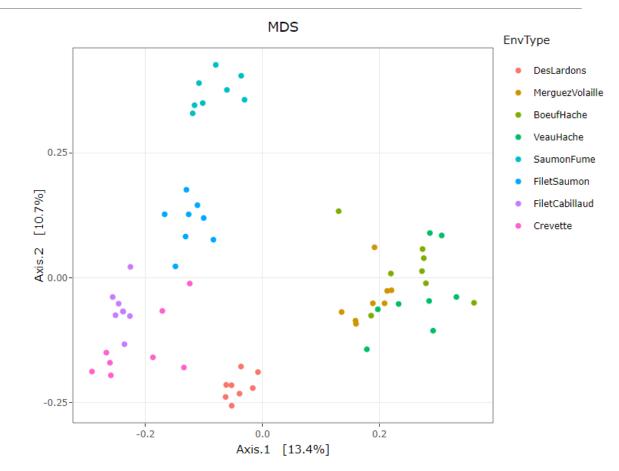


Structure visualization : Heatmap

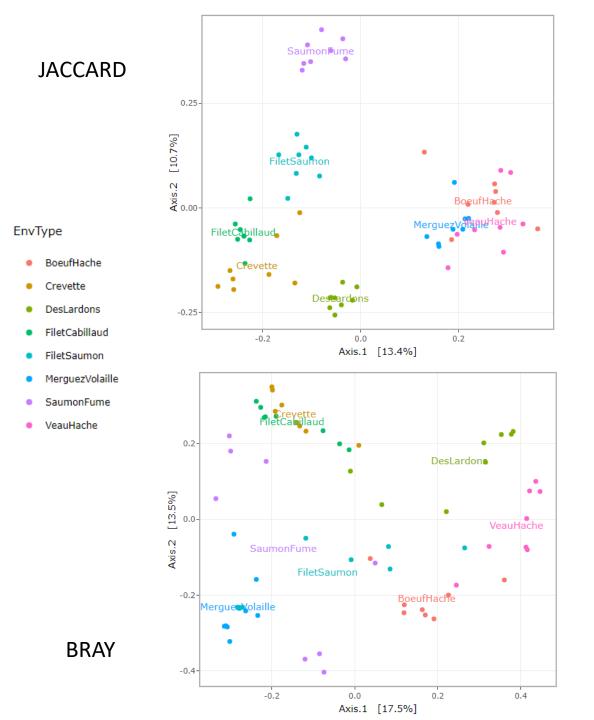
- Heatmap is an other representation of the abundance table.
- It tries to reveal if there is a structure between a group of ASVs and a group of samples.

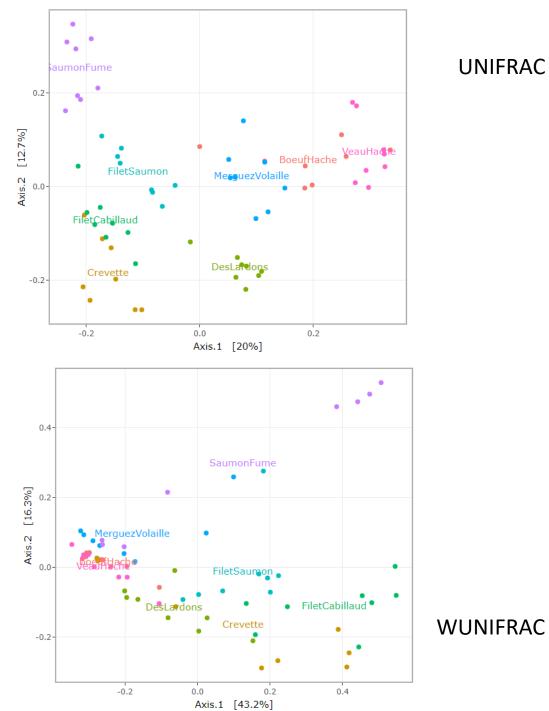
Heatmap

- Finds a meaningful order of the samples and the ASVs
- Allows the user to choose a custom order (in R)
- Allows the user to change the colour scale (in R)
- Produces a ggplot2 object, easy to manipulate and customize

