

Training on Galaxy: Metagenomics October 2016

Find Rapidly OTU with Galaxy Solution

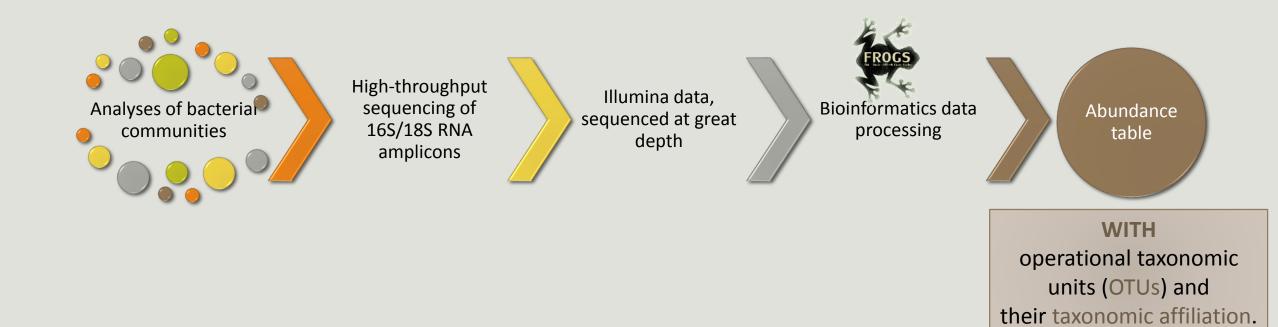
FRÉDÉRIC Escudié* and LUCAS Auer*, MARIA Bernard, LAURENT CAUQUIL, KATIA VIDAL, SARAH MAMAN, MAHENDRA MARIADASSOU, SYLVIE COMBES, GUILLERMINA HERNANDEZ-RAQUET, GÉRALDINE PASCAL

*THESE AUTHORS HAVE CONTRIBUTED EQUALLY TO THE PRESENT WORK.

Feedback:

What are your needs in "metagenomics"?

Your background ?



- Objectives
- Material: data + FROGS
- Data upload into galaxy environment
- Demultiplex tool
- Preprocessing
- Clustering + Cluster Statistics
- Chimera removal

- Filtering
- Affiliation + Affiliation Statistics
- Normalization
- Tool descriptions
- Format transformation
- Workflow creation
- Download data
- Some figures

Objectives

OTUs for ecology

Operational Taxonomy Unit:

a grouping of similar sequences that can be treated as a single « species »

Strengths:

- Conceptually simple
- Mask effect of poor quality data
 - Sequencing error
 - In vitro recombination (chimera)

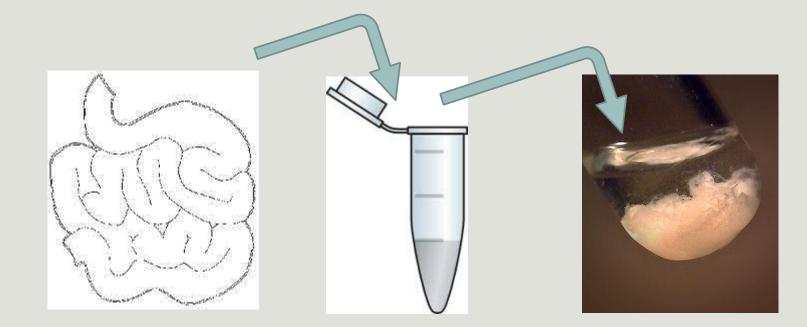
Weaknesses:

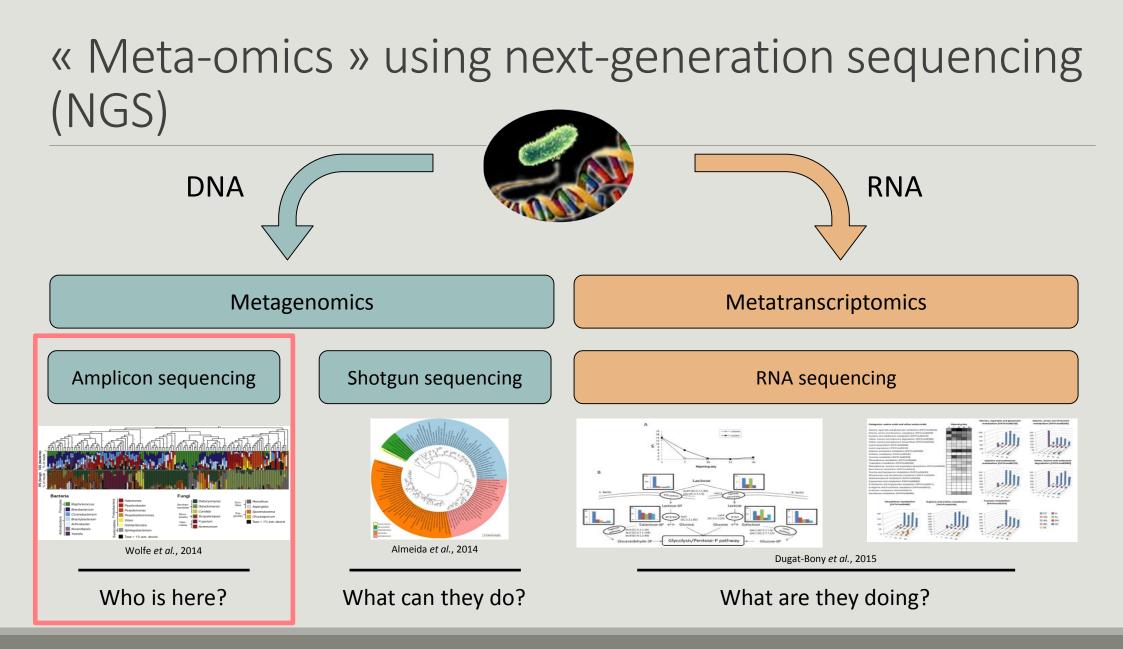
- Limited resolution
- Logically inconsistent definition

Objectives

	Affiliation	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
OTU1	Species A	0	100	0	45	75	18645
OTU2	Species B	741	0	456	4421	1255	23
OTU3	Species C	12786	45	3	0	0	0
OTU4	Species D	127	4534	80	456	756	108
OTU5	Species E	8766	7578	56	0	0	200

Why we have developed FROGS


The current processing pipelines struggle to run in a reasonable time.

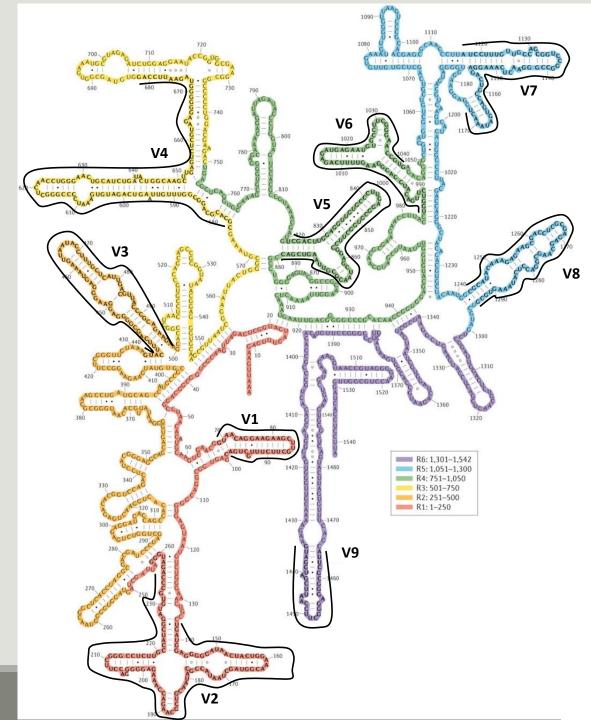

The most effective solutions are often designed for specialists making access difficult for the whole community.

In this context we developed the pipeline FROGS: « Find Rapidly OTU with Galaxy Solution ».

Material

Sample collection and DNA extraction

The gene encoding the small subunit of the ribosomal RNA


The most widely used gene in **molecular phylogenetic** studies

Ubiquist gene : 16S rDNA in prokayotes ; 18S rDNA in eukaryotes

Gene encoding a ribosomal RNA : non-coding RNA (not translated), part of the small subunit of the ribosome which is responsible for the translation of mRNA in proteins

Not submitted to lateral gene transfer

Availability of databases facilitating comparison (Silva 2015: >22000 type strains)

Secondary structure of the 16S rRNA of

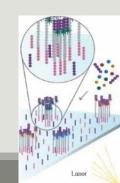
Escherichia coli

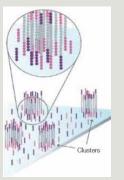
In red, fragment R1 including regions V1 and V2; in orange, fragment R2 including region V3; in yellow, fragment R3 including region V4; in green, fragment R4 including regions V5 and V6; in blue, fragment R5 including regions V7 and

V8;

and in purple, fragment R6 including region V9.

Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences Pablo Yarza, et al. Nature Reviews Microbiology 12, 635–645 (2014) doi:10.1038/nrmicro3330


The gene encoding the small subunit of the ribosomal RNA

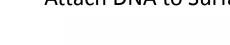

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 bp

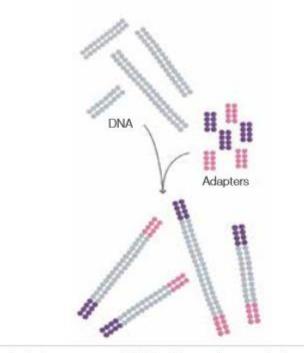
Steps for Illumina sequencing

- 1st step : one PCR
 2nd step: one PCR
 2nd step: one PCR
- 3rd step: on flow cell, the cluster generations
- 4th step: sequencing

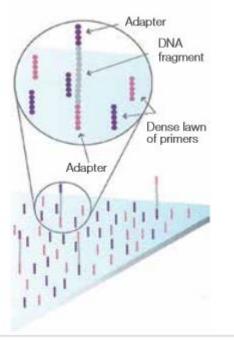
Amplification and sequencing

« Universal » primer sets are used for PCR amplification of the phylogenetic biomarker

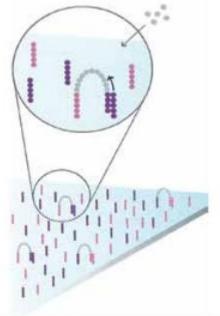

The primers contain adapters used for the sequencing step and barcodes (= tags = MIDs) to distinguish the samples (multiplexing = sequencing several samples on the same run)



Cluster generation


Prepare Genomic DNA Sample

Attach DNA to Surface



Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

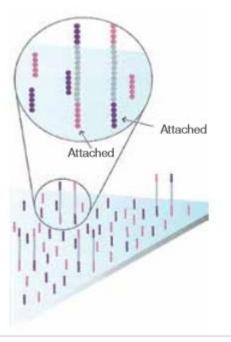
Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

Attach DNA to surface

Bridge Amplification

Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.

Bridge amplification


Cluster generation

Fragments Become Double Stranded Denature the Double-Stranded Molecules

Attached Attached Free terminus

The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase substrate.


Fragments become double stranded

Denaturation leaves single-stranded templates anchored to the substrate.

Denature the double-stranded molecule

Complete Amplification

Several million dense clusters of double-stranded DNA are generated in each channel of the flow cell.

Cycle of new strand synthesis and denaturation to make multiple copies of the same sequence (amplification) Reverse strands are washed

Sequencing by synthesis

Determine First Base

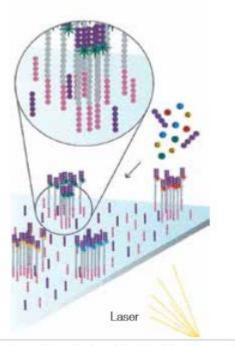
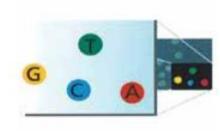
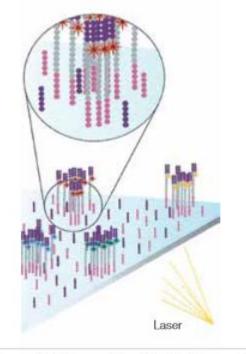
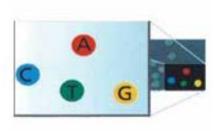
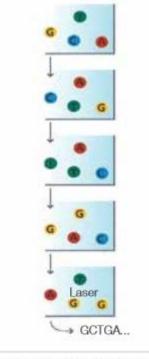




Image First Base

Determine Second Base


The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

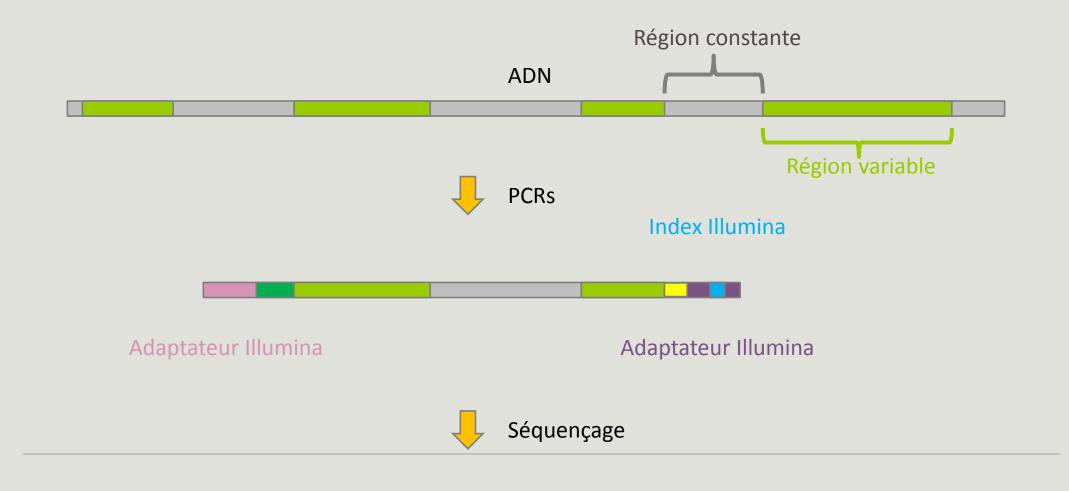
Light signal is more strong in cluster


After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified. The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

Sequencing by synthesis

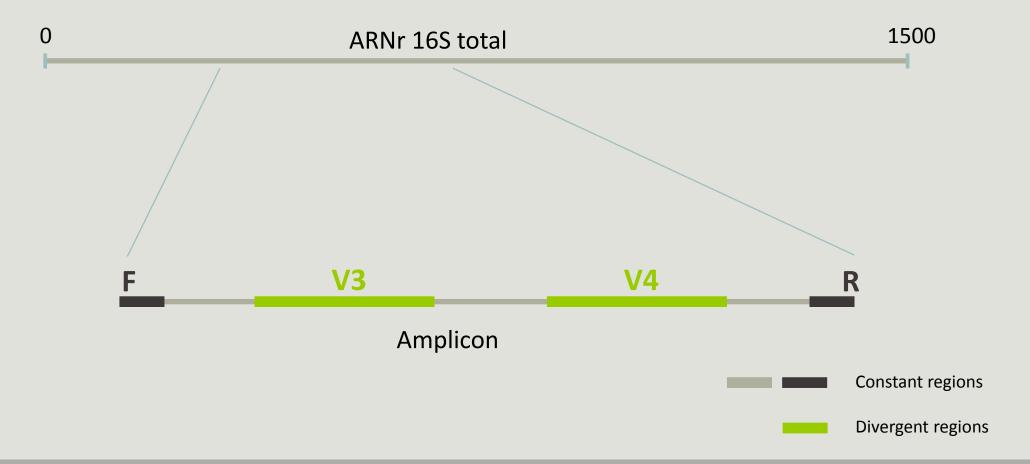
Image Second Chemistry Cycle

Sequencing Over Multiple Chemistry Cycles




After laser excitation, the image is captured as before, and the identity of the second base is recorded.

The sequencing cycles are repeated to determine the sequence of bases in a fragment, one base at a time.


Barcode is read, so cluster is identified.

After first sequencing (250 or 300 nt of Reverse strand), fragment form bridges again and Forward strand can be sequenced also.

Identification of bacterial populations may be not discriminating

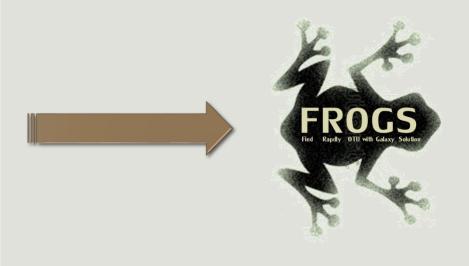
Amplification and sequencing

Sequencing is generally perform on Roche-454 or Illumina MiSeq platforms.

Roche-454 generally produce ~ 10 000 reads per sample

MiSeq ~ 30 000 reads per sample

Sequence length is **>650 bp** for pyrosequencing technology (Roche-454) and **2 x 300 bp** for the MiSeq technology in paired-end mode.



Methods

Which bioinformatics solutions ?

	Disadvantages
QIIME	Installation problem Command lines
UPARSE	Global clustering command lines
MOTHUR	Not MiSeq data without normalization Global hierarchical clustering Command lines
MG-RAST	No modularity No transparence

QIIME allows analysis of high-throughput community sequencing data J Gregory Caporaso et al, Nature Methods, 2010; doi:10.1038/nmeth.f.303 Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Schloss, P.D., et al., Appl Environ Microbiol, 2009, doi: 10.1128/AEM.01541-09 UPARSE: Highly accurate OTU sequences from microbial amplicon reads Edgar, R.C. et al, *Nature Methods*, 2013, dx.doi.org/10.1038/nmeth.2604 The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes F Meyer et al, BMC Bioinformatics, 2008, doi:10.1186/1471-2105-9-386

FROGS ?