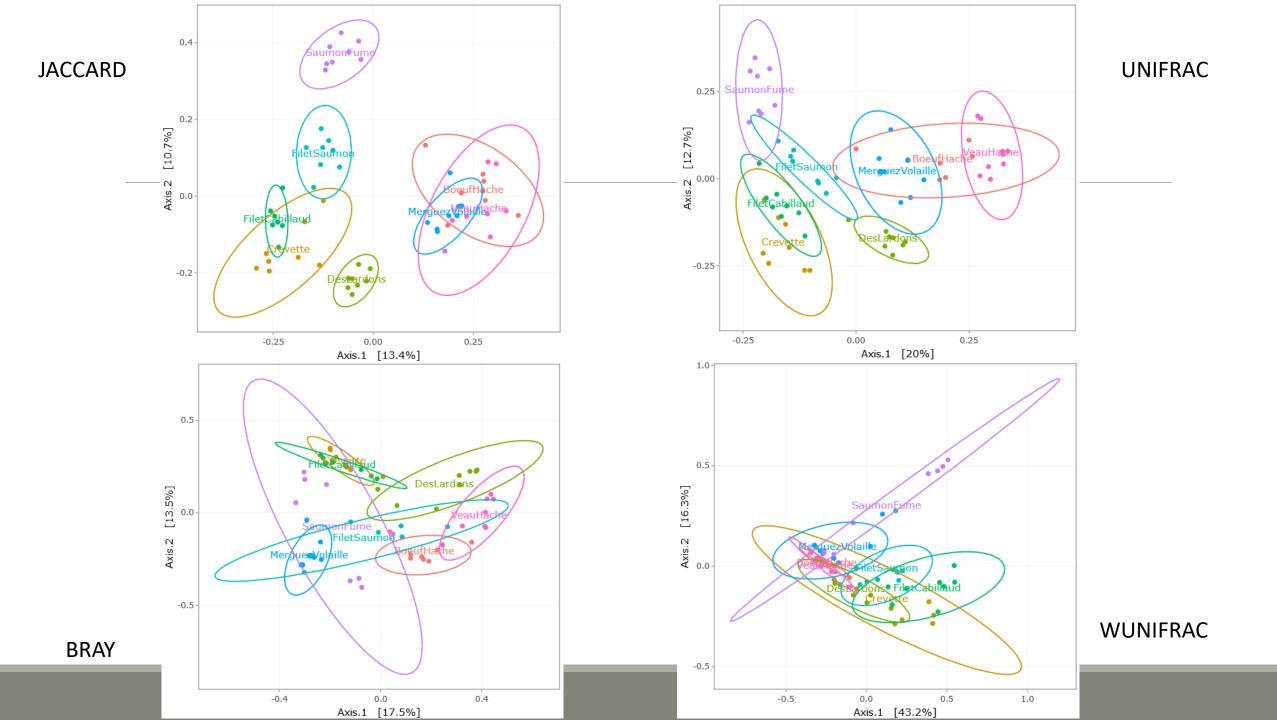


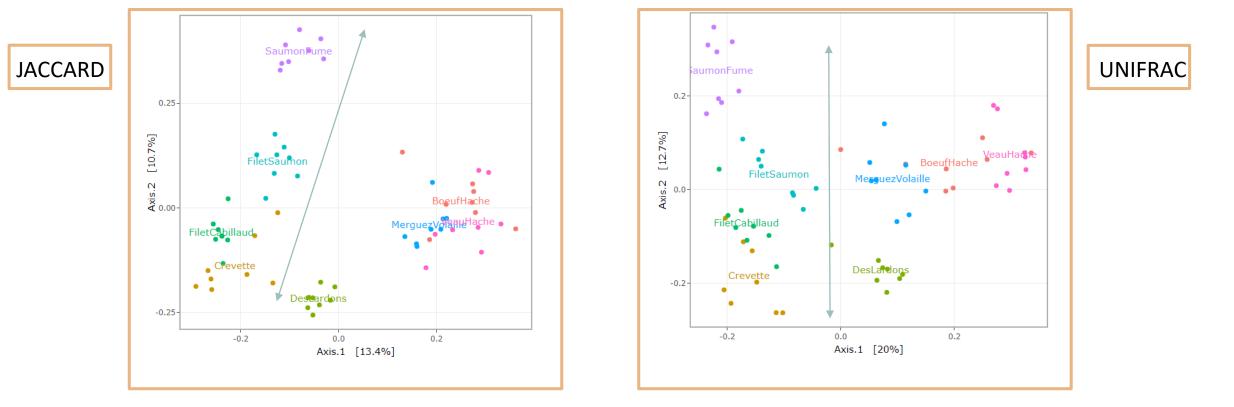
Try it with the 4 distance matrices

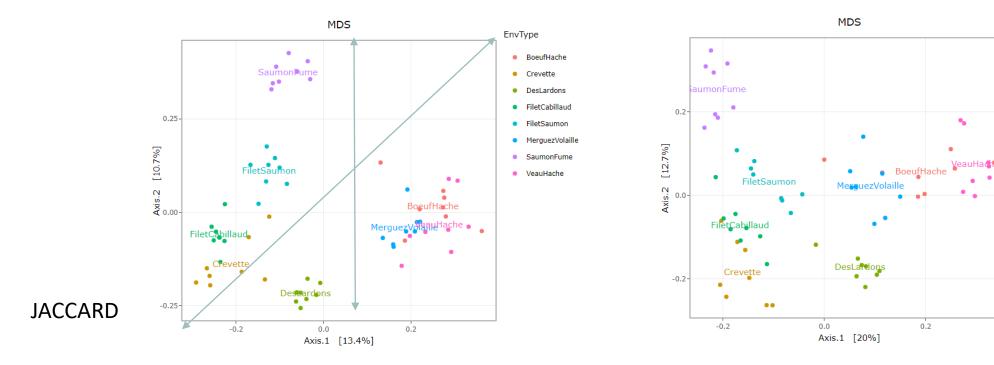

- 1. What are the output datasets ?
- 2. What is the best distance matrix to use to better separate samples ?
- 3. Guess why Lardon are somewhere between Meat and Seafood ?
- 4. Based on your favourite distance matrix, what can you conclude on the heatmap?


1. What are the output datasets ?

 \rightarrow HTML report: ordination plot




2. What is the best distance matrix to use to better separate samples ?


UNIFRAC

- Qualitative distances (Unifrac, Jaccard) separate meat products from seafood ones
- → detected taxa segregate by origin

3. Guess why Lardon are somewhere between Meat and Seafood ?

UNIFRAC

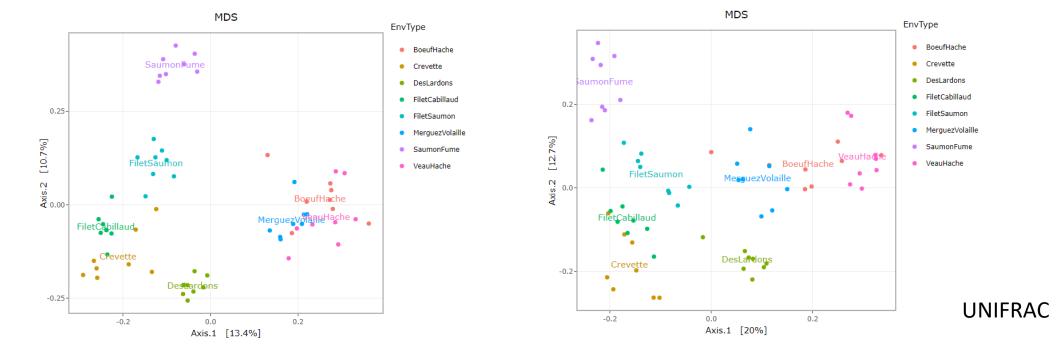
EnvType

BoeufHache

DesLardons

FiletCabillaud

FiletSaumon


SaumonFume

VeauHache

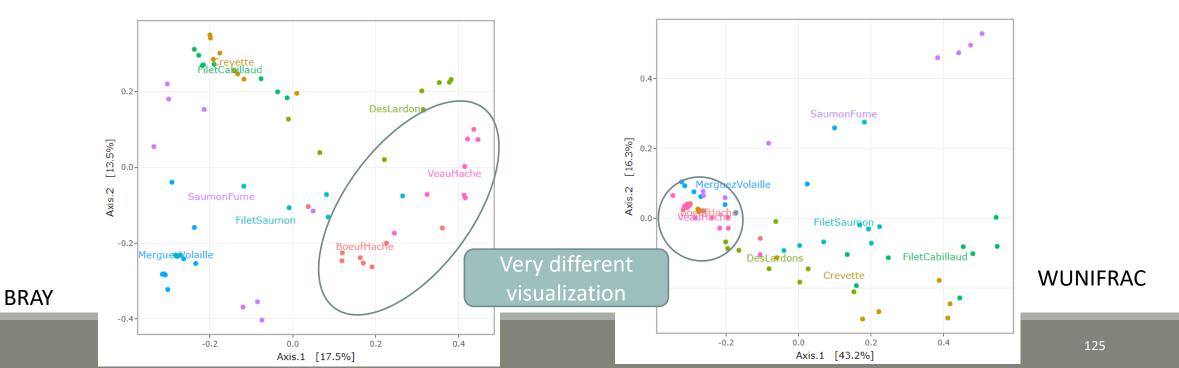
MerguezVolaille

Crevette

3. Guess why Lardon are somewhere between Meat and Seafood ?

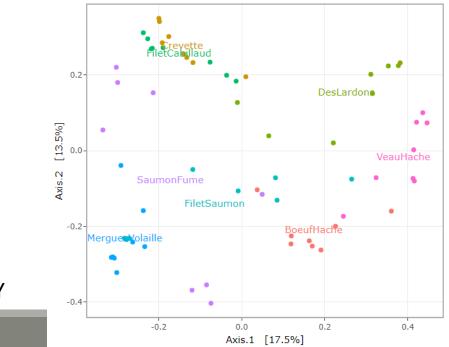
DesLardons is somewhere in between

JACCARD


 \rightarrow contamination induced by sea salt

Other conclusions ?

1. Quantitative distances (weighted Unifrac) exhibit a 'meat – seafood' gradient (on axis 1) with DesLardons in the middle and a 'SaumonFume - everything else' gradient on axis 2.


Other conclusions ?

2. Note the difference between weighted-UniFrac and Bray-Curtis (2 quantitative indices) for the distances between BoeufHache and VeauHache.

Other conclusions ?

3. On Bray-Curtis, on axis 2, we can observe the distribution of Saumon Fumé samples. Axis 1 shows the distribution of MerguezdeVolaille samples

BRAY

Other conclusions ?

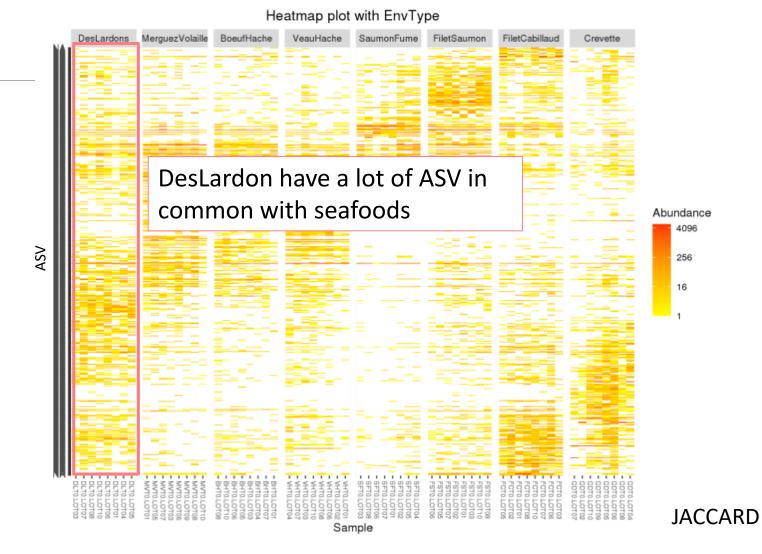
The 2D representation captures only parts of the original distances

Ellipse are not always an advantage for visualization because it accentuates the 2D effect

4. Based on your favourite distance matrix, what can you conclude on the **heatmap**?

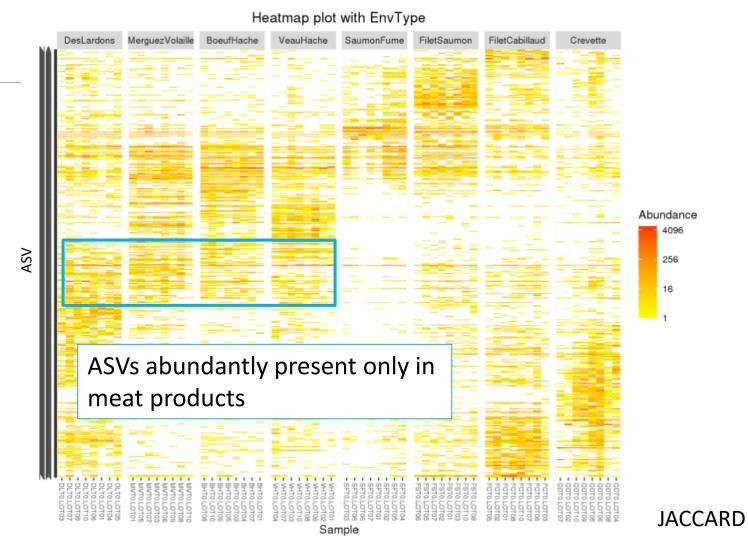
Try to identify:

- Block-like structure of the abundance table
- Interaction between (groups of) taxa and (groups of) samples
- Core and condition-specific microbiota


4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

matrix based on Jaccard distance (qualitative) which "sorts" the ASVs. Then a color is applied according to the abundance of ASVs (yellow to red).

DesLardons MerquezVolaille SaumonFume FiletCabillaud FiletSaumon Crevette ASV shared by all samples Abundance 4096 ASV 256 16 JACCARD Sample

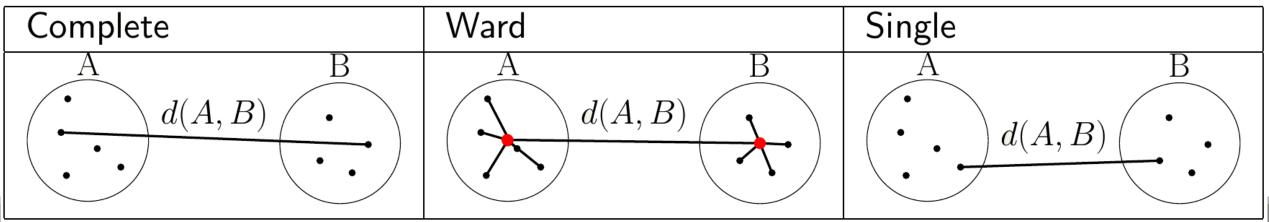

Heatmap plot with EnvType

4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

4. Based on your favourite distance matrix, what can you conclude on the heatmap ?

Note: no evidence for seafood.

II. Exploring the structure


HIERARCHICAL CLUSTERING

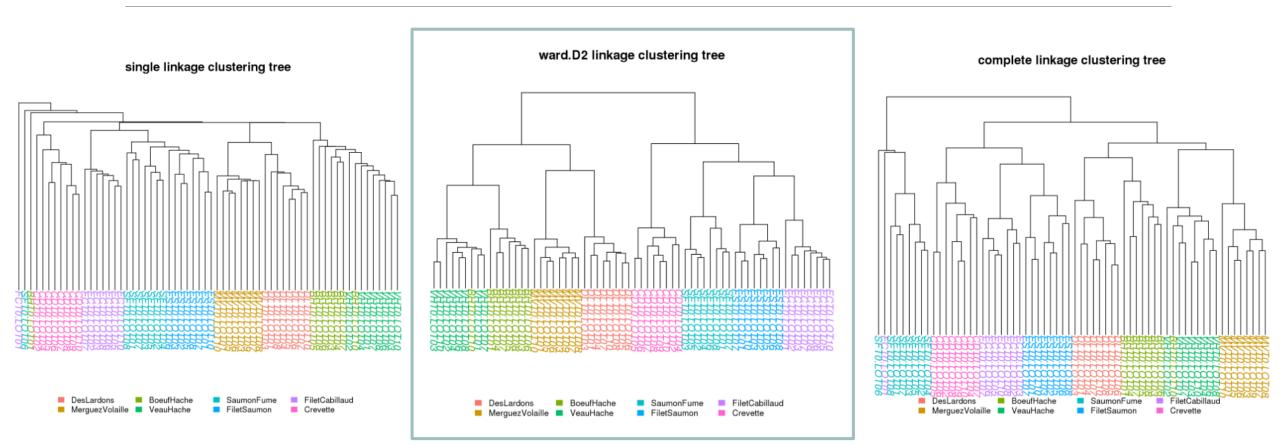
Exploring the structure : clustering

Clustering aims to represent samples in a tree based on a distance matrix and a linkage function:

3 clustering algorithms:

- Complete linkage: tends to produce compact, spherical clusters and guarantees that all samples in a cluster are similar to each other.
- Ward: tends to also produce spherical clusters but has better theoretical properties than complete linkage.
- Single: friend of friend approach, tends to produce banana-shaped or chains-like clusters.

Exploring the structure : clustering

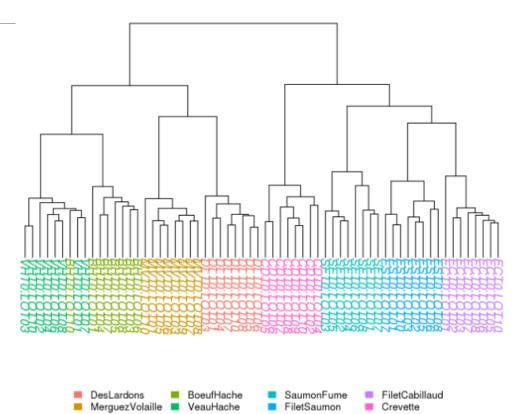

FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods (Galaxy Version 4.1.0+galaxy1)☆ Favorite& Versions♥ Options	
Phyloseq object (format: RData)]
1 1	Explore the sample NORMALISED count
This is the result of FROGS Phyloseq Import Data tool.	_
The beta diversity distance matrix file	Choose the beta diversity distance
Image: Constraint of the second se	matrix: i.e. Jaccard
This file is the result of FROGS Phyloseq Beta Diversity tool. (distance-matrix)	
Experiment variable	Choose a sample variable to organize
ЕпѵТуре	graphics: i.e. EnvType
The experiment variable that you want to analyse. (varExp)	

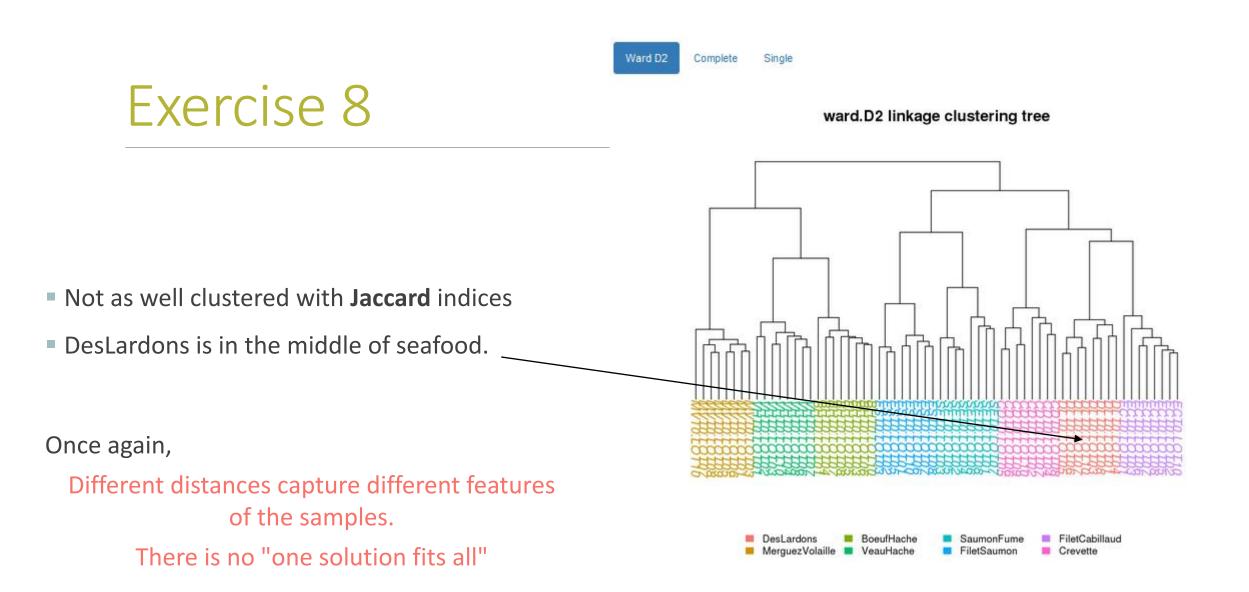
The three different linkage functions will be used, generating three different dendrograms

134

Try it with « a good » distance method matrix on EnvType and on FoodType

→ Which linkage method seems to better fit the data ?