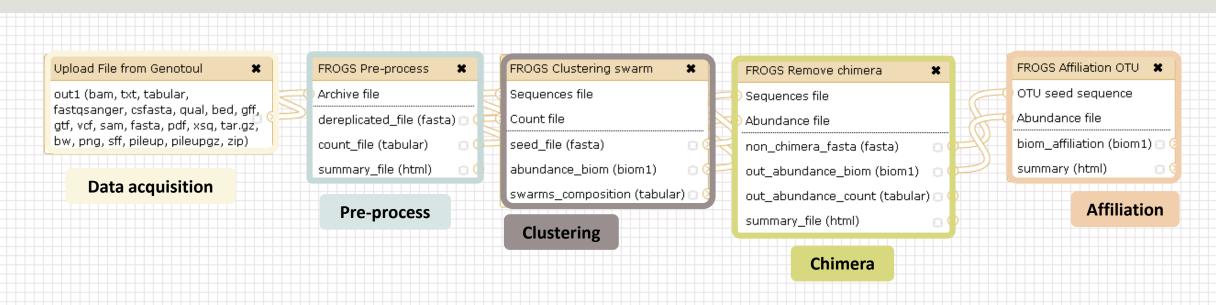
Use platform Galaxy

Set of modules = Tools to analyze your "big" data

Independent modules

Run on Illumina/454 data 16S, 18S, and 23S

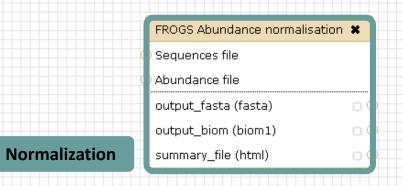
New clustering method


Many graphics for interpretation

User friendly, hiding bioinformatics infrastructure/complexity

💳 Galaxy Sigenae -	Welcome gpascal Analyze Data Workflow Shared Data + Visualization + Help + User +	Using 16.9 GB
Tools	FROGS Pre-process Illumina (version 1.0.0)	🔶 History 🛛 🕹 🗘
FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION FROGS pipeline	↑ Input type: Files by samples ▼	Unnamed history 5.0 GB
Upload archive from your computer	Samples files can be provided in single archive or with two files (R1 and R2) by sample. Reads already contiged ?: No -	③19: FROGS Filters: ● ℓ X abundance table.biom
Demultiplex reads Split by samples the reads in function of inner barcode.	The inputs contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair. Samples	<u>③18: FROGS Filters:</u> ● Ø ¤ summary.html
FROGS Pre-process Illumina Step 1 in metagenomics analysis from Illumina	Samples 1 Name:	③17: FROGS Filters: ● Ø ⋈ seed.fasta
(165/185) : denoising and dereplication.	The sample name.	③16: FROGS Filters: ● Ø ⋈ summary.txt
FROGS Clustering swarm Step 2 in metagenomics analysis : clustering.	Reads 1:	③15: FROGS Filters: ● Ø ⋈ abundance table.tsv
FROGS Remove chimera Remove PCR chimera in each sample.	REPACTQUE de pared-end reads. reads 2:	14: FROGS Clusters ● ℓ × stat: summary.html
FROGS Affiliation otu 165 Step 3 in metagenomics	R2 FASTQ file of paired-end reads.	13: FROGS Clusters ● ℓ 🛛 stat: summary.html
analysis : Taxonomic affiliation of each OTU's seed by RDPtools and BLAST	Add new Samples Reads 1 size:	★ 12: FROGS Affiliation ● Ø X otu 16S: excluded data report.html
FROGS abundance normalisation Step 4 in metagenomics analysis	The read1 size.	<u>↓ 11: FROGS Affiliation</u> ● ℓ × otu 16S: tax_affiliation.biom
(optional) : Abundance normalisation	Reads 2 size:	<u>10: FROGS Remove</u> ● Ø ⊠ <u>chimera:</u>
FROGS Filters Step in metagenomics analysis from Illumina (16S/18S) : Filters on Chusters (OT In	Expected amplicon size:	excluded data report.html 9: FROGS Remove
on Clusters/OTUs. <u>FROGS Clusters stat</u> Process some metrics on clusters.	The expected size for the majority of the amplicons (with primers). Minimum amplicon size:	chimera: non chimera abundance.biom
FROGS BIOM to TSV Converts a BIOM file in TSV file.	The minimum size for the amplicons (with primers).	8: FROGS Remove
	Maximum amplicon size:	7: FROGS Clustering

FROGS Pipeline



Upload File from Genotoul FROGS Clustering swarm FROGS Affiliation OTU × FROGS Pre-process × FROGS Remove chimera × × OTU seed sequence out1 (bam, txt, tabular, Archive file Sequences file Sequences file fastqsanger, csfasta, qual, bed, gff, Abundance file Count file dereplicated_file (fasta) 🖂 🤇 Abundance file gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip) biom_affiliation (biom1) 🖂 🤇 count_file (tabular) seed_file (fasta) non_chimera_fasta (fasta) summary (html) summary_file (html) abundance_biom (biom1) 00 out_abundance_biom (biom1) 🛛 🔅 **Data acquisition** swarms_composition (tabular) 🗅 🤇 out_abundance_count (tabular) 💿 **Pre-process** summary_file (html) Clustering Chimera

Affiliation

Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

×

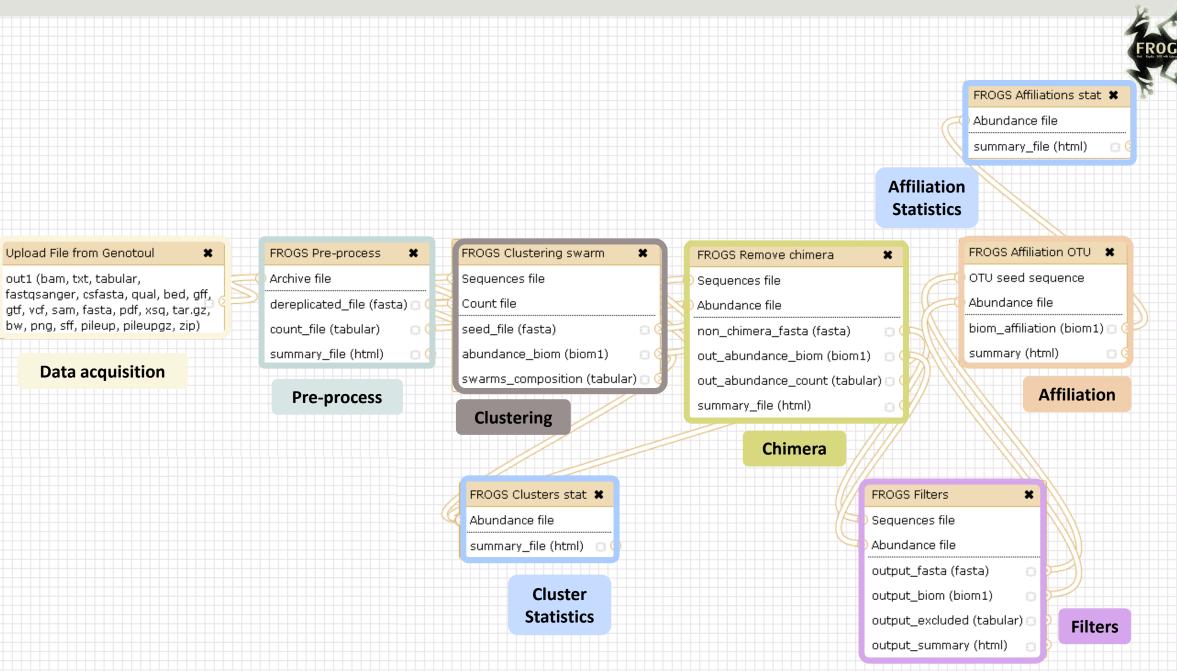
Data acquisition

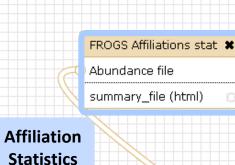
FROGS Pre-process X	FROG
Archive file 🚽	Sequ
dereplicated_file (fasta) 🛛 🤇 📑	Coun
count_file (tabular) 🛛 🛛 🕻 🚔	seed
summary_file (html) 🛛 😋 🗘 🞞	abun
	swari
Pre-process	Clu

FROGS Clustering swarm	×
Sequences file	
Count file	
seed_file (fasta)	8
abundance_biom (biom1)	00
swarms_composition (tabular)	00
Clustering	
	Sequences file Count file seed_file (fasta)

FROGS Remove chimera	×	
Sequences file		
Abundance file		
non_chimera_fasta (fasta)	00	
out_abundance_biom (biom1)	00	
out_abundance_count (tabular)	00	
summary_file (html)	00	

FROGS Affiliation OTU	×
OTU seed seauence	


Abundance file


biom_affiliation (biom1) 🗇

summary (html)

Affiliation

Chimera

Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

×

Data acquisition

FROGS BIOM to TSV × Abundance file Sequences file tsv_file (tabular) 00 -multi_affi_file (tabular) 🖸 🕻

Convert to TSV

FROGS Pre-process ×

> Archive file dereplicated_file (fasta) 🖂 🤇 count_file (tabular)

> > **Pre-process**

FROGS BIOM to std BIOM *

output_metadata (tabular) 🗇

Convert to

standard Biom

Abundance file

output_biom (biom1)

summary_file (html)

Clustering FROGS Clusters stat 🗶

Abundance file |summary_file (html) 🛛 🖸 🤇

FROGS Clustering swarm

abundance_biom (biom1)

swarms_composition (tabular) |

Sequences file

seed_file (fasta)

Count file

×

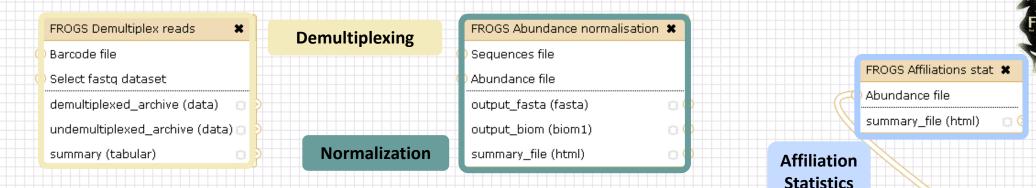
00

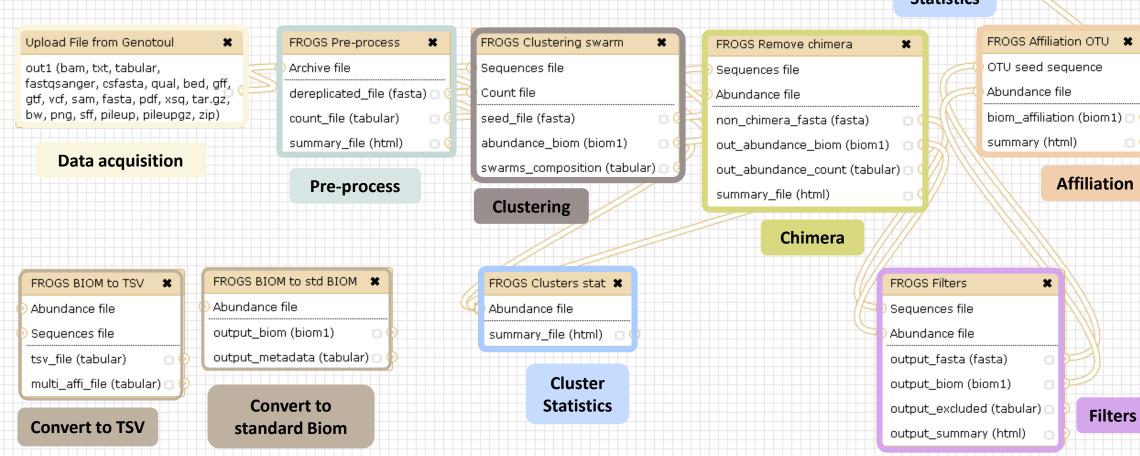
Cluster **Statistics**

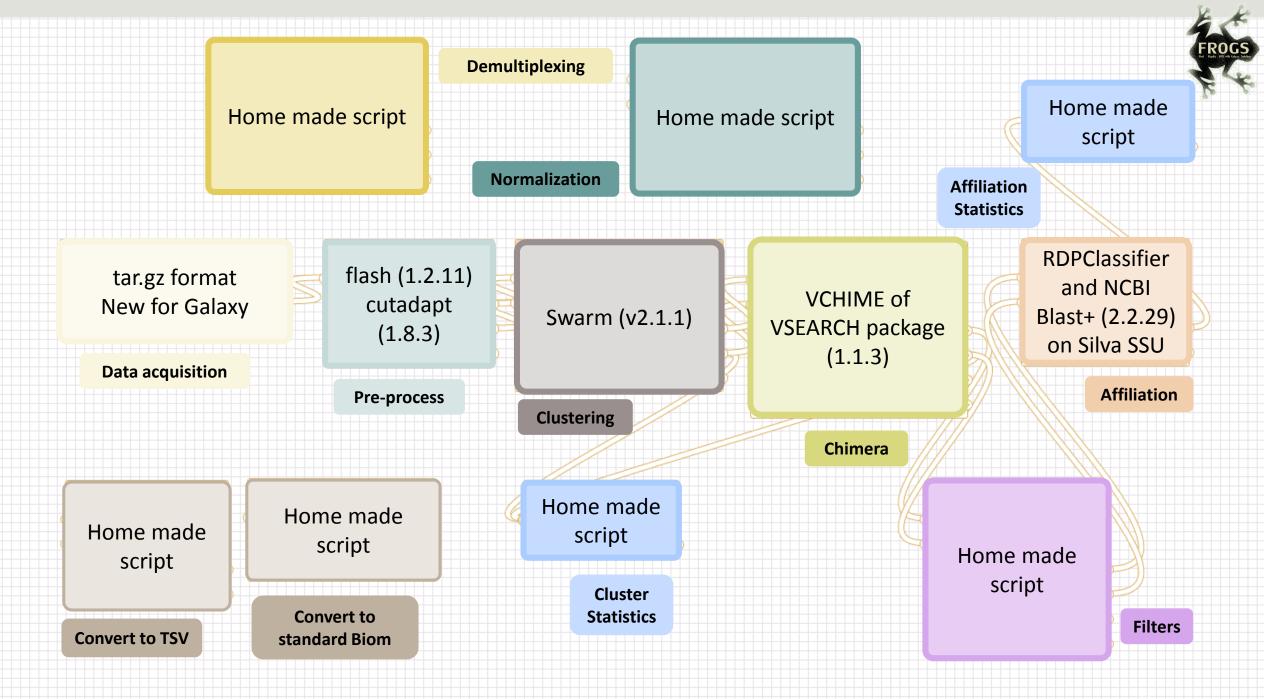
FROGS Remove chimera Sequences file Abundance file non_chimera_fasta (fasta)

×

out_abundance_biom (biom1) out_abundance_count (tabular) 🗇 🤇 summary_file (html)


Chimera


FROGS Filters Sequences file Abundance file output_fasta (fasta) output_biom (biom1) output_excluded (tabular) 🖸 output_summary (html)

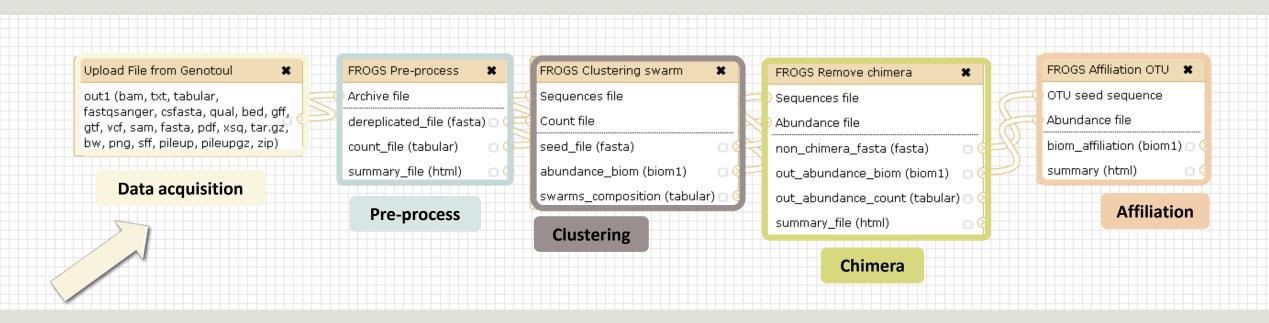

FROGS Affiliation OTU OTU seed sequence Abundance file biom_affiliation (biom1) 🖂 summary (html) Affiliation

×

Filters

Together go to visit FROGS

In your internet browser (Firefox, chrome, Internet explorer) :


New version : <u>http://147.99.108.167/galaxy/</u> Enter your login and Old version : <u>http://sigenae-workbench.toulouse.inra.fr/</u> password from GenoToul Analyze Data Workflow Shared Data 🕶 Help 🔻 User Logged in as gpascal@toulouse.inra.fr History Logout WELCOME TO GALAXY WORKBENC Unnamed history Saved Histories 0 bytes geno toul Σ Saved Datasets Your history is en Saved Pages Data' on the left API Keys Public Name sts from Sigenae Platform. Galaxy objectives are: biogists. ure.

Sigenae - Welcome gpascal Analyze Data Workflow SMAINIMENU alization - Help - User -Using 26.6 GB 2 0 History Tools Unnamed history WELCOME TO GALAXY WORKBENCH Θ search tools 0 bytes Seno D toul D YOUR DATA 1 Your history is empty. Click 'Get Upload Data **AVAILABLE** Data' on the left pane to start Download Data TOOLS FILES MANIPULATION Galaxy is a workbench available for biologists from Sigenae Platform. Galaxy objectives are: Text Manipulation (e-learning) DATASETS HISTORY Make bioinfo Linux tools accessible to biogists. Filter and Sort Hide the complexity of the infrastructure. Join, Subtract and Group Allow creation, execution and sharing of workflows. **Convert Formats TOOL CONFIGURATION** Warnings : BED Tools Graph/Display Data AND EXECUTION SEQUENCES MANIPULATION When you access or reload to your Galaxy webpage, please find all your histories saved in the following menu : "User" / "Saved histories". **FASTA** manipulation **FASTO** manipulation Your data are stored in work/ directory. Consequently, BioInfo Genotoul platform reserves the right to (e-learning) purge all files not accessed since 120 days on work/ disk space. SAM/BAM manipulation : Picard (beta) Sigenae support : sigenae-support@listes.inra.fr SAM/BAM manipulation: If you have some question about Galaxy, please consult your FAQ SAMtools (e-learning) How to cite Galaxy workbench ? Fetch Sequences Sequences Queries Depending on the help provided you can cite us in acknowledgements, references or both. VCF Tools Examples : SGS MAPPING Research teams can thank the Toulouse Midi-Pyrenees bioinformatics platform and Sigenae group, using BWA - Bowtie (e-learning) in their publications the following sentence : "We are grateful to the genotoul bioinformatics platform BLAT Toulouse Midi-Pyrenees and Sigenae group for providing help and/or computing and/or storage ressources thanks to Galaxy instance http://sigenae-workbench.toulouse.inra.fr".