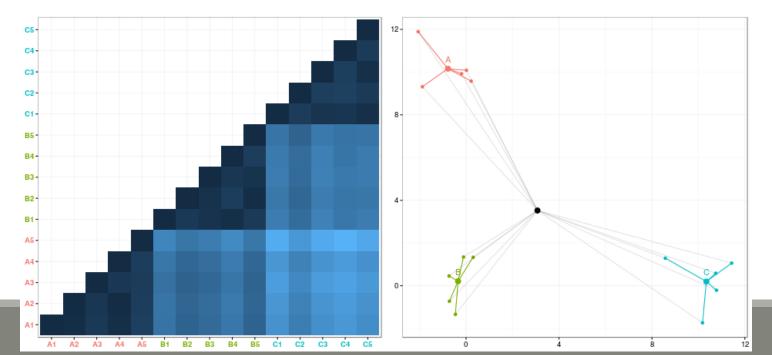

the Ward clustering allows to classify the communities according to the EnvType groups


- Consistently, for these datasets, with the ordination plots, clustering works quite well for the UniFrac distance
- The method (Ward.D2) give almost a perfect separation between the different type of food

<u>Remarks</u>

Clustering is based on the whole distance whereas ordination represents parts of the distance (the most it can with 2 dimensions)

ward.D2 linkage clustering tree

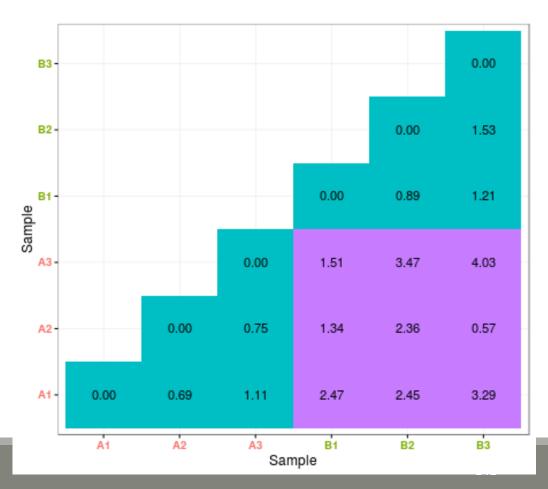

Diversity partitioning

Diversity partitioning

Do the structures seem linked to metadata ? Does the metadata have an effect on the composition of our communities ?

To answer these questions, **multivariate analyses** :

- test composition differences of communities from different groups using a distance matrix
- compare within-group to between-group distances



Diversity partitioning : Multivariate ANOVA

Idea : Test differences in the community composition from different groups using a distance matrix.

How it works ?

- Computes sum of square distance
- Variance analysis

Diversity partitioning : Multivariate ANOVA

	FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform Multivariate Analysis of Variance (MANOVA) (Galaxy Version 4.1.0+galaxy1)☆ Favorite✓ Options						
Phyloseq object (format: RData)							
	¢		69: FROGSSTAT Phyloseq Import Data: asv_data.Rdata		• 🕞		

This is the result of FROGS Phyloseq Import Data tool.

The beta diversity distance matrix file					
۵	¢		76: FROGSSTAT Phyloseq Beta Diversity: beta_diversity.nb.html (cc.tsv)	•	Þ

This file is the result of FROGS Phyloseq Beta Diversity tool (--distance-matrix)

Experiment variable
EnvType

The experiment variable that you want to analyse (--varExp)

Explore the sample NORMALISED count

Choose the beta diversity distance matrix: Unifrac

Choose the variable to explain the variability between samples: EnvType

To simultaneously test several variables, you can use "+" symbol as "EnvType+FoodType" to test only additive effects or "*" symbol as "EnvType*FoodType" to test for additive effects and interactions between variables

Try it with a good beta distance matrix with EnvType and FoodType

1. Does EnvType have an influence on the beta diversity variance ?

2. What about FoodType ?

1. Does EnvType have an influence on the beta diversity variance ?

```
Call:<br/>adonis(formula = dist ~ EnvType, data = metadata, permutations = 9999)Permutation: free<br/>Number of permutations: 9999Terms added sequentially (first to last)Df SumsOfSqs MeanSqs F.ModelR2 Pr(>F)<br/>EnvTypeEnvType76.1849 0.88356EnvType76.1849 0.07914Matrix<br/>Residuals564.4320 0.07914Gibbord1.00000---<br/>Signif. codes:0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Exercise 9

1. Does EnvType have an influence on the beta diversity variance ?

Environment type explains roughly **58%** of the total variation, which is very high

With Unifrac distance	Call: adonis(formula = dist ~ EnvType, data = metadata, permutations = 9999)							
	Permutation: free Number of permutations: 9999							
	Terms added sequentially (first to last)							
	Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) EnvType 7 6.1849 0.88356 11.164 0.58255 1e-04 *** Residuals 56 4.4320 0.07914 0.41745 Total 63 10.6170 1.00000 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							

Exercise 9

2. What about FoodType ?

```
Call:

adonis(formula = dist ~ FoodType, data = metadata, permutations = 9999)

Permutation: free

Number of permutations: 9999

With Unifrac distance

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

FoodType 1 1.7858 1.78579 12.537 0.1682 1e-04 ***

Residuals 62 8.8312 0.14244 0.8318

Total 63 10.6170 1.0000

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Exercise 9

2. What about FoodType ?

Food type explains only **17 %** of the total variation

With Unifrac distance

adonis(formula = dist ~ FoodType, data = metadata, permutations = 9999)

Permutation: free Number of permutations: 9999

Call:

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) FoodType 1 1.7858 1.78579 12.537 0.1682 1e-04 *** Residuals 62 8.8312 0.14244 0.8318 Total 63 10.6170 1.0000 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Are there ASV with differential abundance between 2 conditions ? And which are they ?

To answer these questions, we perform a differential abundance analysis using DESeq2 on the phyloseq object

The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models

Are there ASV with differential abundance between 2 conditions ? And which are they ?

To answer these questions, we perform a differential abundance analysis using DESeq2 on the phyloseq object

The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models

Be aware to use data *without normalisation*

DESeq has is own normalisation method suited to this kind of data.

It uses the postcount function optimised for metagenomic count table

→ 1^{rst} step: launch *DESeq2 Preprocess* tool to create the **dds object** – the DESeq2 objet

FROGSSTAT DESeq2 Pro	process import a Phyloseq object and prepare it for
DESeq2 differential abune	lance analysis (Galaxy Version 4.1.0+galaxy1)

€ Favorite

& Versions Options

-

Ask for DESeq2 **ASV** data analysis

Type of data to perform the differential analysis. ASV: DESeq2 is run on the ASV abundance table. FUNCTION: DESeq2 is run on predicted function abundance table from FROGSFUNC_2_function tool.

Phylo	seq o	bject		
Ľ	¢		19: FROGSSTAT Phyloseq Import Data NOT NORMALISED: asv_data.Rdata	

Explore the sample **RAW** count

This is the result of FROGSSTAT_Phyloseq_Import_Data without normalisation (DESeq2 is more powerful on unnormalised counts) (format RData)

Experimental variable

Type of analysis

O FUNCTION

⊘ ASV

EnvType

The factor that could have an effect on ASV/FUNCTION abundances. Ex: Treatment, etc.

Do you want to correct a confounding factor?

False

If yes, specify the counfouding factor

Choose the factor on which the differential abundances will be compared

Specify a confounding factor if necessary (example : testing antibiotic treatment effect with 2 *different mice phenotypes, or testing drought effect* on soil microbiome with two soil compositions)

→ What are the output datasets ?

→ Rdata file: asv_dds.Rdata object with results of the DESeq analysis

→ 2nd step: launch *DESeq2 visualization* tool to explore the dds object

FROGSSTAT DESeq2 Visualisation to extract and visualise differentially abundant ASVs or functions (Galaxy Version 4.1.0+galaxy1)												
Type of analysis												
⊘ ASV O FUNCTION	Ask for DESeq2 ASV data analysis											
Type of data to perform the differential analysis. ASV: DESeq2 is run on the ASV abundance table. FUNCTION: DESeq2 is run on predicted function abundance table from FROGSFUNC_2_function tool.												
Data object (format: data.RData)												
Image:	Result of FROGSSTAT DESeq2 preprocess											
For ASV: asv_data.Rdata from FROGSSTAT_Phyloseq_Import_Data tool - For FUNCTION: function_data.Rdata from FROGSSTAT_DESeq2_Preprocess tool. (abundanceData)												
DESeq2 object (format: dds.RData)	Factor on which the differential											
Image: Constraint of the second se	abundances have been tested											
This is the result of FROGSSTAT_DESeq2_Preprocess tool asv_dds.Rdata or function_dds.Rdata (dds)												

Experimental variable	Factor on which the differential
ЕпѵТуре	abundances have been tested
The factor that could have an effect on ASV/FUNCTION abundances. Ex : Treatment (var)	
The experimental variable is it quantitative or qualitative?	
Qualitative	Specify qualitative or quantitative
If qualitative, choose 2 conditions to compare	
Condition 1 considered as reference	
BoeufHache	Dracica tha two conditions to compare
One condition of the experimental variable (e.g. with) (mod2)	Precise the two conditions to compare
Condition 2 to be compared to the reference	
VeauHache	
Another condition of the experimental variable (e.g. without) (mod1)	
Adjusted p-value threshold	Statistical significance throshold
0.05	Statistical significance threshold (default 0.05)
Threshold used for statistical significance of the differentially abundant ASV/FUNCTION analysis (padj)	

154

What are the output datasets ?

 \rightarrow HTML report: result table and several plots

Differentially abundant ASV/FUNCTION table

Pie chart V

Volcano plot N

MA plot Heatmap plot

Differentially abundant ASV/FUNCTION table

Pie chart Volcano plot

MA plot Heatmap plot

Code

You chose to compare VeauHache to the reference modality BoeufHache. This implies that a positive log2FoldChange means more abundant in VeauHache than in BoeufHache.

Code

Then we extract significant ASVs or FUNCTIONs at the p-value adjusted threshold (after Benjamini Hochberg correction) and enrich results with taxonomic/functional classification and sort the results by pvalue.

Dov	vnload						Search:]
	ID 👙	baseMean 🍦	log2FoldChange 🍦	lfcSE 🔶	stat 🔶	pvalue 🝦	padj 🔷	Kingdom 🍦	Differentially abundant ASV/FUNCTION table
		Α	All			All	All		-
1	Cluster_53	16.7845	-7.93954	1.21935	-6.51127	7.45192e-11	2.61563e-8	Bacteria	,
2	Cluster_43	10.4196	15.6431	2.48659	6.29099	3.15446e-10	5.53607e-8	Bacteria	Only significantly differentially abundant
3	Cluster_120	7.49645	5.21487	0.842194	6.19200	5.94040e-10	6.95027e-8	Bacteria	ASV are displayed (with an adjusted p-value < previously defined
4	Cluster_4	284.010	-4.46973	0.730032	-6.12265	9.20307e-10	8.07569e-8	Bacteria	threshold - set here to 0.05)
5	Cluster_85	5.25312	-14.8545	2.69005	-5.52204	3.35093e-8	0.00000235236	Bacteria	1
6	Cluster_174	2.99262	-17.3671	3.27384	-5.30481	1.12788e-7	0.00000659810	Bacteria	p-value are adjusted using the Benjamini-
7	Cluster_44	22.0406	-6.03398	1.14995	-5.24715	1.54472e-7	0.00000677746	Bacteria	, Hochberg method
8	Cluster_141	9.26135	5.96649	1.13629	5.25083	1.51415e-7	0.00000677746	Bacteria	-
9	Cluster_9	150.302	28.4432	5.83716	4.87279	0.00000110034	0.0000429134	Bacteria	
10	Cluster_135	7.45843	-4.76315	1.05240	-4.52600	0.00000601095	0.000210984	Bacteria	- -
Show	v 10 \sim entries	;							

	ID	\$	baseMean 🍦	log2FoldChange ≑	lfcSE 🔷	stat 🌲	pvalue 🔶	padj 🌲	Kingdom 🔶	
			Α	All			All	All		Differentially abundant ASV/FUNCTION table
1	Cluster_53	3	16.7845	-7.93954	< <u> 1.21935</u>	-6.51127	7.45192e-11	More ab	undant in	BoeufHache than VeauHache
2	Cluster_43	3	10.4196	15.6431	2.48659	6.29099	3.15446e-10	5.53607e-8	Bacteria	
3	Cluster_12	20	7.49645	5.21487	0.842194	6.19200	5.94040e-10	6.95027e-8	Bacteria	
4	Cluster_4		284.010	-4.46973	0.730032	-6.12265	9.2 0307e-10	More at	oundant ir	NVeauHache than BoeufHache
5	Cluster_85	5	5.25312	-14.8545	2.69005	-5.52204	3.35093e-8	0.00000235236	Bacteria	
6	Cluster_17	74	2.99262	-17.3671	3.27384	-5.30481	1.12788e-7	0.00000659810	Bacteria	
7	Cluster_44	4	22.0406	-6.03398	1.14995	-5.24715	1.54472e-7	0.00000677746	Bacteria	
8	Cluster_14	41	9.26135	5.96649	1.13629	5.25083	1.51415e-7	0.00000677746	Bacteria	
9	Cluster_9		150.302	28.4432	5.83716	4.87279	0.00000110034	0.0000429134	Bacteria	
10	Cluster_13	35	7.45843	-4.76315	1.05240	-4.52600	0.00000601095	0.000210984	Bacteria	

Why log2Foldchange?

Differentially abundant ASV/FUNCTION table

Foldchange:

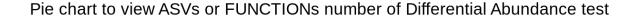
It's the ratio of the normalized counts between VeauHache and BoeufHache

log2 is used for interpret and scale reasons:

- Positive values denote an increase, and negative a decrease of abundance
- log2FC = 1 means a doubling
- log2FC = 2 means a quadrupling
- log2FC = -1 means a halving
- log2FC = -2 means a quartering

...

	ID	÷	baseMean 🔶	log2FoldChange 🍦	lfcSE 🔶	stat 🔶	pvalue 🔶	padj 🔶	Kingdom 🔶	
			A	All			All	All		Differentially abundant ASV/FUNCTION table
1	Cluster_5	3	16.7845	-7.93954	1.21935	-6.51127	7.45192e-11	2.61563e-8	Bacteria	
2	Cluster_4	3	10.4196	15.6431	2.48659	6.29099	3.15446e-10	5.53607e-8	Bacteria	You can sort by numeric columns
3	Cluster_1	20	7.49645	5.21487	0.842194	6.19200	5.94040e-10	6.95027e-8	Bacteria	and filter on taxonomy
4	Cluster_4		284.010	-4.46973	0.730032	-6.12265	9.20307e-10	8.07569e-8	Bacteria	
5	Cluster_8	5	5.25312	-14.8545	2.69005	-5.52204	3.35093e-8	0.00000235236	Bacteria	
6	Cluster_1	74	2.99262	-17.3671	3.27384	-5.30481	1.12788e-7	0.00000659810	Bacteria	
7	Cluster_4	4	22.0406	-6.03398	1.14995	-5.24715	1.54472e-7	0.00000677746	Bacteria	
8	Cluster_1	41	9.26135	5.96649	1.13629	5.25083	1.51415e-7	0.00000677746	Bacteria	
9	Cluster_9		150.302	28.4432	5.83716	4.87279	0.00000110034	0.0000429134	Bacteria	
10	Cluster_1	35	7.45843	-4.76315	1.05240	-4.52600	0.00000601095	0.000210984	Bacteria	

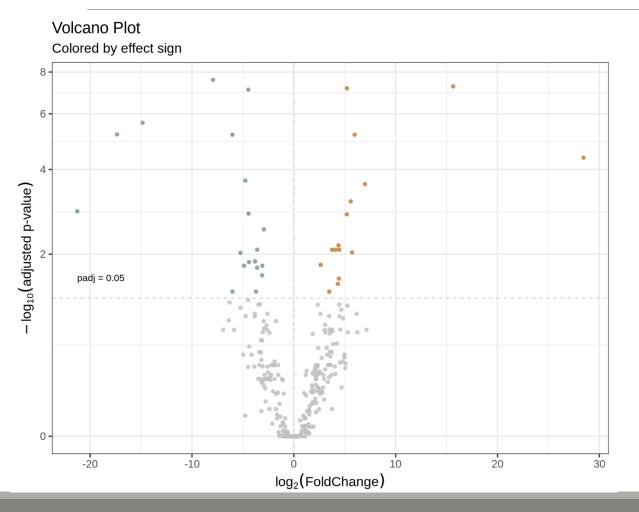

→ Which species have the highest positive log2Foldchange ?