	💳 Sigenae - Welcom	ne mbernard Analyze Data Workflow Shared Data- Visualization- Admin Help- User-		Using 5%	1
	Tools	FROGS Pre-process (version 1.4.2)	History	00	
	FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION	Sequencer:	FROGS analysis		
	FROGS pipeline	Illumina Select the sequencer family used to produce the sequences.	444.7 MB	47 🖻	
Data acquisition	FROGS Upload archive from your computer	Input type:	<u>Affiliations stat: su</u>	● Ø X mmary.html	
Demultiplexing	FROGS Demultiplex reads Split by samples the reads in function of inner barcode.	Files by samples 🔽 Samples files can be provided in single archive or with two files (R1 and R2) by sample.	Std BIOM: blast_m		
Pre-process	FROGS Pre-process Step 1 in metagenomics analysis:	Reads already contiged ?: No Image: Contain 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.	©23: FROGS BIOM std BIOM: abundan		
	denoising and dereplication. FROGS Clustering swarm Step	Samples	22: FROGS BIOM TSV: multi_hits.tsv		Waiting to run
Clustering	2 in metagenomics analysis : clustering,	Samples 1 Name:	©21: FROGS BIOM TSV: abundance.ts		
Chimera	FROGS Remove chimera Step 3 in metagenomics analysis : Remove PCR chimera in each	The sample name. Reads 1:	<u>20: FROGS</u> Affiliations stat: su	@ Ø X mmary.html	
Filters	sample. <u>FROGS Filters</u> Filters OTUs on several criteria.	R1 FASTQ file of paired-end reads.	19: FROGS Cluster stat: summary.htm		
Affiliation	<u>FROGS Affiliation OTU</u> Step 4 in metagenomics analysis : Taxonomic affiliation of each OTU's seed by RDPtools and	reads 2:	32 18: FROGS Affilia OTU: report.html		Currently
	BLAST	Add new Samples	OTU: affiliation.bio		running
Biom to TSV	FROGS BIOM to TSV Converts a BIOM file in TSV file.	Reads 1 size:	16: FROGS Clusters stat: summary.htm		
Cluster Stat	FROGS Clusters stat Process some metrics on clusters.	The read1 size. Reads 2 size:	<u>15: FROGS Filters:</u> <u>report.html</u>	• / %	
Affiliation Stat	FROGS Affiliations stat Process some metrics on taxonomies.	The read2 size.	<u>14: FROGS Filters:</u> <u>excluded.tsv</u>	• / ¤	Result files
Biom to std Biom	FROGS BIOM to std BIOM Converts a FROGS BIOM in	Expected amplicon size:	13: FROGS Filters: abundance.biom	• / %	Result mes
Normalization	fully compatible BIOM. <u>FROGS Abundance</u> <u>normalisation</u>	Maximum amplicon length expected in approximately 90% of the amplicons. Minimum amplicon size:	<u>12: FROGS Filters:</u> sequences.fasta	• / ×	
		The minimum size for the amplicons.		>	

Upload data

Go to demultiplexing tool

What kind of data ?

4 Upload \rightarrow 4 Histories

Multiplexed data

Pathobiomes rodents and ticks

multiplex.fastq

barcode.tabular

454 data

Freshwater sediment metagenome

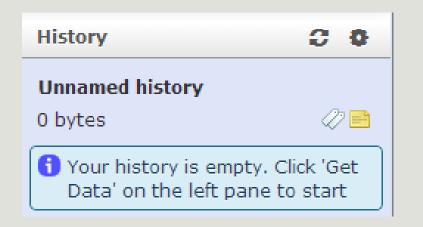
454.fastq.gz

SRA number • SRR443364 MiSeq R1 fastq + R2 fastq

Farm animal feces metagenome

sampleA_R1.fastq

sampleA_R2.fastq

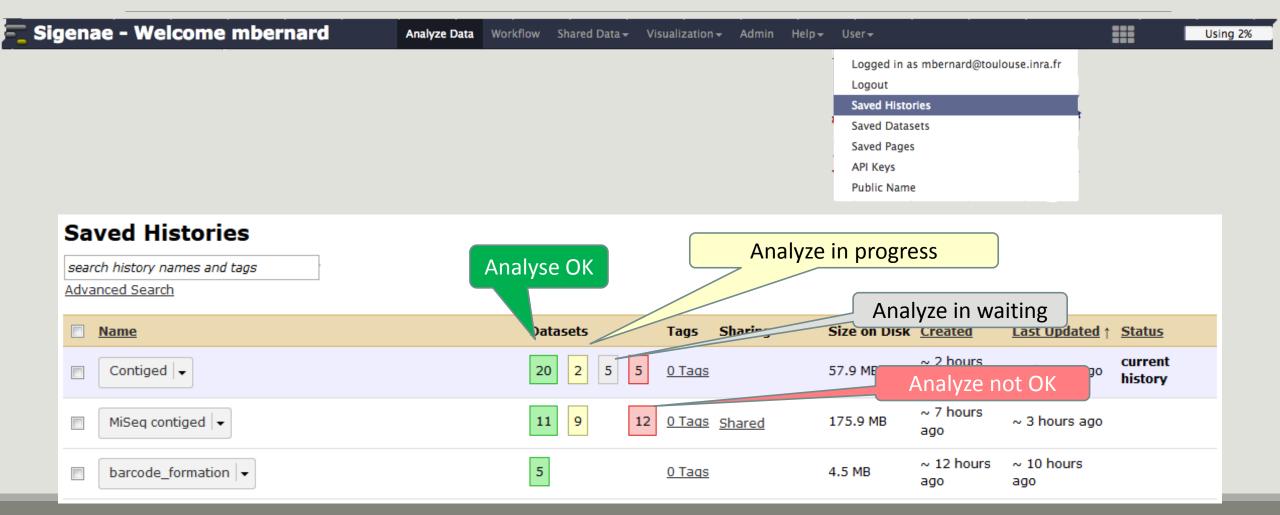

MiSeq contiged fastq in archive tar.gz

Farm animal feces metagenome

100spec_90000seq_9s amples.tar.gz

1ST CONNEXION

RENAME HISTORY



click on Unnamed history, Write your new name, Tap on Enter. 3 0 History Historique renommé 47 🖻 0 bytes 1 Your history is empty. Click 'Get Data' on the left pane to start

History gestion


- Keep all steps of your analysis.
- Share your analyzes.
- At each run of a tool, a new dataset is created. The data are not overwritten.
- Repeat, as many times as necessary, an analysis.
- All your logs are automatically saved.
- Your published histories are accessible to all users connected to Galaxy (Shared Data / Published Histories).
- Shared histories are accessible only to a specific user (History / Option / Histories Shared With Me).
- To share or publish a history: User / Saved histories / Click the history name / Share or Publish

Saved Histories

Your turn! - 1

LAUNCH UPLOAD TOOLS

- anemone
- arome
- aster
- bleuet
- camelia
- capucine
- chardon
- clematite
- cobee

- coquelicot
- cosmos

Password: f1o2r3!

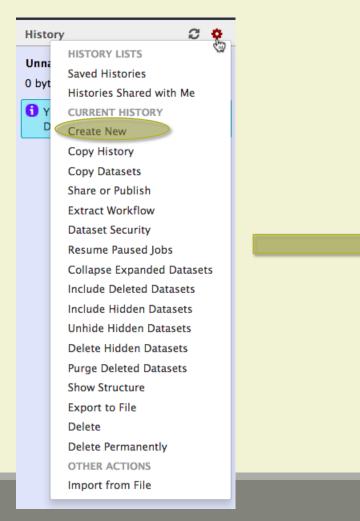
Your turn: exo 1

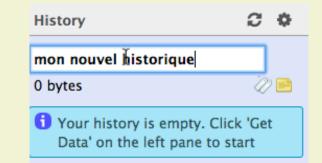
Create the 1st history multiplexed

Import files « multiplex.fastq » and « barcode.tabular » present in the Genotoul folder /work/formation/FROGS/

Create the 2nd history 454

Import file « **454.fastq.gz** » present in the **Genotoul** folder /work/formation/FROGS/ (datatype <u>fastq or fastq.gz is the same !)</u>


Create the 3rd history MiSeq R1 R2


Import files « sampleA_R1.fastq » and « sampleA_R2.fastq » present in the Genotoul folder /work/formation/FROGS/

Create the 4th history MiSeq contiged

Import archive file « 100spec_90000seq_9samples.tar.gz » present in the Genotoul folder /work/formation/FROGS/

Tools	Upload File (version 1.1.3)	
search tools	File Format:	Default method, your files are on
YOUR DATA	Auto-detect	your computer or accessible on the
Upload Data	Which format? See help below	internet, they are copied on your
Upload File	File: Choisissez un fichier Aucun fichier choisi	
Upload File from genotoul	TIP: Due to browser limitations, uploading files larger than 2GB is guaranteed to 1 (below) or FTP (if enabled by the site administrator).	Galaxy account
EBI SRA ENA SRA	URL/Text:	
UCSC Main table browser		
UCSC Test table browser		You can only upload one local file at a time
UCSC Archaea table browser		\rightarrow 10 samples \geq 10 uploads
<u>Get Microbial Data</u>	Here you may specify a list of URLs (one per line) or paste the contents of a file.	You can upload multiple files using URLs
<u>BioMart</u> Central server	Convert spaces to tabs:	
<u>Compress</u> zip or tar file	Yes	but only smaller than 2Go
Download Data	Use this option if you are entering intervals by hand.	

Each uploaded file will consume your Galaxy's quota!

Tools		Upload File (ve	ersion 1.0.0)		
search tools	0	Path to file:			
YOUR DATA			onnees_simulees/100WEPL_setA.tar.gz ike : /work/USERNAME/somewhere/afile		
Upload Data Upload File		File type: tar.gz 🔻	Do not forget to precise the input file type		
Upload File from genotoul		Execute			

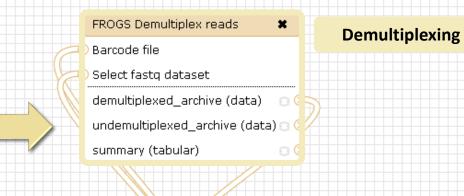
Specific SIGENAE GENOTOUL method. It allows you to access to your files in your work account on the Genotoul **without** consuming your Galaxy quota.

And if you have multiple samples ?

See <u>How to create an archiveTAR.ppt</u>

How to transfer files on /work of Genotoul?

See <u>How to transfert to genotoul.ppt</u>


Tools	Upload archive (version 1.0.0)
FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION FROGS pipeline Upload archive from your computer Demultiplex reads Split by samples the reads in function of	File: Choisissez un fichier Aucun fichier choisi TIP: Due to browser limitations, uploading files larger than 2GB is guaranteed to fail. To upload large files, use the URL method. URL: Here you may specify the archive URL.
inner barcode. <u>FROGS Pre-process</u> Step 1 in metagenomics analysis (16S/18S): denoising and dereplication.	Execute 3 What it does

If you have an archive on your own computer and smaller than 2Go, you may use this specific FROGS tool to upload your samples archive instead of the default « Upload File » of Galaxy.

Tools	Download from web or upload from disk	
search tools	Regular Composite	
YOUR DATA Upload Data Upload File Upload File from genotoul EBI SRA ENA SRA UCSC Main table browser UCSC Test table browser UCSC Archaea table browser Get Microbial Data	Prop files here	You can only upload multiple files at a time
BioMart Central server	Type (set all): Auto-detect V Q Genome (set all): unspecified (?) V	but only smaller than 2Go
<u>Compress</u> zip or tar file	Chasse legel file Chaste date Deuse Deset Start Class	
Download Data	Choose local file Paste/Fetch data Pause Reset Start Close	

New functionality in latest Galaxy version : <u>http://147.99.108.167/galaxy/</u>

Demultiplexing tool

Upload File from Genotoul × out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

Data acquisition

FROGS Pre-process × Archive file dereplicated_file (fasta) 🖸 count_file (tabular) seed_file (fasta) summary_file (html) **Pre-process**

FROGS Clustering swarm Sequences file Count file

abundance_biom (biom1)

swarms_composition (tabular) 🖂 🤇

Clustering

FROGS Remove chimera Sequences file

x

Abundance file

×

0(

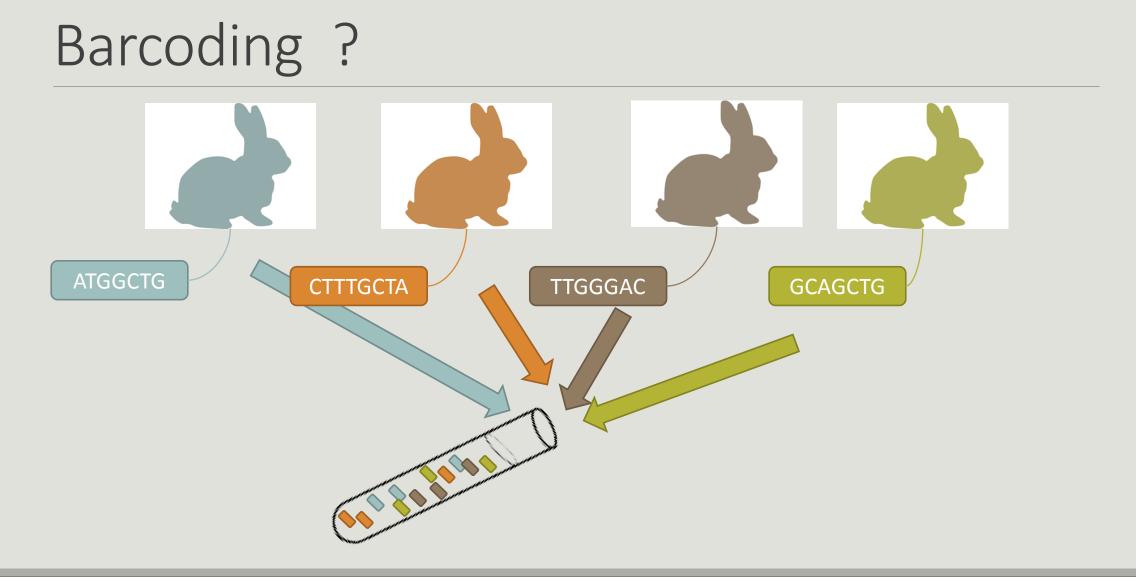
non_chimera_fasta (fasta)

out_abundance_biom (biom1) 🛛 🖸 🤅 out_abundance_count (tabular) 🗇 🤅

Chimera

summary_file (html)

FROGS Affiliation OTU OTU seed sequence

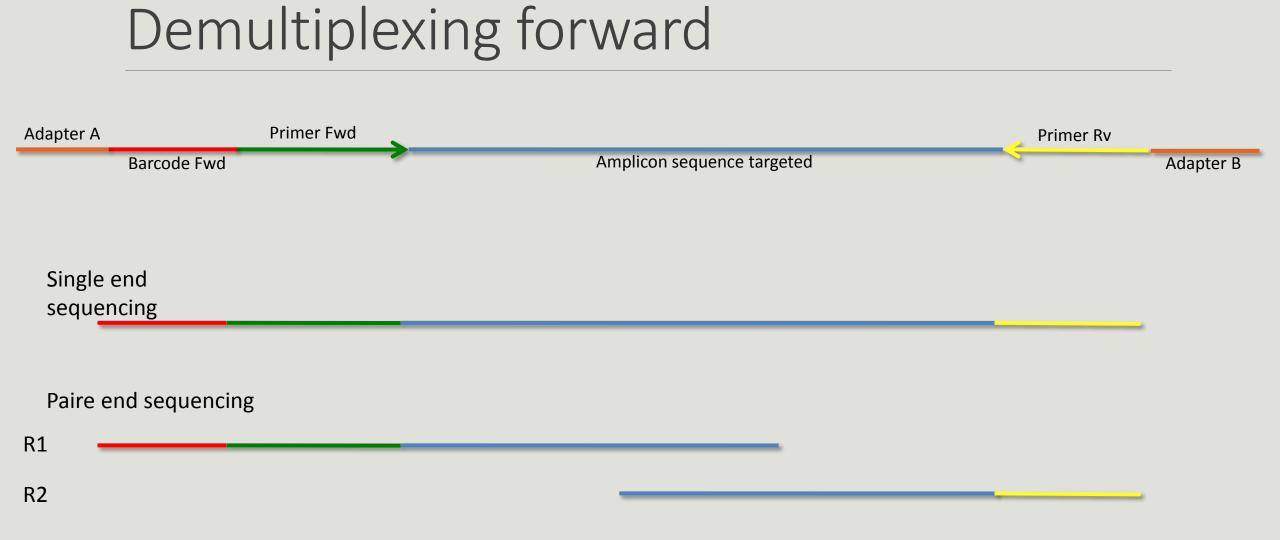

Abundance file

biom_affiliation (biom1) 🖸

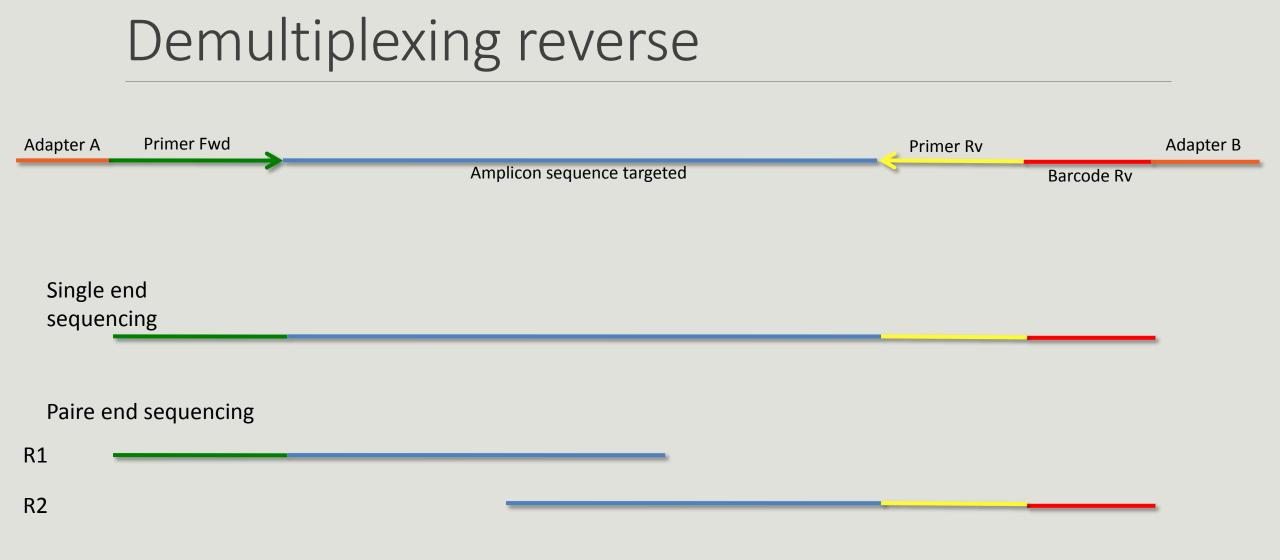
summary (html)