	ID 🔶	baseMean 🔷	log2FoldChange 🔷	lfcSE 🔶	stat 🔶	pvalue 🔷	padj 🌲	Kingdom 🔷
		Α	All			All	All	
1	Cluster_53	16.7845	-7.93954	1.21935	-6.51127	7.45192e-11	2.61563e-8	Bacteria
2	Cluster_43	10.4196	15.6431	2.48659	6.29099	3.15446e-10	5.53607e-8	Bacteria
3	Cluster_120	7.49645	5.21487	0.842194	6.19200	5.94040e-10	6.95027e-8	Bacteria
4	Cluster_4	284.010	-4.46973	0.730032	-6.12265	9.20307e-10	8.07569e-8	Bacteria
5	Cluster_85	5.25312	-14.8545	2.69005	-5.52204	3.35093e-8	0.00000235236	Bacteria
6	Cluster_174	2.99262	-17.3671	3.27384	-5.30481	1.12788e-7	0.00000659810	Bacteria
7	Cluster_44	22.0406	-6.03398	1.14995	-5.24715	1.54472e-7	0.00000677746	Bacteria
8	Cluster_141	9.26135	5.96649	1.13629	5.25083	1.51415e-7	0.00000677746	Bacteria

Differentially abundant ASV/FUNCTION table

→ Which species have the highest positive log2Foldchange (more present in VeauHache than BoeufHache)?

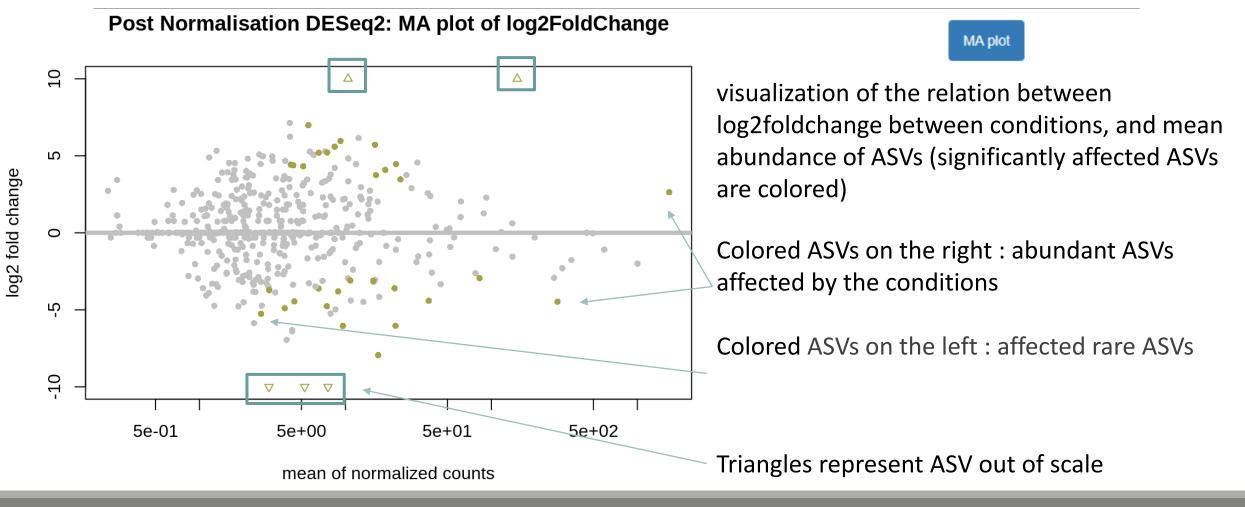
	ID 🔶	baseMean 🔶	log2FoldChange 🗸				
		Α	All	It's the Cluste	r_9 which is a N	/eissella ceti	
9	Cluster_9	150.302	28.4432				
			Phylum 🍦	Class 🔶 Order	Family	Genus	Species
			All	All	All	All	All
			Firmicutes Bacilli	Lactobacillal	es Lactobacillaceae	Weissella	Weissella ceti

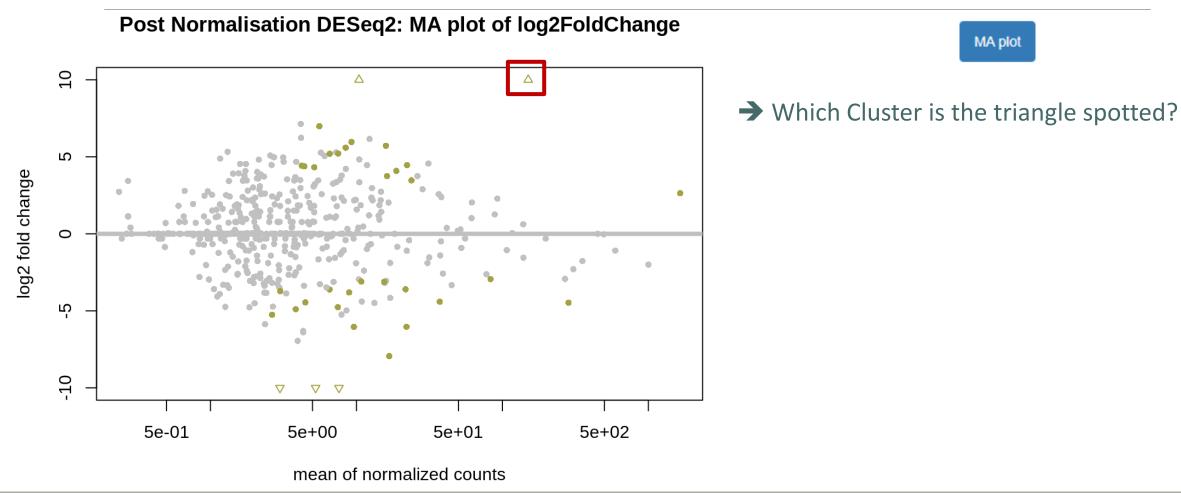


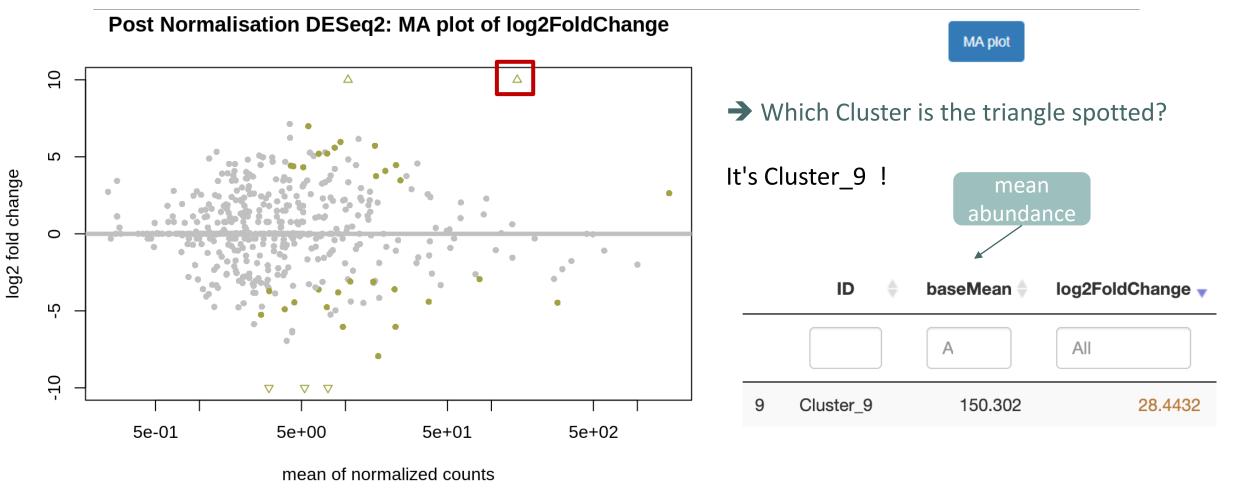
Pie chart

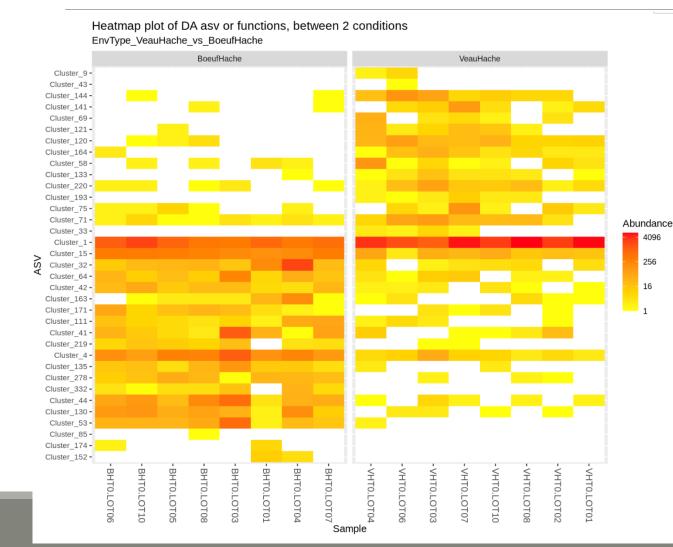
Differentially Abundant (log-fold change < 0) Differentially Abundant (log-fold change > 0) Not Differentially Abundant

Most of the ASVs are not significantly affected between the conditions (DESeq2 hypothesis !!)


35 ASVs are significantly affected between conditions




Volcano plot


visualization of ASVs log2FoldChange and their associated adjusted p-values

Only ASVs with a significant adjusted p-value are colored

Heatmap plot

visualization of the DESeq2 normalised abundances of differentially abundant ASVs grouped by condition

Here, we observe only the significant 35 ASV that are differential abundant

ASVs are ordered from top to bottom in log2 flold change descending order

Compare FiletSaumon vs SaumonFume

Experimental variable

EnvType

The factor that could have an effect on ASV/FUNCTION abundances. Ex : Treatment (var)

The experimental variable is it quantitative or qualitative?

Qualitative

If qualitative, choose 2 conditions to compare

 Condition 1 considered as reference

 FiletSaumon

 One condition of the experimental variable (e.g. with) (--mod2)

 Condition 2 to be compared to the reference

 SaumonFume

 \mathbf{T}

Another condition of the experimental variable (e.g. without) (--mod1)

Differentially abundant ASV/FUNCTION table

Pie chart

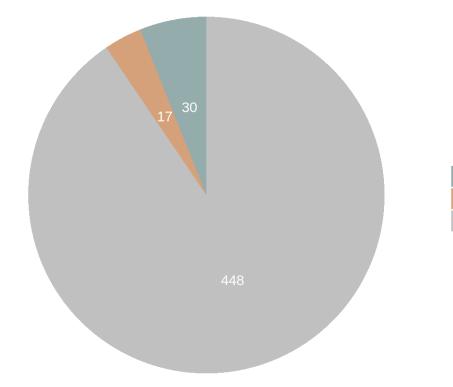
Volcano plot MA plot

Heatmap plot

Since we only have a binary factor we can use the following syntax to format the log2 fold change from the litted model if not, we will use the other syntax with contrast=c()

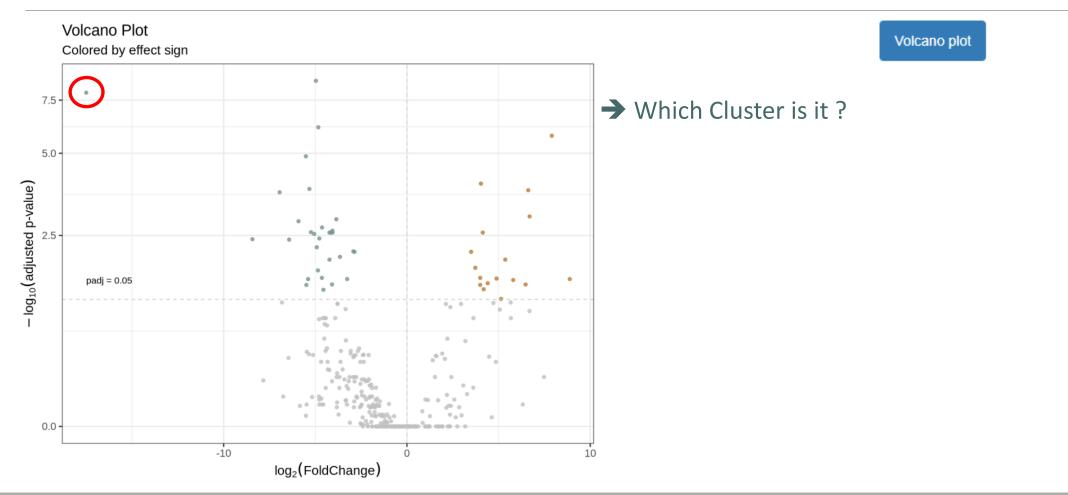
You chose to compare SaumonFume to the reference modality FiletSaumon. This implies that a positive log2FoldChange means more abundant in SaumonFume than in FiletSaumon.

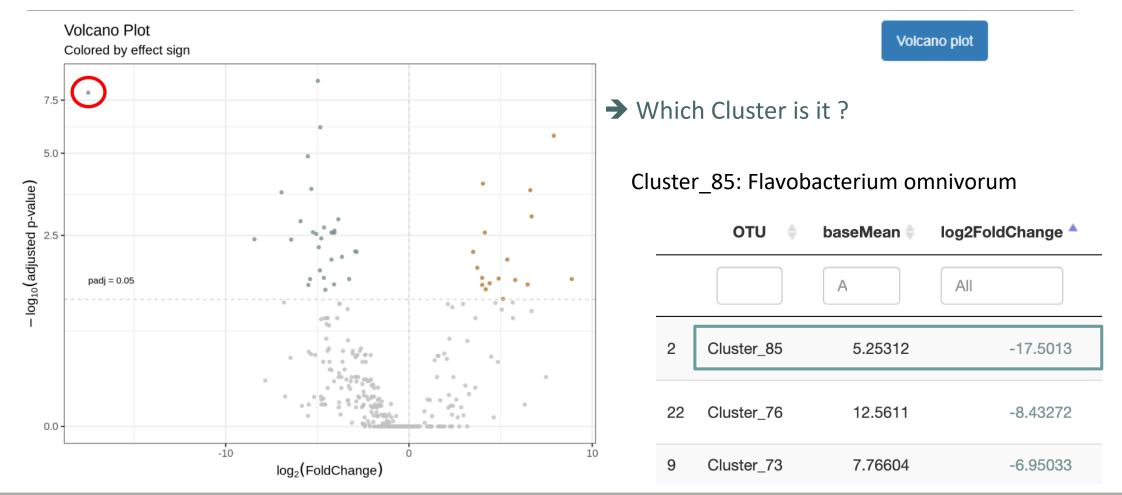
Then we extract significant OTUs at the p-value adjusted threshold level (after correction) and enrich results with taxonomic informations and sort taxa by pvalue.

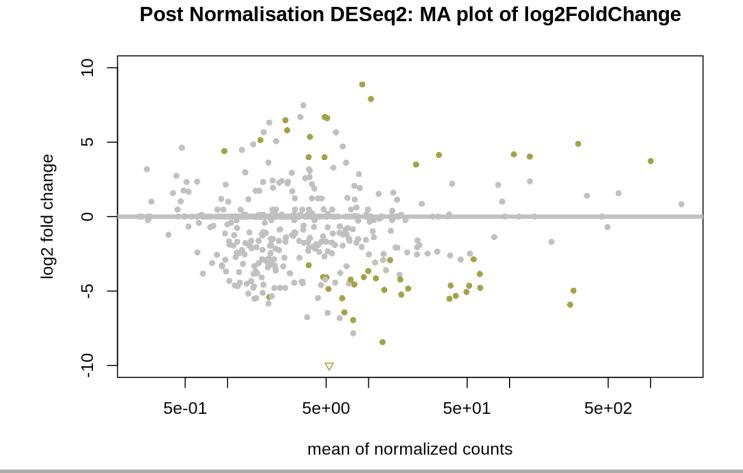

Code

	ID 🔶	baseMean 🔷	log2FoldChange 🔷	lfcSE 🔷	stat 🔶	pvalue 🔷	padj 🌲	Kingdom
		Α	All			All	All	
1	Cluster_4	284.010	-4.97034	0.718373	-6.91888	4.55218e-12	2.25333e-9	Bacteria
2	Cluster_85	5.25312	-17.5013	2.66091	-6.57717	4.79475e-11	1.18670e-8	Bacteria
3	Cluster_55	19.0634	-4.83859	0.825830	-5.85906	4.65500e-9	7.68076e-7	Bacteria
4	Cluster_123	10.3886	7.90236	1.39576	5.66171	1.49873e-8	0.00000185468	Bacteria
5	Cluster_31	37.4358	-5.51672	1.04587	-5.27478	1.32918e-7	0.0000131588	Bacteria
6	Cluster_13	139.041	4.03643	0.838190	4.81565	0.00000146724	0.000121047	Bacteria
7	Cluster_27	41.5512	-5.32505	1.13155	-4.70599	0.00000252641	0.000178653	Bacteria