Affiliation

52

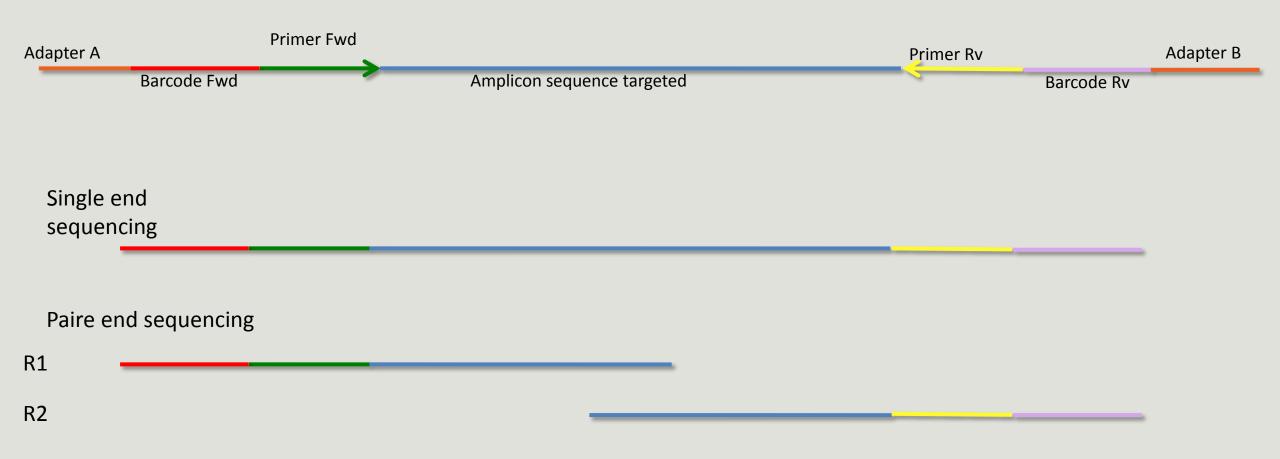


Demultiplexing


Sequence demultiplexing in function of barcode sequences :

- In forward
- In reverse
- In forward and reverse

Remove unbarcoded or ambiguous sequences





Demultiplexing forward and reverse

Your turn! - 2

LAUNCH DEMULTIPLEX READS TOOL

- anemone
- arome
- aster
- bleuet
- camelia
- capucine
- chardon
- clematite

- cobee
- coquelicot
- cosmos
- cyclamen

Password: f1o2r3!

FROGS Demultiplex reads (version 1.1.0)

Barcode file:

1: barcode.tabular 🔻

This file describes barcodes and samples (one line by sample tabulated separated from barcode sequence(s)). See Help section

Single or Paired-end reads:

Single 🔻

Select between paired and single end data

Select fastq dataset:

Г	,	÷
L	4	_

Specify dataset of your single end reads

barcode mismatches:

Number of mismatches allowed in barcode

barcode on which end ?:

Forward	•	
Forward		at the begining of the forward end or of the reverse end or both?
Reverse		· ·
Both ends		
Execute		

FROGS Demultiplex reads (version 1.1.0)

Barcode file:

1: barcode.tabular 🔻

This file describes barcodes and samples (one line by sample tabulated separated from barcode sequence(s)). See Help section

Single or Paired-end reads:

Paired 🔻

Select between paired and single end data

Select first set of reads:

Specify dataset of your forward reads

Select second set of reads:

Specify dataset of your reverse reads

barcode mismatches:

Number of mismatches allowed in barcode

barcode on which end ?:

Exercise 2

In **multiplexed** history launch the demultiplex tool:

« The Patho-ID project, rodent and tick's pathobioms study, financed by the metaprogram INRA-MEM, studies zoonoses on rats and ticks from multiple places in the world, the co-infection systems and the interactions between pathogens. In this aim, thay have extracted hundreads of or rats and ticks samples from which they have extracted 16S DNA and sequenced them first time on Roche 454 plateform and in a second time on Illumina Miseq plateform. For this courses, they authorized us to publicly shared some parts of these samples. »

Parasites & Vectors (2015) 8:172 DOI 10.1186/s13071-015-0784-7. Detection of Orientia sp. DNA in rodents from Asia, West Africa and Europe. Jean François Cosson, Maxime Galan, Emilie Bard, Maria Razzauti, Maria Bernard, Serge Morand, Carine Brouat, Ambroise Dalecky, Khalilou Bâ, Nathalie Charbonnel and Muriel Vayssier-Taussat

Exercise 2

In **multiplexed** history launch the demultiplex tool:

Data are single end reads

 \rightarrow only 1 fastq file

Samples are characterized by an association of two barcodes in forward and reverse strands → multiplexing « both ends »

<u>2: /work/frogs</u> /Formation/multiplex.fas	ھ ta	0	8
<u>1: /work/froqs</u> /Formation/barcode.txt	۲	0	×

Exercise 2

Demultiplex tool asks for 2 files: one « fastq » and one « tabular »

1. Play with pictograms

- 2. Observe how is built a fastq file.
- 3. Look at the stdout, stderr when available (in the 1) pictogram)

FROGS Demultiplex reads (version 1.1.0)	History 🖸	0
Barcode file: 1: barcode.tabular This file describes barcodes and samples (one line by sample tabulated separated from	FROGS multiplexed	? 📑
barcode sequence(s)). See Help section Single or Paired-end reads: Single Select between paired and single end data Select fastq dataset:	2: multiplex.fastq 2.1 MB format: fastqsanger, database: ? Epilog : job finished at Fri Nov 6 15:08:03 CET 2015 (1) (2) (2) (2) (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	/ 🗙
2: multiplex.fastq - Specify dataset of your single end reads	@HNHOSKDØ1ALDØH ATCTAGTGATAAGTTCCGTTCATCCTAAGTCCAT	TATT
barcode mismatches: 0 Number of mismatches allowed in barcode	+ FFFFFFFFFDDA554444889422=<>400044 @HNHOSKD01B8SLE ATAGCTGATTGGTTTAAGCGGATAGGGATTAGAT	
barcode on which end ?: Both ends 💌 The barcode is at the begining of the forward end or of the reverse end or both?	1: barcode.tabular 👁 🕼	
Execute	10 lines format: tabular, database: ? Epilog : job finished at Fri Nov 6 15:07:53 CET 2015	28
🕽 What it does	1 2 3 MgArd0001 ACAGCGT TGTACGT	
Classify single or paired end reads in function of barcode forward or reverse in the first or both reads.	NgArd0009 ACAGTAG TGTACGT MgArd0009 ACGTCAG TGTACGT	
Command line:	MgArd0029 ACTCAGT TGTACGT MgArd0038 ACTCGTC TGTACGT	
demultiplex.pyinput-R1 *FQ_INPUT1* [input-R2 *FQ_INPUT2*]input-barcode *TXT_F	MgArd0046 AGCAGTC TGTACGT	

demultiplex.py --input-R1 *FQ_INPUT1* [--input-R2 *FQ_INPUT2*] --input-barcode *TXT F

Advices

For your own data

- Do not forget to indicate barcode sequence as they are in the fastq sequence file, especially if you have data multiplexed via the reverse strand.
- For the mismatch threshold, we advised you to let the threshold to 0, and if you are not satisfied by the result, try with 1. The number of mismatch depends on the length of the barcode, but often those sequences are very short so 1 mismatch is already more than the sequencing error rate.
- If you have different barcode lengths, you must demultiplex your data in different times beginning by the longest barcode set and used the "unmatched" or "ambiguous" sequence with smaller barcode and so on.
- If you have Roche 454 sequences in sff format, you must convert them with some program like sff2fastq

Results

		\rightarrow
	A tar archive is created	
	A tar archive is created by grouping one (or a	
	pair of) fastq file per	
	sample with the names indicated in the first	
_	column of the barcode	
	tabular file	

	#sample	count
	ambiguous	0
	MgArd0009	65
	MgArd0017	152
	MgArd0038	1185
	MgArd0029	172
>	unmatched	492
	MgArd0001	85
	MgArd0081	209
	MgArd0046	373
	MgArd0054	217
	MgArd0073	454
	MgArd0062	1109

With barcode mismatches >1 sequence can corresponding to several samples. So these sequences are non-affected to a sample.

Sequences without known barcode. So these sequences are non-affected to a sample.

Format: Barcode

BARCODE FILE is expected to be tabulated:

- first column corresponds to the sample name (unique, without space)
- second to the forward sequence barcode used (None if only reverse barcode)
- optional third is the reverse sequence barcode (optional)

Take care to indicate sequence barcode in the strand of the read, so you may need to reverse complement the reverse barcode sequence. Barcode sequence must have the same length.

Example of barcode file.

The last column is optional, like this, it describes sample multiplexed by both fragment ends.

MgArd00001 ACAGCGT ACGTACA

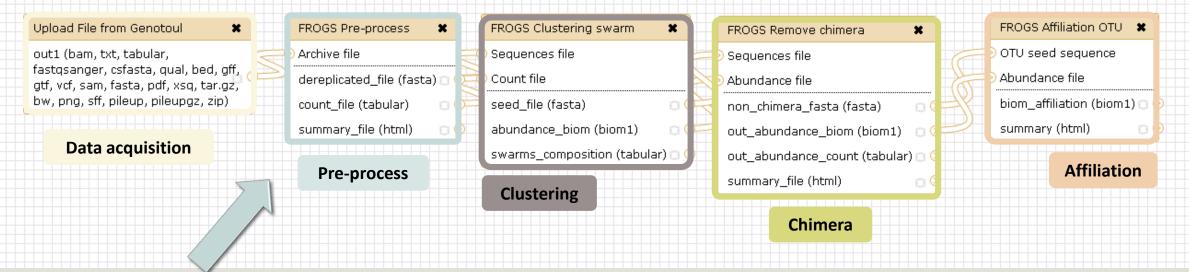
Format : FastQ

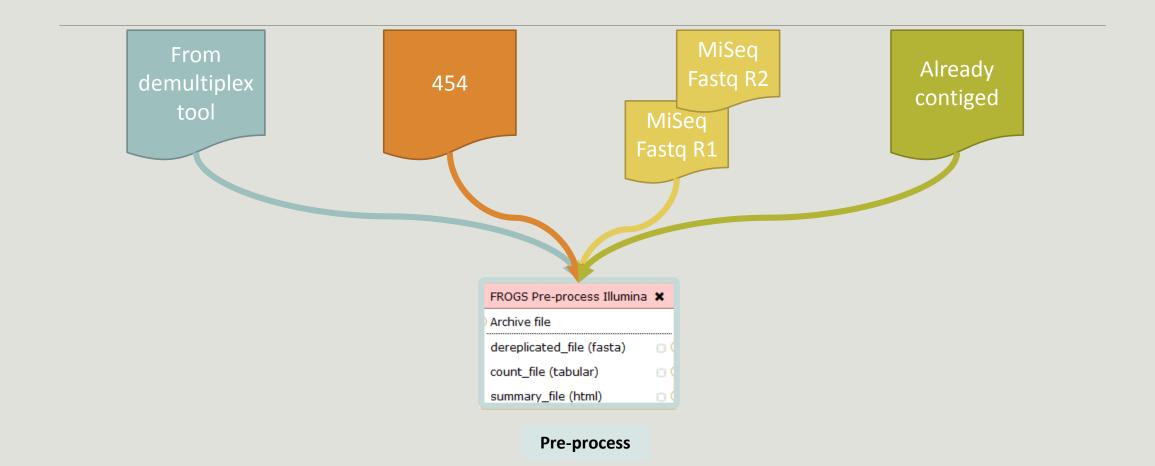
FASTQ : Text file describing biological sequence in 4 lines format:

- first line start by "@" correspond to the sequence identifier and optionally the sequence description. "@Sequence_1 description1"
- second line is the sequence itself. "ACAGC"
- third line is a "+" following by the sequence identifier or not depending on the version
- fourth line is the quality sequence, one code per base. The code depends on the version and the sequencer

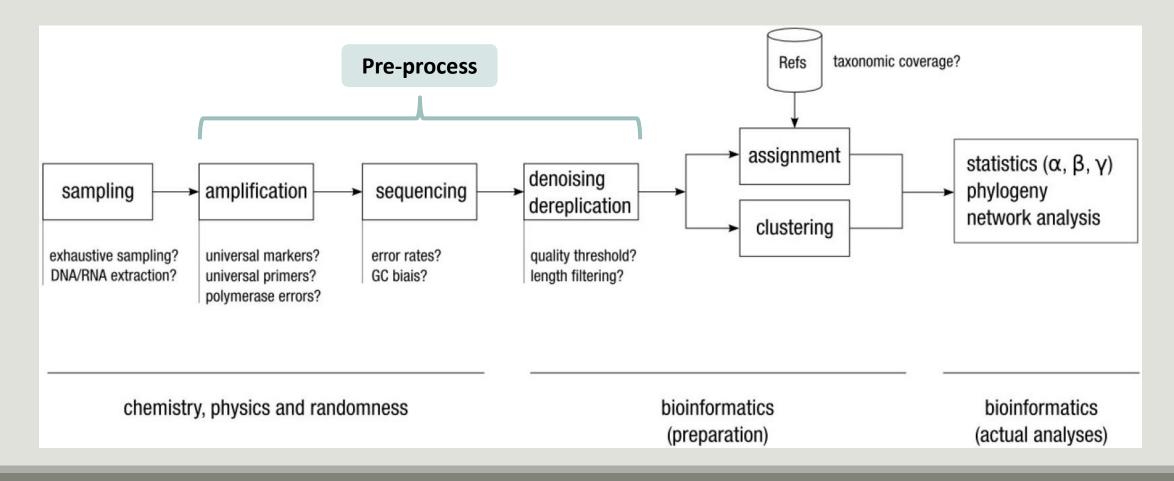
@HNHOSKD01ALD0H ACAGCGTCAGAGGGGGTACCAGTCAGCCATGACGTAGCACGTACA + CCCFFFFFFHHHHHJJIJJJJHHFF@DEDDDDDDD@CDDDDACDD

How it works ?


For each sequence or sequence pair the sequence fragment at the beginning (forward multiplexing) of the (first) read or at the end (reverse multiplexing) of the (second) read will be compare to all barcode sequence.


If this fragment is equal (with less or equal mismatch than the threshold) to one (and only one) barcode, the fragment is trimmed and the sequence will be attributed to the corresponding sample.

Finally fastq files (or pair of fastq files) for each sample are included in an archive, and a summary describes how many sequence are attributed for each sample.


Pre-process tool

Amplicon-based studies general pipeline

Pre-process

- Delete sequence with not expected lengths
- Delete sequences with ambiguous bases (N)
- Delete sequences do not contain good primers
- Dereplication

- + removing homopolymers (size = 8) for 454 data
- + quality filter for 454 data

Sequencer: 454 \$

Select the sequencer family

Samples

Samples 1

Name:

The sample name.

Sequence file:

FASTQ file of sample.

Add new Samples

FROGS Pre-process (version 1.2.0)

[Illumina \$] Select the sequencer family used to produce the sequences.

Input type:

Sequencer:

Files by samples Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Reads already contiged ?:

No
The inputs contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Samples

Samples 1

Name:

The sample name.

Reads 1:

R1 FASTQ file of paired-end reads.

reads 2: R2 FASTQ file of paired-end reads.

Add new Samples

Reads 1 size:

The read1 size.

Reads 2 size:

The read2 size.

Expected amplicon size:

Maximum amplicon length expected in approximately 90% of the amplicons (with primers).

Minimum amplicon size:

The minimum size for the amplicons (with primers).

Maximum amplicon size:

The maximum size for the amplicons (with primers).

5' primer:

The 5' primer sequence (wildcards are accepted).

3' primer:

The 3' primer sequence (wildcards are accepted).

Input type:

Archive

OR

OR

2

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Archive file:

1: /work/frogs/Donnees_simulees/500WEPL_setA.tar.gz

The tar file containing the sequences file(s) for each sample.

Reads already contiged ?:

The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Minimum amplicon size:

380 The minimum size for the amplicons.

Maximum amplicon size:

500 The maximum size for the amplicons.

Sequencing protocol:

Illumina standard The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.

5' primer:

ACGGGAGGCAGCAG

The 5' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'.

3' primer:

AGGATTAGATACCCTGGT/

The 3' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'.

Execute

Pre-process

Your turn! - 3

GO TO EXERCISES 3

Go to « 454 » history

454

Launch the pre-process tool on that data set

 \rightarrow objective : understand the parameters

1- Test different parameters for « minimum and maximum amplicon size »

2- Enter these primers: Forward: ACGGGAGGCAGCAG Reverse: AGGATTAGATACCCTGGTA

FROGS Pre-process (version 1.4.2)

Sequencer:

```
454
```

Select the sequencer family used to produce the sequences.

Input type:

One file by sample 🔻

Samples files can be provided in single archive or with one file by sample.

Samples

Samples 1	Sample name is required				
Name:					
my_sample					
The sample name.					

Sequence file:

6: /work/formation/FROGS/454.fastq.gz ▼ FASTQ file of sample.

Add new Samples

Minimum amplicon size:

380

The minimum size for the amplicons (with primers).

Maximum amplicon size:

500

The maximum size for the amplicons (with primers).

5' primer:

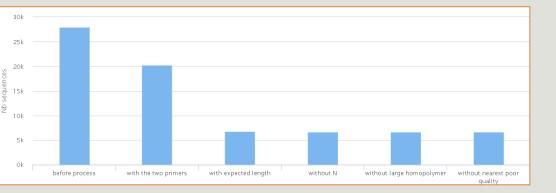
ACGGGAGGCAGCAG

The 5' primer sequence (wildcards are accepted). The orientation is detailed

3' primer:

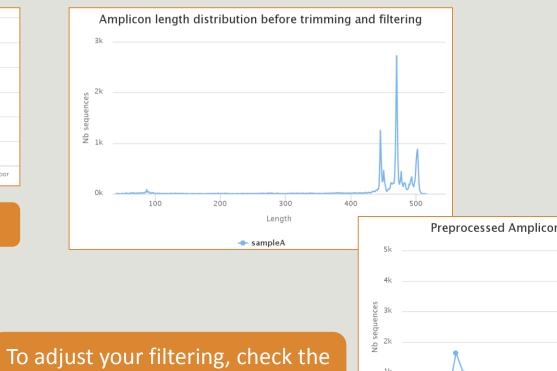
Execute

AGGATTAGATACCCTGGTA

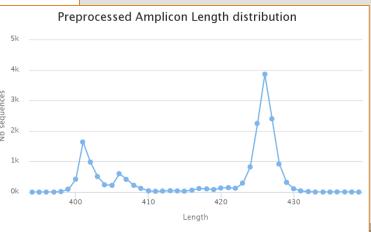

The 3' primer sequence (wildcards are accepted). The orientation is detailed

Primers used for sequencing V3-V4: Forward: ACGGGAGGCAGCAG Reverse: AGGATTAGATACCCTGGTA

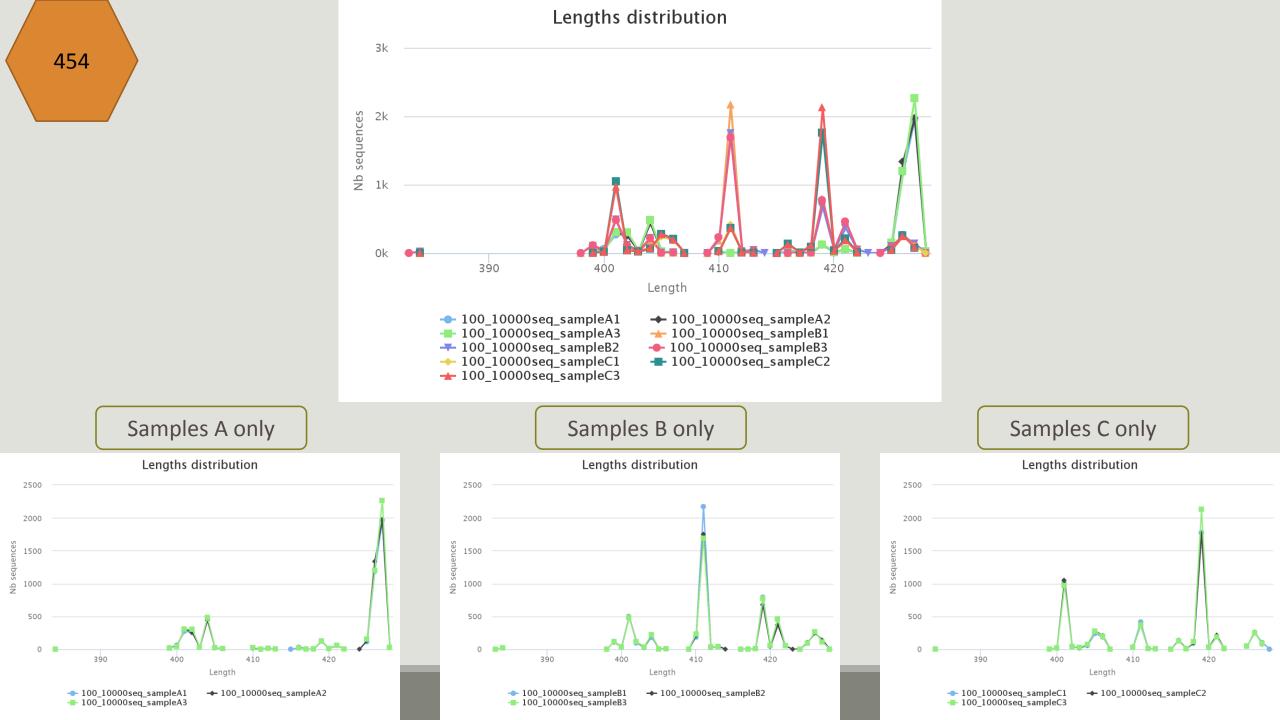
Size range of 16S V3-V4: [380 - 500]


What do you understand about amplicon size, which file can help you ?
What is the length of your reads before preprocessing ?
Do you understand how enter your primers ?
What is the « FROGS Pre-process: dereplicated.fasta » file ?
What is the « FROGS Pre-process: count.tsv » file ?
Explore the file « FROGS Pre-process: report.html »
Who loose a lot of sequences ?

	Samples	before process ∲	with the two primers	with expected length	without N	without large ¢	without nearest poor quality
	sample_454	28,009	20,227	6,806	6,677	6,675	6,672



454


To be kept, sequences must have the 2 primers

--- sampleA

Cleaning, how it work ?

Filter contig sequence on its length which must be between min-amplicon-size and maxamplicon-size

use cutadapt to search and trim primers sequences with less than 10% differences

380	
The mini	mum size for the amplicons
Maximur	n amplicon size:
Maximur 500	n amplicon size:

Cleaning, how it work ?

dereplicate sequences and return one uniq fasta file for all sample and a count table to indicate sequence abundances among sample.

In the HTML report file, you will find for each filter the number of sequences passing it, and a table that details these filters for each sample.

Go to « MiSeq R1 R2 » history

- Launch the pre-process tool on that data set
- \rightarrow objective: understand flash software

FROGS Pre-process (version 1.4.2)

Sequencer:

Illumina 🝷

Select the sequencer family used to produce the sequences.

Input type:

Files by samples 💌

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Reads already contiged ?:

```
No 💌
```

The inputs contain 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Samples

Samples 1

Name:

sampleA

The sample name.

Reads 1:

1: /work/formation/FROGS/sampleA_R1.fastq 💌

R1 FASTQ file of paired-end reads.

reads 2:

2: /work/formation/FROGS/sampleA_R2.fastq 💌

R2 FASTQ file of paired-end reads.

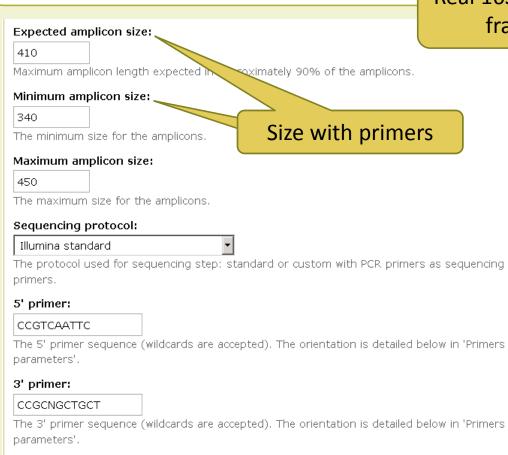
Add new Samples

Reads 1 size:

250 The read1 size.

Reads 2 size:

250 The read2 size.


Primers used for this sequencing : Forward: CCGTCAATTC Reverse: CCGCNGCTGCT Lecture 5' \rightarrow 3'

>ERR619083.M00704

CCGTCAATTCATTGAGTTTCAACCTTGCGGCCGTACTTCCCAGGCGGTACGTT TATCGCGTTAGCTTCGCCAAGCAAGCAGCATCCTGCGCTTAGCCAACGTACATCG TTTAGGGTGTGGACTACCCGGGTATCTAATCCTGTTCGCTACCCACGCTTTCG AGCCTCAGCGTCAGTGACAGACCAGAGAGCCGCTTTCGCCACTGGTGTTCCTC CATATATCTACGCATTTCACCGCTACACATGGAATTCCACTCTCCCCTTCTGC ACTCAAGTCAGACAGTTTCCAGAGCACTCTATGGTTGAGCCATAGCCTTTTAC TCCAGACTTTCCTGACCGACTGCACTCGCTTTACGCCCAATAAATCCGGACAA

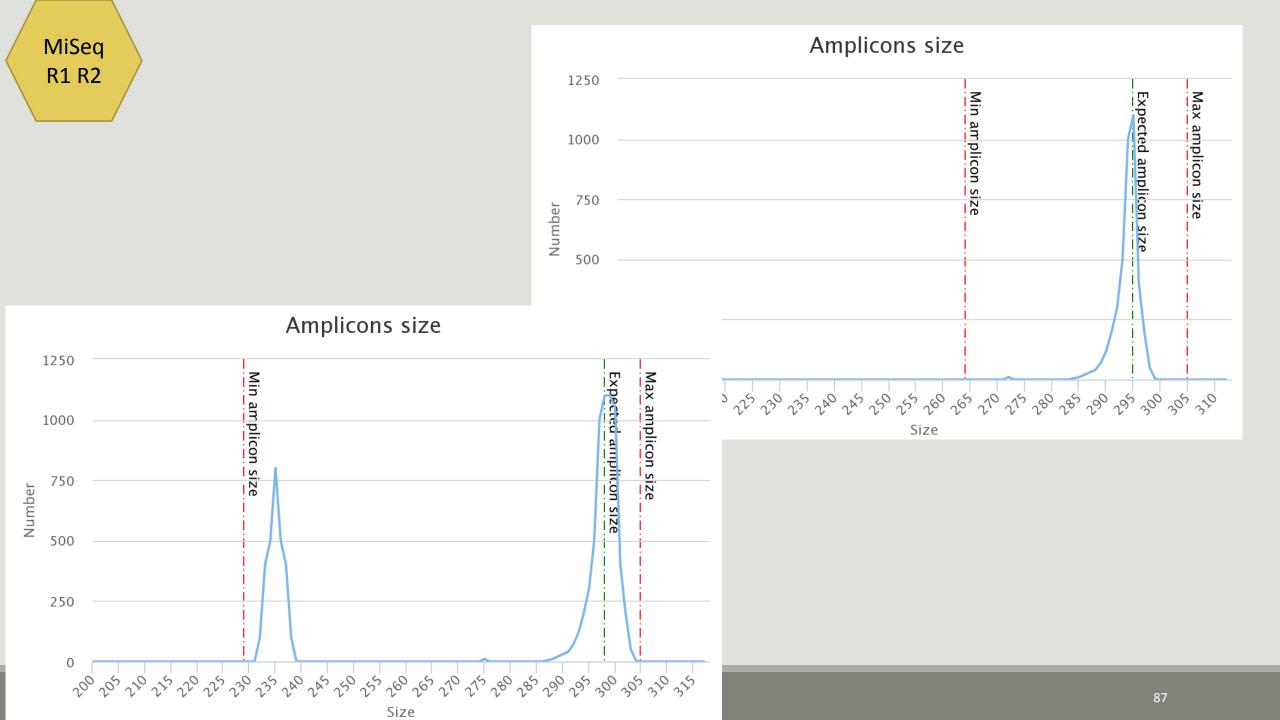
CGCTTGCCACCTACGTATTACCGCNGCTGCT

Real 16S sequenced fragment

Execut

MiSeq R1 R2

Flash, how it works ?


To contig read1 and read2 with FLASh with :

- a minimum overlap equals to
- [(R1-size + R2-size) expected-amplicon-size]

ex: minimum overlap (250+250) - 450 = 50 maximum overlap 450

and a maximum overlap equal to [expected-amplicon-size] with a maximum of 10% mismatch among this overlap

90% of the amplicon are smaller than [expected-amplicon-size]

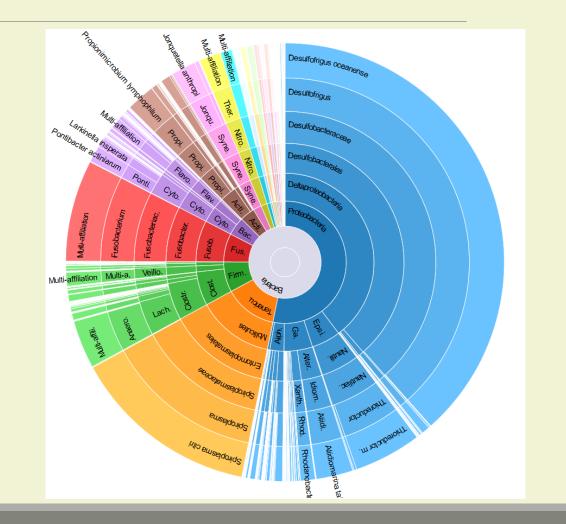
Interpret « FROGS Pre-process: report.html » file.

Go to« MiSeq contiged » history

- Launch the pre-process tool on that data set
- \rightarrow objective: understand output files

3 samples are **technically replicated** 3 times : 9 samples of 10 000 sequences each.

100_10000seq_sampleA1.fastq100_10000seq_sampleB1.fastq100_10000seq_sampleC1.fastq100_10000seq_sampleA2.fastq100_10000seq_sampleB2.fastq100_10000seq_sampleC2.fastq100_10000seq_sampleA3.fastq100_10000seq_sampleB3.fastq100_10000seq_sampleC3.fastq


- 100 species, covering all bacterial phyla
- Power Law distribution of the species abundances
- Error rate calibrated with real sequencing runs
- 10% chimeras
- 9 samples of 10 000 sequences each (90 000 sequences)

Normal

Distribution

Power Law

Distribution

"Grinder (v 0.5.3) (Angly et al., 2012) was used to simulate the PCR amplification of full-length (V3-V4) sequences from reference databases. The reference database of size 100 were generated from the LTP SSU bank (version 115) (Yarza et al., 2008) by

- (1) filtering out sequences with a N,
- (2) keeping only type species
- (3) with a match for the forward (ACGGRAGGCAGCAG) and reverse (TACCAGGGTATCTAATCCTA) primers in the V3-V4 region and
- (4) maximizing the phylogenetic diversity (PD) for a given database size. The PD was computed from the NJ tree distributed with the LTP."

FROGS Pre-process (version 1.4.2)

CO Sequencer:

IV

Illumina 👻

Select the sequencer family used to produce the sequences.

Input type:

Archive

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Archive file:

1: /work/formation/FROGS/100spec_90000seq_9samples.tar.gz
The tar file containing the sequences file(s) for each sample.

Reads already contiged ?:

Yes 🔻

The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Minimum amplicon size:

380

The minimum size for the amplicons.

Maximum amplicon size:

500

The maximum size for the amplicons.

Sequencing protocol:

Illumina standard

The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.

5' primer:

ACGGGAGGCAGCAG

The 5' primer sequence (wildcards are accepted). The original

3' primer:

TAGGATTAGATACCCTGGT

The 3' primer sequence (wildcards are accepted). The ori

Primers used for this sequencing : 5' primer: ACGGGAGGCAGCAG 3' primer: TAGGATTAGATACCCTGGTA Lecture 5' \rightarrow 3'

Lengths distribution \equiv ₽ 1k 385 390 395 405 410 415 420 425 Length 100_10000seg_sampleA1 → 100_10000seq_sampleA2 → 100_10000seq_sampleA3 → 100_10000seq_sampleB1 100_10000seq_sampleB3 100_10000seq_sampleC1 = 100_10000seq_sampleC2 + 100_10000seq_sampleC3

Click on legend

Amplicons lengths

Exercise 3.3 - Questions

- 1. How many sequences are there in the input file ?
- 2. How many sequences did not have the 5' primer?
- 3. How many sequences still are after pre-processing the data?
- 4. How much time did it take to pre-process the data ?
- 5. What can you tell about the sample based on sequence length distributions ?

FROGS Pre-process (version 1.4.2)

-

Sequencer:

```
Illumina 🔻
```

Select the sequencer family used to produce the sequences.

Input type:

Archive

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Archive file:

1: /work/frogs/Donnees_simulees/Formation/100spec_90000seq_9samples.tar.gz
The tar file containing the sequences file(s) for each sample.

Reads already contiged ?:

Yes 🔻

The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Minimum amplicon size:

380

The minimum size for the amplicons.

Maximum amplicon size:

500

The maximum size for the amplicons.

Sequencing protocol:

Illumina standard

The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.

•

5' primer:

ACGGGAGGCAGCAG

The 5' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'.

3' primer:

AGGATTAGATACCCTGGTA

The 3' primer sequence (wildcards are accepted). The orientation is detailed below in 'Primers parameters'.

Execute

FROGS Pre-process (version 1.4.2)

 \mathbf{T}

Sequencer:

Illumina 🔻

Select the sequencer family used to produce the sequences.

Input type:

Archive	

Samples files can be provided in single archive or with two files (R1 and R2) by sample.

Archive file:

1: /work/frogs/Donnees_simulees/Formation/100spec_90000seq_9samples.tar.gz
The tar file containing the sequences file(s) for each sample.

Reads already contiged ?:

Yes 🔻

The archive contains 1 file by sample : Reads 1 and Reads 2 are already contiged by pair.

Minimum amplicon size:

380

The minimum size for the amplicons.

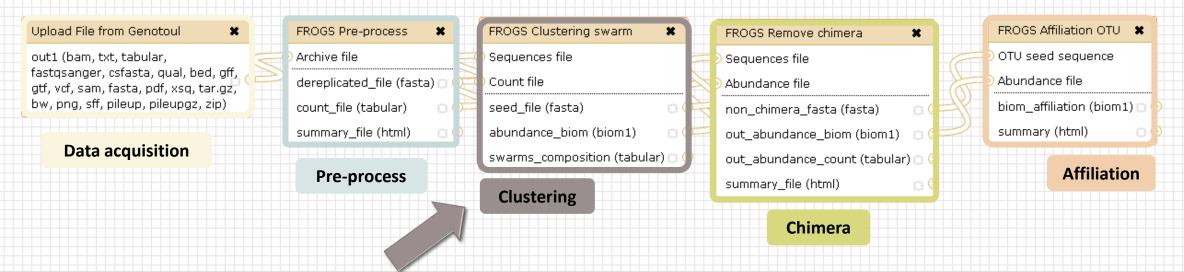
Maximum amplicon size:

500

The maximum size for the amplicons.