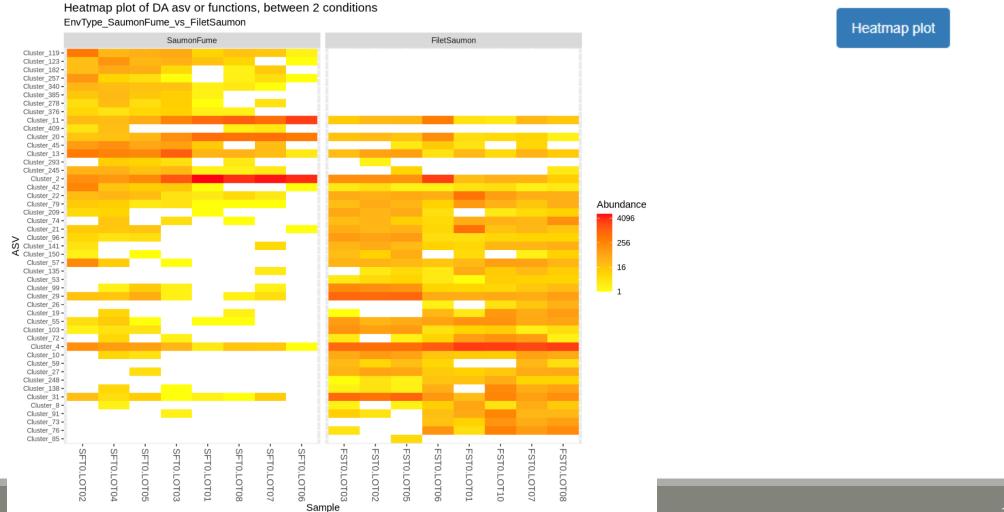
Differentially abundant ASV/FUNCTION table

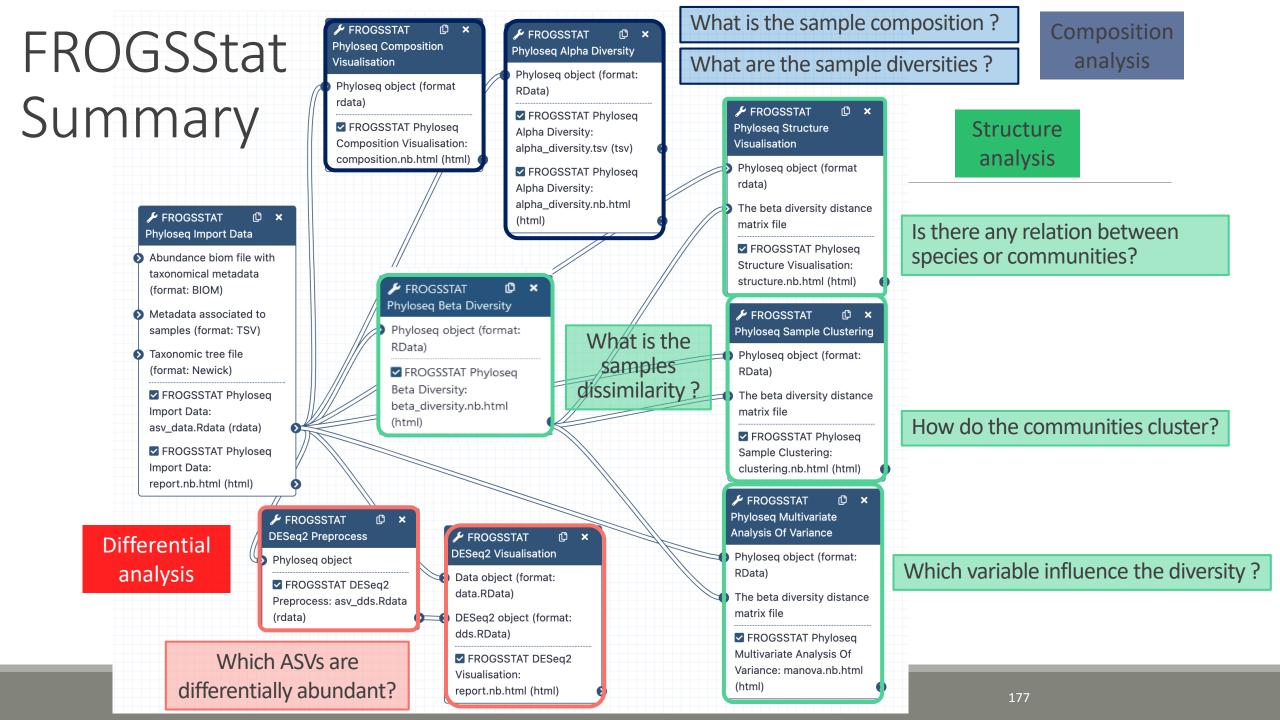

Pie chart to view OTUs number of Differential Abundance test

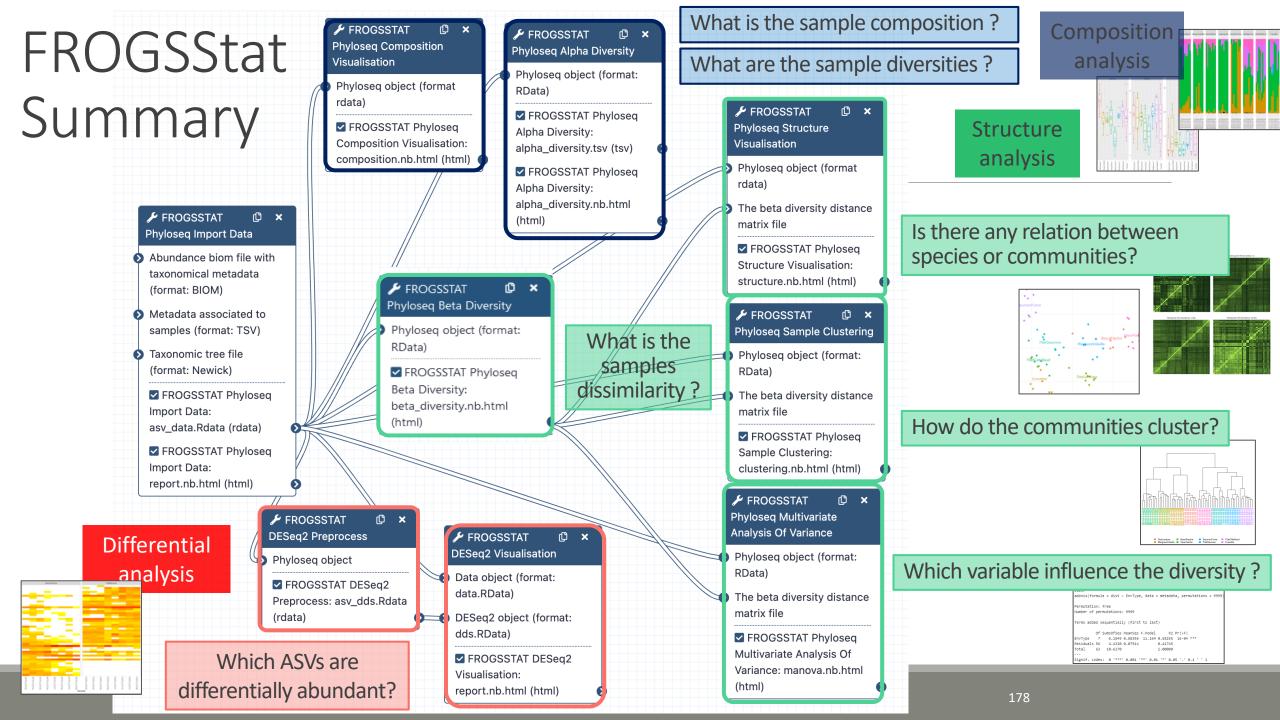

Pie chart



Most of the ASV are not significantly affected between your conditions Only 47 ASVs are significantly affected between conditions


Differentially Abundant (log-fold change < 0) Differentially Abundant (log-fold change > 0) Not Differentially Abundant





MA plot

Conclusion and advices reminder

FROGSTAT advices

- Before starting, check taxonomy format : how many levels? What are their names ?
- Carefully construct your sample_metadata TSV file, and after its import, check that your variable order is smart
- Keep in mind that :
 - Phyloseq composition and structure analyses need to be perform on normalised (=rarefied) counts
 - DESeq analysis needs to be performed on counts without normalisation
 - Different indices or distance methods will give different but complementary information
 - Test different distances and choose which one fits better your data

References

 Chaillou, S., Chaulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Desmonts, M. H., Dousset, X., Feurer, C., Hamon, E., Joraud, J.-J., La Carbona, S., Leroi, F., Leroy, S., Lorre, S., Mace, S., Pilet, M.-F., Prevost, H., Rivollier, M., Roux, D., Talon, R., Zagorec, M., and Champomier-Verges, M.-C. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J, 9(5):1105{1118.

McMurdie, P. J. and Holmes, S. (2013). phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4):e61217.

Shade, A., Jones, S. E., Caporaso, J. G., Handelsman, J., Knight, R., Fierer, N., and Gilbert, J. A. (2014). Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio, 5(4):e01371{e01314.