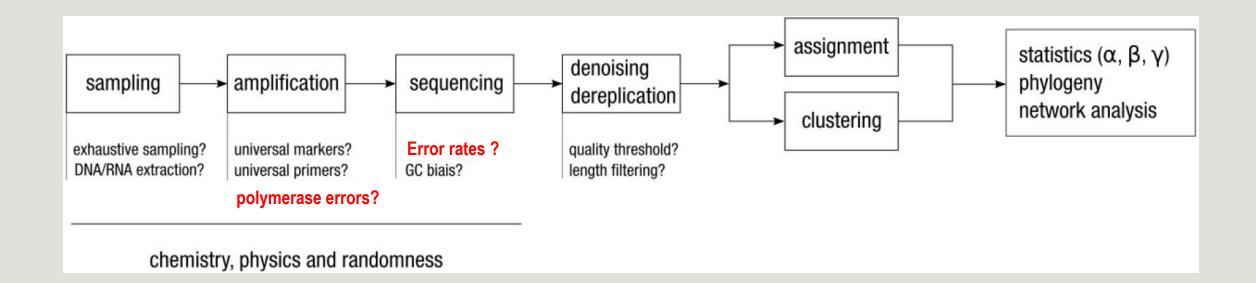
Sequencing protocol:

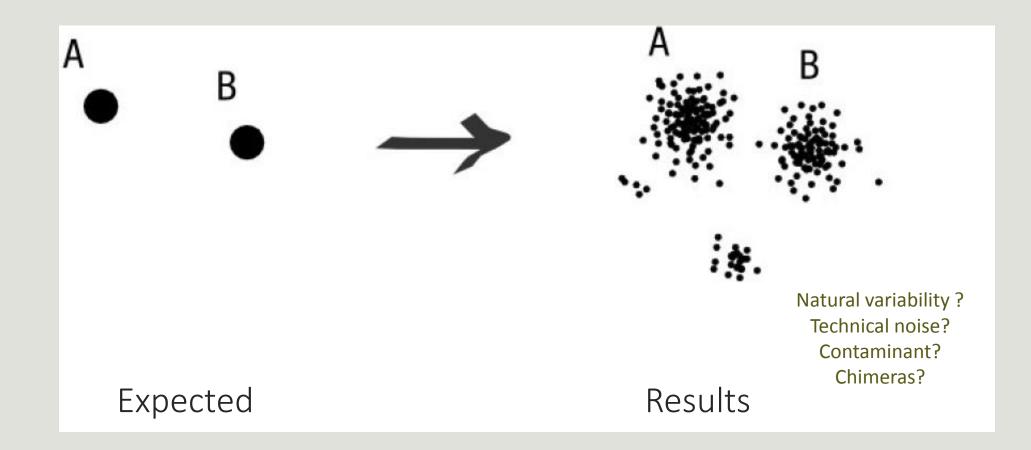
Custom protocol (Kozich et al. 2013)

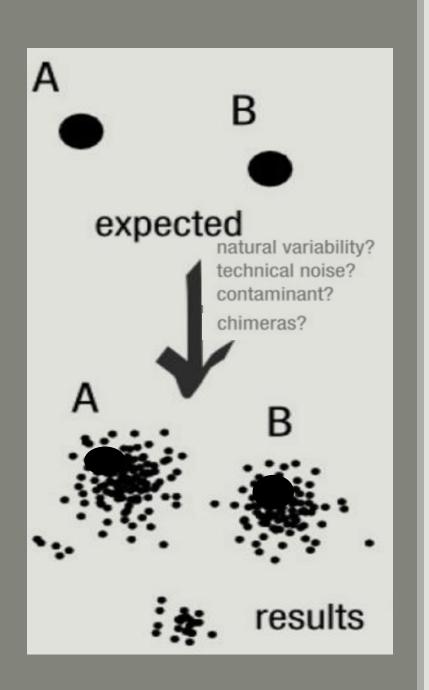

The protocol used for sequencing step: standard or custom with PCR primers as sequencing primers.

Execute

Primers are already removed

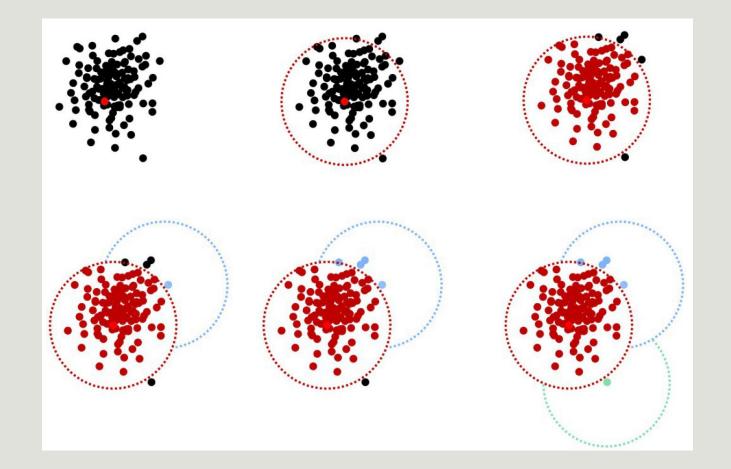

Clustering tool



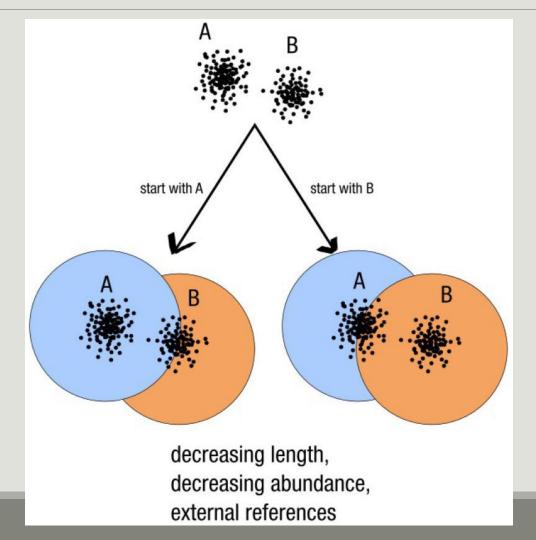


Why do we need clustering ?

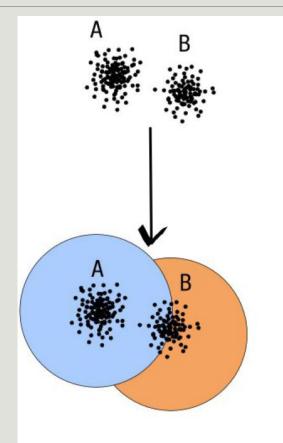
Amplication and sequencing and are not perfect processes

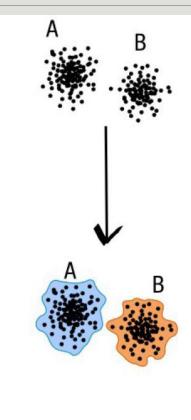

To have the best accuracy:

Method: All against all

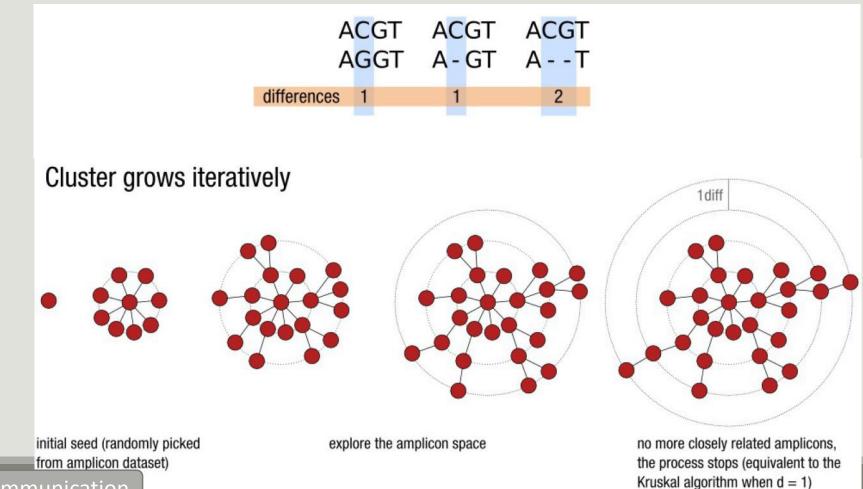

- Very accurate
- Requires a lot of memory and/or time

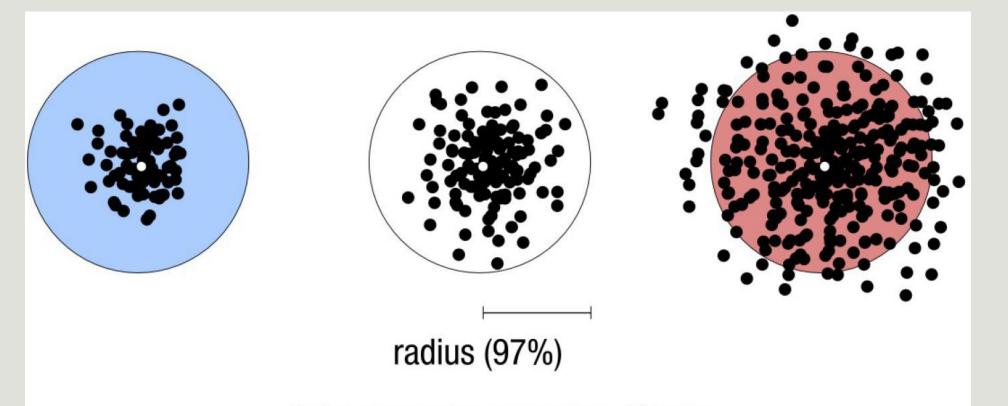
=> Impossible on very large datasets without strong filtering or sampling


How traditional clustering works ?



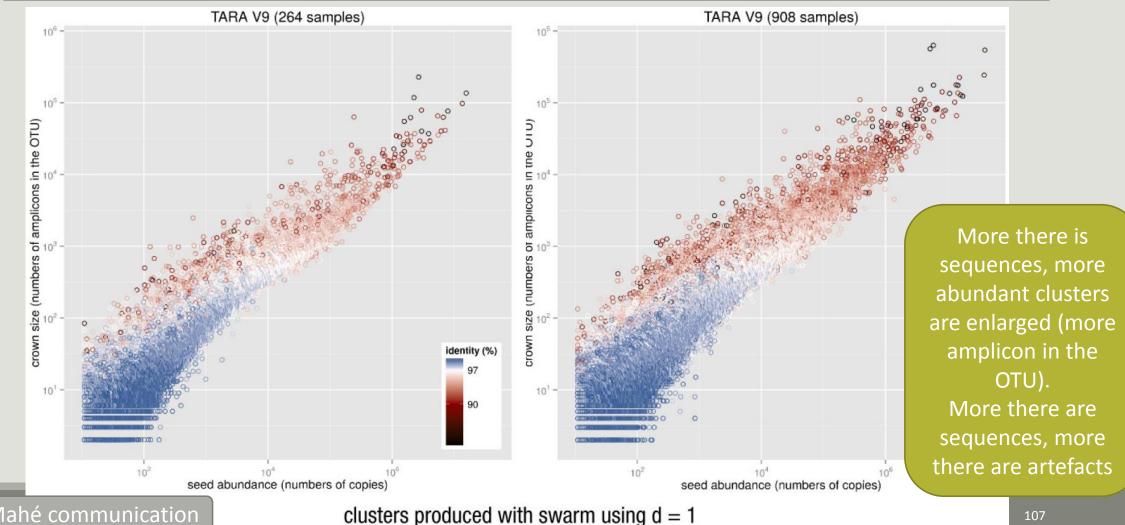
Input order dependent results


Single a priori clustering threshold



compromise threshold unadapted threshold natural limits of clusters

Swarm clustering method



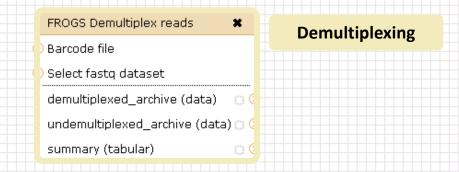
Comparison Swarm and 3% clusterings

Radius expressed as a percentage of identity with the central amplicon (97% is by far the most widely used clustering threshold)

Comparison Swarm and 3% clusterings

A robust and fast clustering method for amplicon-based studies.

The purpose of **swarm** is to provide a novel clustering algorithm to handle large sets of amplicons.


swarm results are resilient to input-order changes and rely on a small **local** linking threshold *d*, the maximum number of differences between two amplicons.

swarm forms stable high-resolution clusters, with a high yield of biological information.

Swarm: robust and fast clustering method for amplicon-based studies. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. PeerJ. 2014 Sep 25;2:e593. doi: 10.7717/peerj.593. eCollection 2014. PMID:25276506

FROGS Clustering swarm	FROGS Clustering swarm (version 2.1.0)				
Sequences file	Sequences file:				
Count file	2: FROGS Pre-process Illumina: dereplicated.fasta 🔹				
abundance_biom (txt)	The sequences file.				
seed_file (fasta)	Count file:				
swarms_composition (tabular) 🕤	3: FROGS Pre-process Illumina: count.tsv 🔹				
	It contains the count by sample for each sequence.				
Clustering	Aggregation maximal distance:				
	3				
	Maximum distance between sequences in each aggregation step.				
	Performe denoising clustering step?:				
	If checked, clustering will be perform in two steps, first with distance = 1 and then with your input distance				
	Execute				
	1st run for denoising:				
	Swarm with d = 1 -> high OTUs definition				
	linear complexity				
	intear complexity				
	2 nd run for clustering:				
	Swarm with d = 3 on the seeds of first Swarm				
	quadratic complexity				
	Gain time !				
	Remove false positives !				

Cluster stat tool

Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

×

Data acquisition

FROGS Pre-process 🗶	FROGS Clustering swarm	FROGS Remove chimera 🛛 🗶 —		
Archive file) Sequences file	Sequences file		
dereplicated_file (fasta) 🗅 🤤	Count file) Abundance file		
count_file (tabular) 🛛 💿 (🍃	seed_file (fasta) 🛛 🔅 🔫 non_chimera_fasta (fasta)			
summary_file (html) 🛛 💿 🔿	abundance_biom (biom1) 🛛 💿 🖙	out_abundance_biom (biom1) 🛛 🔿 🗲		
	swarms_composition (tabular) 🔿 🗹	out_abundance_count (tabular) 🔾 🤇		
Pre-process	Clustering	summary_file (html)		
		Chimera		
	FROGS Clusters stat 🗙			
	Abundance file			
	summary_file (html) 💿 🔿			
	Cluster			
	Statistics			

FROGS Affiliation OTU

OTU seed sequence

Abundance file

biom_affiliation (biom1) 🖸

summary (html)

Affiliation

Your Turn! - 4

LAUNCH CLUSTERING AND CLUSTERSTAT TOOLS

Go to « MiSeq contiged » history

Launch the Clustering SWARM tool on that data set with aggregation distance = 3 and the denoising

- \rightarrow objectives :
 - understand the denoising efficiency
 - understand the ClusterStat utility

- 1. How much time does it take to finish?
- 2. How many clusters do you get ?

3. Edit the biom and fasta output dataset by adding d1d3

<u>Attributes</u>	Convert Format	<u>Datatype</u>	Permissions		
Edit Attribut	ies				
Name: warm: seed_sequencesd1d3.fasta Info:					
/src/galaxy	/usr/local/bioinfo -test/galaxy-	• •			
Annotation	/ Notes:				

FROGS Clusters stat Process some metrics on clusters.

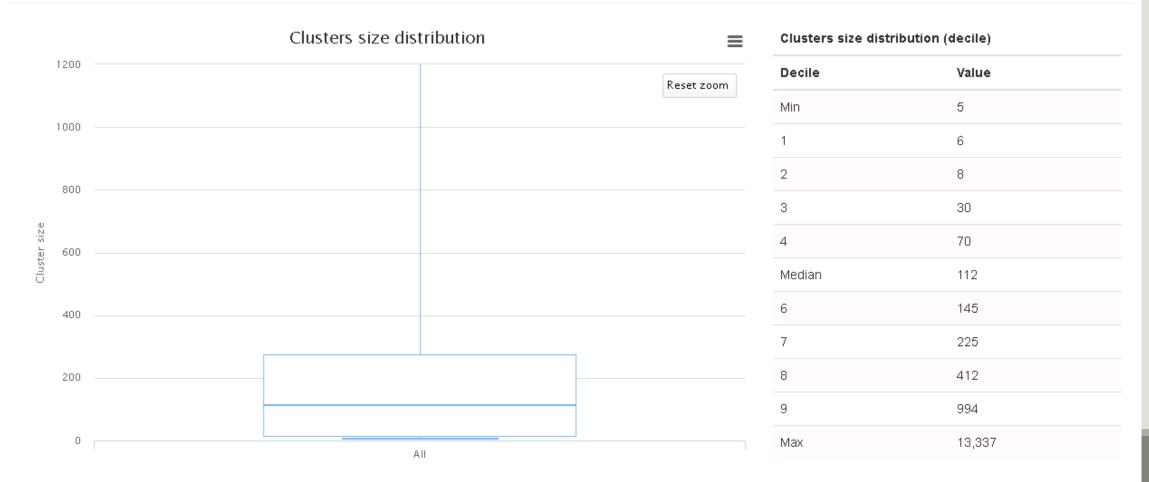
Ø

4. Launch FROGS Cluster Stat tools on the previous abundance biom file

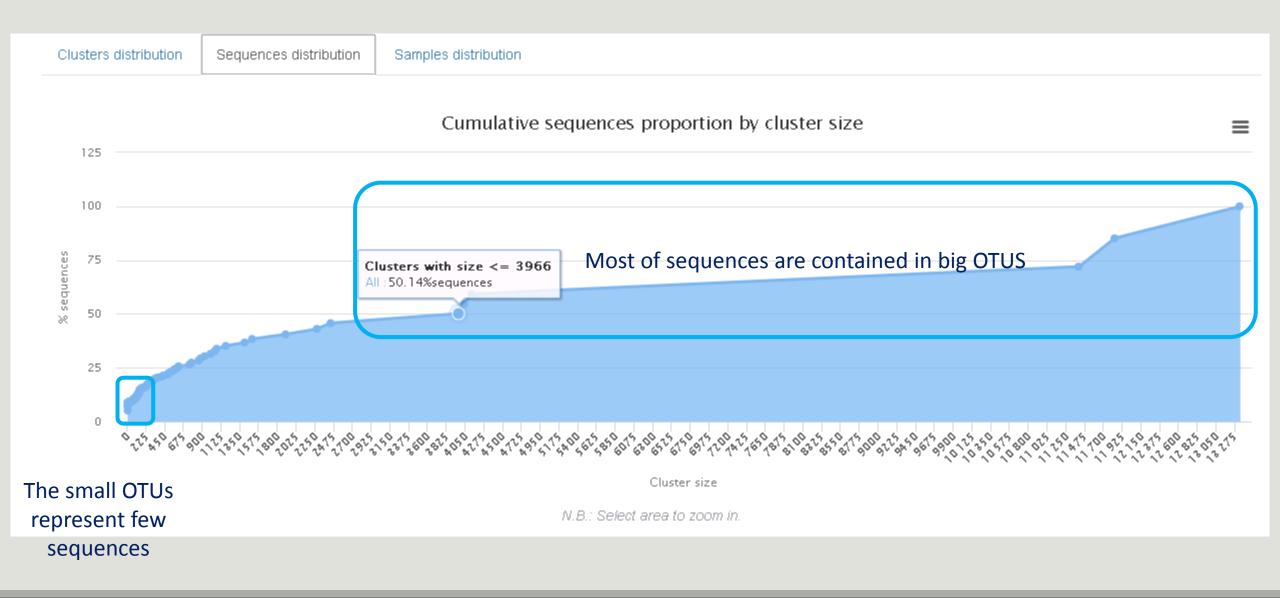
MiSeq contiged

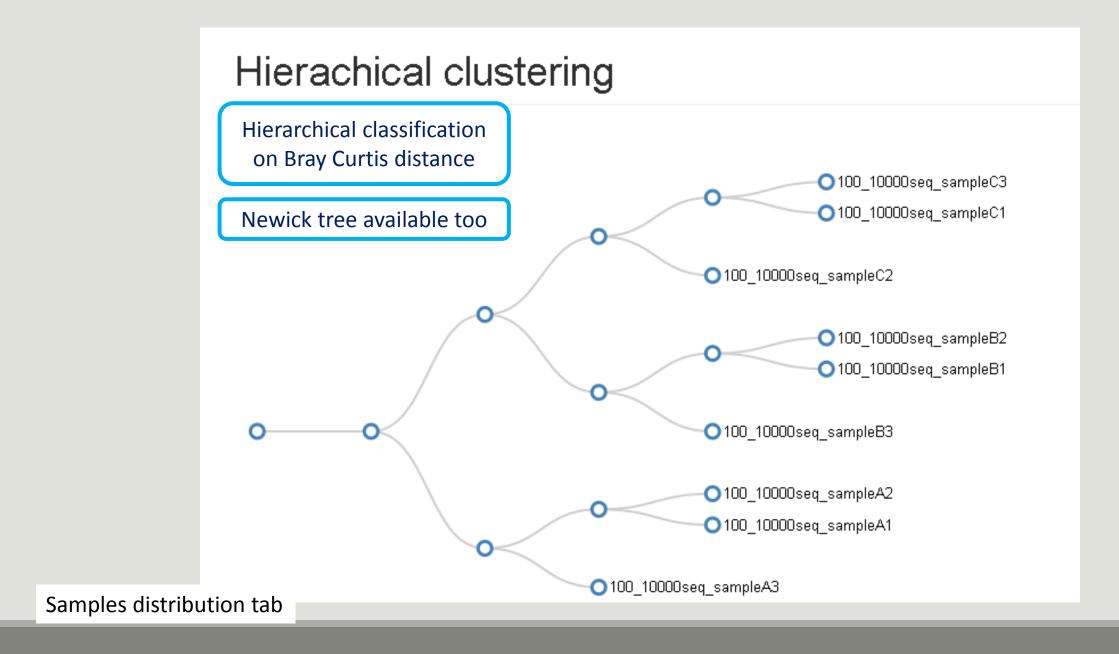
Exercise 4

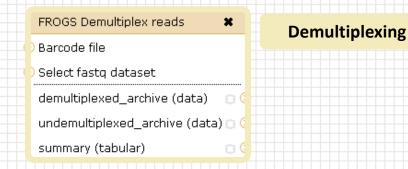
- 5. Interpret the boxplot: Clusters size summary
- 6. Interpret the table: **Clusters size details**
- 7. What can we say by observing the **sequence distribution**?
- 8. How many clusters share "sampleB3" with at least one other sample?
- 9. How many clusters could we expect to be shared ?
- **10**. How many sequences represent the 550 specific clusters of "sampleC2"?
- **11**. This represents what proportion of "sampleC2"?
- **12**. What do you think about it?
- **13**. How do you interpret the « Hierarchical clustering » ?


The « Hierachical clustering » is established with a Bray Curtis distance particularly well adapted to abundance table of very heterogenous values (very big and very small figures).

Sigenae - Welcome	mbernard	Analyze Data Workflow Shared Data▼	Visualization - Admin F	Aelp - User -		Using 59
Tools	Clusters distribution	Sequences distribution Samples distribution				History
deepTools 🔺						15: FROGS Filters: Image: Comparison of the sequences.fasta
FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION						14: FROGS Remove I I I I I I I I I I I I I I I I I I I
FROGS pipeline		Clusters	Sequ	quences		chimera: report.html
FROGS Upload archive from		5,945	89	9,721		13: FROGS Remove
your computer						<u>chimera:</u>
FROGS Demultiplex reads Split						non chimera abundance.biom
by samples the reads in function of inner barcode.						<u>12: FROGS Remove</u> • 0
	Clustere (eize eummany		Most of OTUs are singletons		chimera: non_chimera.fasta
<u>FROGS Pre-process</u> Step 1 in metagenomics analysis:	CIUSICIS	size summary				11: FROGS Clusters @ 0
denoising and dereplication.						stat:
FROGS Clustering swarm Step		Clusters size distribution	≡	Clusters size dir	istribution (decile)	summary swarm d1d3.html
2 in metagenomics analysis :	1.5k		-			format: html, database: ?
clustering.	7C 1			Decile	Value	## Application Software
FROGS Remove chimera Step 3 in metagenomics analysis :				Min	1	 :/usr/local/bioinfo/src/galaxy- dev/galaxy-dist/tools/FROGS/too
Remove PCR chimera in each	12.5k			IMILL		/clusters_stat.py (version : 1.1.
sample.				1	1	Command : /usr/local/bioinfo
FROGS Filters Filters OTUs on				-		<pre>/src/galaxy-dev/galaxy-dist/tool /FROGS/tools/clusters_stat.py</pre>
several criteria.	10k			2	1	input-biom /galaxydata
FROGS Affiliation OTU Step 4				3	1	/database/file
in metagenomics analysis : Taxonomic affiliation of each	SIZE					
OTU's seed by RDPtools and	ັດ ອີ.7.5k			4	1	HTML file
BLAST	7.5k			Median	1	
FROGS BIOM to TSV Converts	U					10: FROGS Clustering @ Q
a BIOM file in TSV file.	5k			6	1	<u>swarm:</u> <u>swarms</u> composition d1d3.ts
FROGS Clusters stat Process				7	1	
some metrics on clusters.				1	1	9: FROGS Clustering @ 0
<u>FROGS Affiliations stat</u> Process some metrics on taxonomies.	2.5k			8	2	swarm: abundance_d1d3.bio
				9	2	8: FROGS Clustering @ Ø
FROGS BIOM to std BIOM Converts a FROGS BIOM in				9	2	<u>swarm:</u> <u>seed sequences d1d3.fasta</u>
fully compatible BIOM.	Ok			Ma×	13,337	· · · · · · · · · · · · · · · · · · ·
FROGS Abundance		All				7: FROGS Pre-process:
normalisation						<u>report.html</u>
<u> </u>						
						117

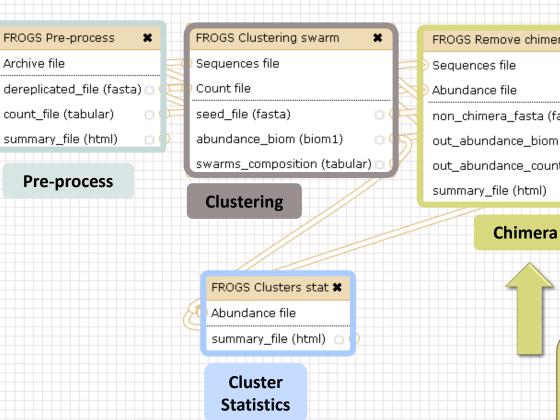



Clusters size summary


Clusters size details				
		Most of OTUs are singletons		
Show 10 - entries		Search:		
Clusters size Cluster size	Number of cluster	♦ % of all clusters ♦		
1	4,595	77.36		
2	866	14.58		
3	155	2.61		
4 After	83	1.40		
5 clustering	42	0.71		
6	29	0.49		
7	22	0.37		
8	13	0.22		
9	6	0.10		
10	6	0.10		

Show 10 - entries Samples information	367 OTUs of sampleA1 are common at least once with another sample	repre Could be	the specific OTUs of sent around 5% of sec nteresting to remove ility is not the concer	quences if individual	kcsv
Sample	Shared clusters	Own clusters	Shared sequences	Own sequences	\$
100_10000seq_sampleA1	367	513	9,447	528	
100_10000seq_sampleA2	365	490	9,476	503	
100_10000seq_sampleA3	384	483	9,478	494	
100_10000seq_sampleB1	395	548	9,397	572	
100_10000seq_sampleB2	375	508	9,455	515	
100_10000seq_sampleB3	376	562	9,388	579	
100_10000seq_sampleC1	372	539	9,413	552	
100_10000seq_sampleC2	389	550	9,408	567	
100_10000seq_sampleC3	361	516	9,442	525	
Showing 1 to 9 of 9 entries				Previous 1	Next

Chimera removal tool


Archive file

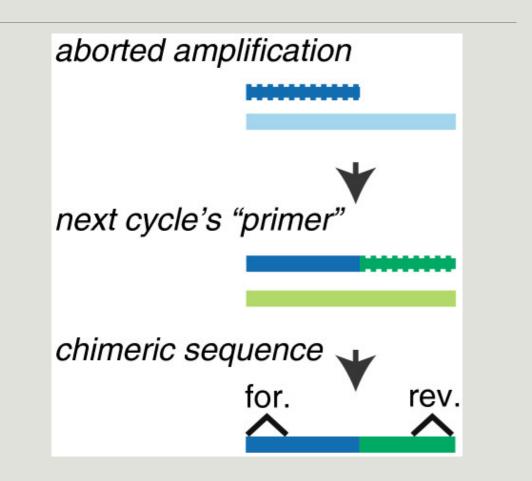
Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

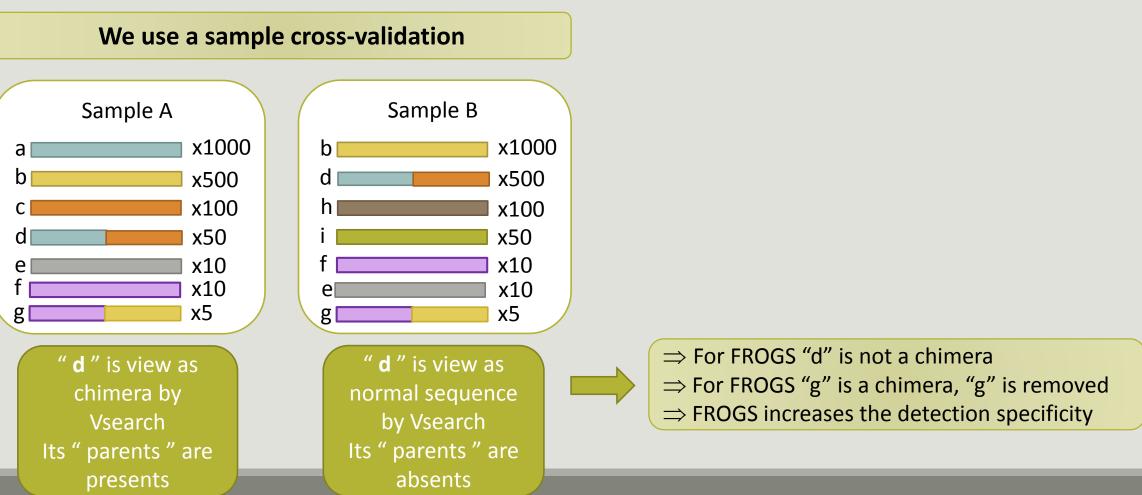
×

Data acquisition

FROGS Remove chimera × non_chimera_fasta (fasta) out_abundance_biom (biom1) out_abundance_count (tabular) 🖂 🤇 summary_file (html)


FROGS Affiliation OTU OTU seed sequence Abundance file biom_affiliation (biom1) summary (html) Affiliation

Our advice: **Removing Chimera after** Swarm denoising + Swarm d=3, for saving time without sensitivity loss


What is chimera ?

PCR-generated chimeras are typically created when an aborted amplicon acts as a primer for a heterologous template. Subsequent chimeras are about the same length as the non-chimeric amplicon and contain the forward (for.) and reverse (rev.) primer sequence at each end of the amplicon.

Chimera: from 5 to 45% of reads (Schloss 2011)

A smart removal chimera to be accurate

Your Turn! - 5

LAUNCH THE REMOVE CHIMERA TOOL


Go to « MiSeq contiged » history

Launch the « FROGS Remove Chimera » tool

Follow by the « FROGS ClusterStat » tool on the swarm d1d3 non chimera abundance biom

 \rightarrow objectives :

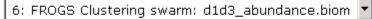
- understand the efficiency of the chimera removal
- make links between small abundant OTUs and chimeras

Chimera

FROGS Remove chimera (version 1.3.0)

Sequences file:

5: FROGS Clustering swarm: d1d3_seed_sequences.fasta 🔻


The sequences file (format: fasta).

Abundance type:

BIOM file 🔻

Select the type of file where the abundance of each sequence by sample is stored.

Abundance file:

It contains the count by sample for each sequence.

- 1. Understand the « FROGS remove chimera : report.html»
 - a. How many clusters are kept after chimera removal?
 - b. How many sequences that represent ? So what abundance?
 - c. What do you conclude ?

MiSeq contiged

Exercise 5

- 2. Launch « FROGS ClusterStat » tool on non_chimera_abundanced1d3.biom
- 3. Rename output in summary_nonchimera_d1d3.html
- 4. Compare the HTML files
 - a. Of what are mainly composed singleton ? (compare with precedent summary.html)
 - b. What are their abundance?
 - c. What do you conclude ?

The weakly abundant OTUs are mainly false positives, our data would be much more exact if we remove them

Filters tool

Upload File from Genotoul × out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff,

gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

Data acquisition

FROGS Pre-process	FROGS Clustering swarm
Archive file) Sequences file
dereplicated_file (fasta) 🖸 🔁) Count file
count_file (tabular) 🛛 💿 🏳	seed_file (fasta)
summary_file (html) 🛛 💿 🗘	abundance_biom (biom1)
	swarms_composition (tabular)
Pre-process	Clustering

Demultiplexing

	-
FROGS Clustering swarm	
) Sequences file	
) Count file	
seed_file (fasta) 🛛 🔅	1
abundance_biom (biom1) 🛛 🖸	
swarms_composition (tabular) 🖸	3
Clustering	

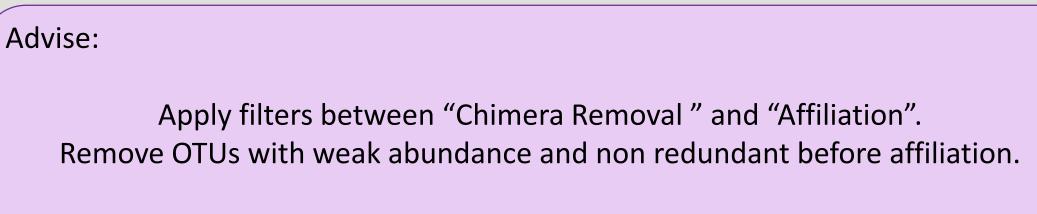
FROGS Clusters stat 🗶

summary_file (html) 📋

Abundance file

Cluster

Statistics

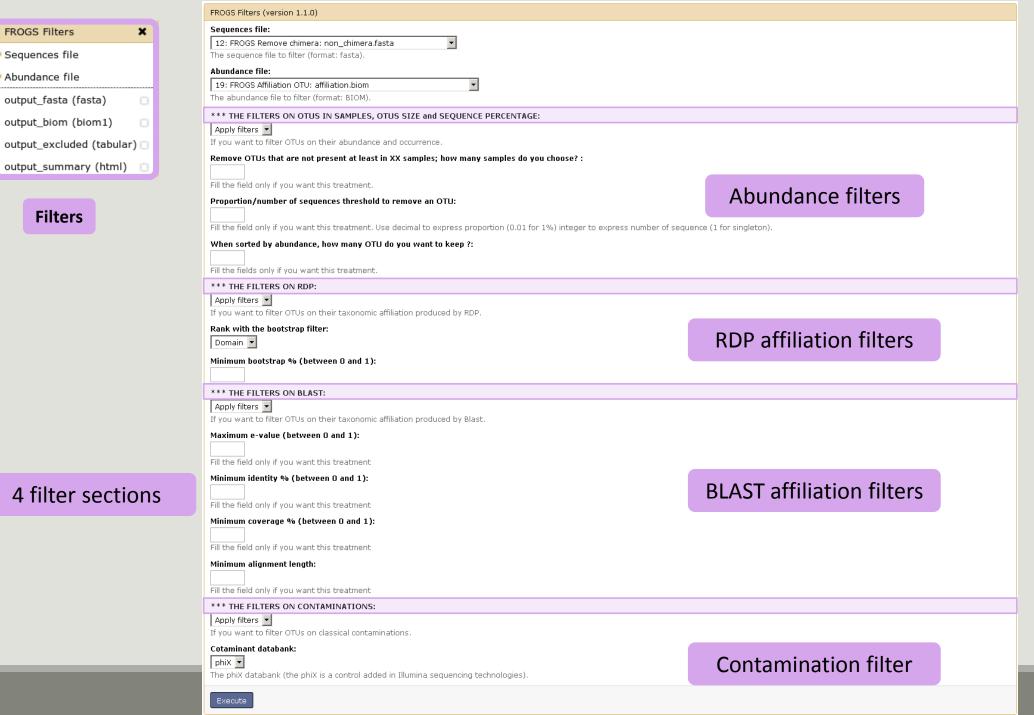

FROGS Remove chimera × OTU seed sequence Sequences file Abundance file Abundance file biom_affiliation (biom1) 🖂 non_chimera_fasta (fasta) 00 summary (html) out_abundance_biom (biom1) 🛛 🔅 out_abundance_count (tabular) 🖂 🤇 Affiliation summary_file (html) Chimera FROGS Filters × Sequences file Abundance file output_fasta (fasta) 0(output_biom (biom1) output_excluded (tabular) 🗇

output_summary (html)

Filters

FROGS Affiliation OTU

Affiliation runs long time



You will gain time !

Filters

Filters allows to filter the result thanks to different criteria et may be used after different steps of pipeline :

- On the abundance
- On RDP affiliationOn Blast affiliation
- On phix contaminant

FROGS Filters (version 1.1.0)		
Sequences file: 12: FROGS Remove chimera: non_chimera.fasta	•	Fasta sequences and its
The sequence file to filter (format: fasta). Abundance file:		corresponding abundance biom files
19: FROGS Affiliation OTU: affiliation.biom The abundance file to filter (format: BIOM).	•	

Filter 1 : abundance

*** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE:

Apply filters 💌

If you want to filter OTUs on their abundance and occurrence.

Remove OTUs that are not present at least in XX samples; how many samples do you choose? :

Fill the field only if you want this treatment.

Proportion/number of sequences threshold to remove an OTU:

0.00005

Fill the field only if you want this treatment. Use decimal to express proportion (0.01 for 1%) integer to express number of sequence (1 for singleton).

When sorted by abundance, how many OTU do you want to keep ?:

500

Fill the fields only if you want this treatment.

Input

12: FROGS Remove chimera: non_chimera.fasta The sequence file to filter (format: fasta). Abundance file: COP	Fasta sequences and its
COr	
thundance file:	rochanding abundance biom files
ibundunce me.	responding abundance biom files
19: FROGS Affiliation OTU: affiliation.biom	
The abundance file to filter (format: BIOM).	
* * * THE FILTERS ON RDP:	
Apply filters	
f you want to filter OTUs on their taxonomic affiliation produced by RDP.	
Rank with the bootstrap filter:	Filter 2 & 3:
Domain 🔽	FILLET Z Q 3.
_	affiliation
Minimum bootstrap % (between 0 and 1):	
0.8	
*** THE FILTERS ON BLAST:	
Apply filters 💌	
If you want to filter OTUs on their taxonomic affiliation produced by Blast.	
Maximum e-value (between 0 and 1):	
Fill the field only if you want this treatment	
Minimum identity % (between 0 and 1):	
0.95	
Fill the field only if you want this treatment	
Minimum coverage % (between 0 and 1):	
Fill the field only if you want this treatment	
Minimum alignment length:	

Fill the field only if you want this treatment

FROGS Filters (version 1.1.0)		
Sequences file:		
12: FROGS Remove chimera: non_chimera.fasta	▼	Fasta sequences and its
, The sequence file to filter (format: fasta).		·
Abundance file:		corresponding abundance biom files
19: FROGS Affiliation OTU: affiliation.biom	~	
The abundance file to filter (format: BIOM).		

Filter 4 : contamination

*** THE FILTERS ON CONTAMINATIONS:		
Apply filters 💌		
If you want to filter OTUs on classical contaminations.		
Cotaminant databank:	Soon, several contaminant banks	J
The phiX databank (the phiX is a control added in I	llumina sequencing technologies).	

Your Turn! - 6

LAUNCH DE LA TOOL FILTERS

Go to history « MiSeq contiged »

Launch « Filters » tool with non_chimera_abundanced1d3.biom, non_chimerad1d3.fasta

Apply 2 filters :

- proportion/number of sequences threshold to remove an OTU: 0.00005*
- Remove OTUs that are not present at least in XX samples; how many samples do you choose? : 3

 \rightarrow objective : play with filters, understand their impacts on falses-positives OTUs

FROGS Filters	×
Sequences file	
Abundance file	
output_fasta (fasta)	0
output_biom (biom1)	8
output_excluded (tabular)	8
output_summary (html)	8

Filters

	Input
FROGS Filters (version 1.1.0)	
Sequences file:	
9: FROGS Remove chimera: non_chimera.fasta	
The sequence file to filter (format: fasta).	
Abundance file:	
10: FROGS Remove chimera: non_chimera_abundance.biom 💌	
The abundance file to filter (format: BIOM).	
*** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE:	
Apply filters 🔻	
If you want to filter OTUs on their abundance and occurrence.	
Remove OTUs that are not present at least in XX samples; how many samples do you 3 Fill the field only if you want this treatment.	choose? :
Proportion/number of sequences threshold to remove an OTU:	
0.00005	
Fill the field only if you want this treatment. Use decimal to express proportion (0.01 for 1%) express number of sequence (1 for singleton).	integer to
When sorted by abundance, how many OTU do you want to keep ?:	
*** THE FILTERS ON RDP:	
If you want to filter OTUs on their taxonomic affiliation produced by RDP.	
*** THE FILTERS ON BLAST:	
No filters 💌	

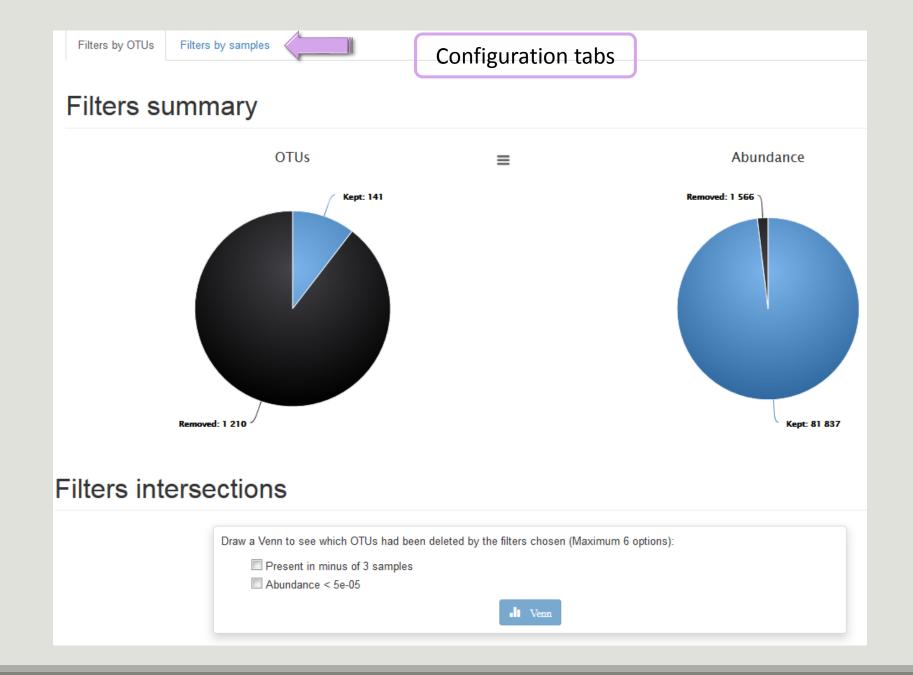
Output

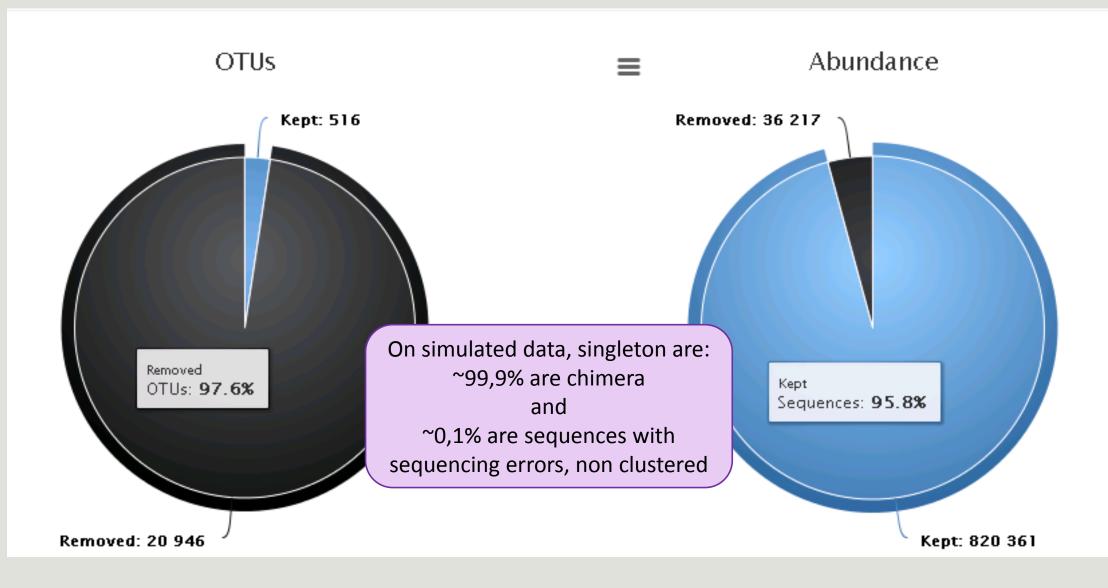
92: FROGS Filters: report.html	• / %
91: FROGS Filters: excluded.tsv	• 0 X
90: FROGS Filters: abundance.biom	● l ×
<u>89: FROGS Filters:</u> sequences.fasta	• / ×

If you want to filter OTUs on their taxonomic affiliation produced by Blast.

*** THE FILTERS ON CONTAMINATIONS:

No filters 🔹

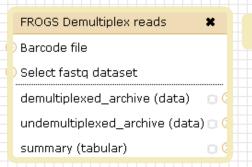

If you want to filter OTUs on classical contaminations.


Execute

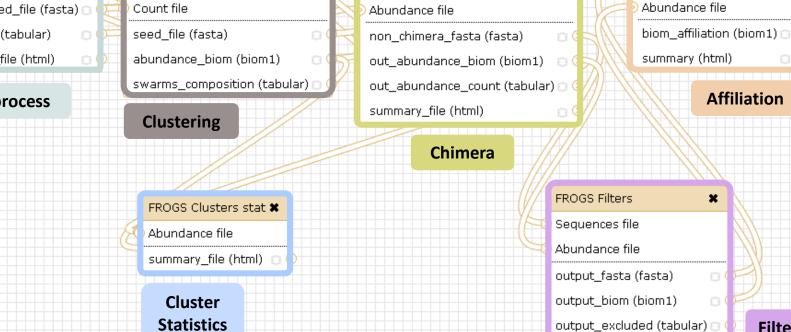
MiSeq contiged

Exercise 6

- 1. What are the output files of "Filters"?
- 2. Explore "FROGS Filter : report.html" file.
- 3. How many OTUs have you removed ?
- 4. Build the Venn diagram on the two filters.
- 5. How many OTUs have you removed with each filter "abundance > 0.005%", "Remove OTUs that are not present at least in 3 samples"?
- 6. How many OTUs do they remain ?
- 7. Is there a sample more impacted than the others ?
- 8. To characterize these new OTUs, do not forget to launch "FROGS Cluster Stat" tool, and rename the output HTML file.


Removing little OTUs (conservation rate =0.005%) and non shared OTU (in less than 2 samples)

Venn on removed OTUs


х

Affiliation tool

Demultiplexing

×

FROGS Remove chimera

Sequences file

×

-multi_affi_file (tabular) 🖂 🌗

0

Abundance file

Sequences file

tsv_file (tabular)

Filters

FROGS Affiliation OTU

×

8(

output_summary (html)

Affiliation

OTU seed sequence

	FROGS Affiliation OTU (version 0.8.0)
FROGS Affiliation OTU OTU seed sequence Abundance file	Using reference database: silva123 165 Select reference from the list
biom_affiliation (biom1) 😋 🤇 summary (html)	Also perform RDP assignation?: Optional
Affiliation	Taxonomy affiliation will be perform thanks to Blast. This option allow you to perform it also with RDP classifier (default No) OTU seed sequence: 55: FROGS Filters: sequences.fasta OTU sequences (format: fasta).
	Abundance file: 56: FROGS Filters: abundance.biom OTU abundances (format: BIOM). Execute

1 Cluster = 2 affiliations

Double Affiliation vs SILVA 123 (for 16S, 18S or 23S), SILVA 119 (for 18S) or Greengenes with :

1. RDPClassifier* (Ribosomal Database Project): one affiliation with bootstrap, on each taxonomic subdivision.

Bacteria(100);Firmicutes(100);Clostridia(100);Clostridiales(100);Lachnospiraceae(100);Pseudobutyrivibrio(80); Pseudobutyrivibrio xylanivorans (80)

2. NCBI Blastn+** : all identical Best Hits with identity %, coverage %, e-value, alignment length and a special tag "**Multi-affiliation**".

Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Pseudobutyrivibrio; Pseudobutyrivibrio ruminis; Pseudobutyrivibrio xylanivorans Identity: 100% and Coverage: 100%

> * Appl. Environ. Microbiol. August 2007 vol. 73 no. 16 5261-5267. doi : 10.1128/AEM.00062-07 Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Qiong Wang, George M.Garrity, James M. Tiedje and James R. Cole

Affiliation Strategy of FROGS

Blastn+ with "Multi-affiliation" management

V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S unknown species
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S Butyrivibrio fibrisolvens
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S rumen bacterium 8 9293-9
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S Pseudobutyrivibrio xylanivorans
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S Pseudobutyrivibrio ruminis

5 identical blast best hits on SILVA 123 databank

Affiliation Strategy of FROGS

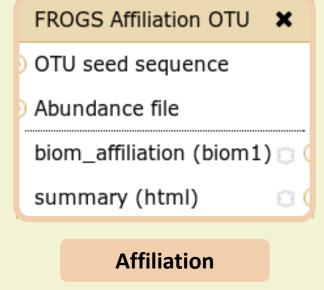
Blastn+ with "Multi-affiliation" management

V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S unknown species
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S Butyrivibrio fibrisolvens
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S rumen bacterium 8 9293-9
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S Pseudobutyrivibrio xylanivorans
V3 – V4	Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae Pseudobutyrivibrio 16S Pseudobutyrivibrio ruminis

FROGS Affiliation: Bacteria | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Pseudobutyrivibrio | **Multi-affiliation**

Your Turn! – 7

LAUNCH THE « FROGS AFFILIATION » TOOL



Exercise 7.1

Go to « MiSeq contiged » history

Launch the « FROGS Affiliation » tool with

- SILVA 123 16S database
- FROGS Filters abundance biom and fasta files (after swarm d1d3, remove chimera and filter low abundances)
- \rightarrow objectives :
 - understand abundance tables columns
 - understand the BLAST affiliation

FROGS Affiliation OTU (version 0.8.0)

Using reference database:

silva123 165

Select reference from the list

Also perform RDP assignation?:

Taxonomy affiliation will be perform thanks to Blast. This option allow you to perform it also with RDP classifier (default No)

 \mathbf{T}

•

OTU seed sequence:

55: FROGS Filters: sequences.fasta

OTU sequences (format: fasta).

Abundance file:

56: FROGS Filters: abundance.biom

OTU abundances (format: BIOM).

Execute

Exercise 7.1

- 1. What are the « FROGS Affiliation » output files ?
- 2. How many sequences are affiliated by BLAST ?
- 3. Click on the « eye » button on the BIOM output file, what do you understand ?
- Use the Biom_to_TSV tool on this last file and click again on the "eye" on the new output generated.
 What do the columns ?
 What is the difference if we click on eace or net 2 What concernes about weight of w

What is the difference if we click on case or not ? What consequence about weight of your file ?

17: FROGS Affiliation OTU: affiliatio	on.biom
The BIOM file to convert (format: B	IOM).
Sequences file:	
13: FROGS Filters: sequences.fasta	a 🗸
The sequences file (format: fasta).	If you use this option the sequences will be add in TSV.
Extract multi-alignments:	

Tools

۲

FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION

FROGS pipeline

FROGS Upload archive from your computer

FROGS Demultiplex reads Split by samples the reads in function of inner barcode.

<u>FROGS Pre-process</u> Step 1 in metagenomics analysis: denoising and dereplication.

FROGS Clustering swarm Step 2 in metagenomics analysis : clustering.

<u>FROGS Remove chimera</u> Step 3 in metagenomics analysis : Remove PCR chimera in each sample.

<u>FROGS Filters</u> Filters OTUs on several criteria.

<u>FROGS Affiliation OTU</u> Step 4 in metagenomics analysis : Taxonomic affiliation of each OTU's seed by RDPtools and BLAST

FROGS BIOM to TSV Converts a BIOM file in TSV file.

FROGS Clusters stat Process some metrics on clusters.

<u>FROGS Affiliations stat</u> Process some metrics on taxonomies.

FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM.

FROGS Abundance normalisation MiSeq contiged

Exercise 7.1

5. Understand Blast affiliations - Cluster_2388

blast_subject	blast_evalue	blast_len	blast_perc_q uery_covera ge	blast_perc_id entity	blast_taxonomy	
JN880417.1.1422	0.0	360	88.88	99.44	Bacteria;Planctomycetes;Planctomycetacia;Pl anctomycetales;Planctomycetaceae;Telmatoc ola;Telmatocola sphagniphila	

Blast JN880417.1.1422 vs our OTU

OTU length : 405

Excellent blast but no matches at the beginning of OTU.

Telmatocola sphagniphila strain SP2 16S ribosomal RNA gene, partial sequence Sequence ID: ref[NR 118328.1 Length: 1422 Number of Matches: 1

Range	1: 375	to 734 GenBank Gra	phics	Vext	Match 🔺 Previous N
Score		Expect	Identities	Gaps	Strand
654 b	its(35	4) 0.0	358/360(99%)	0/360(0%)	Plus/Plus
Query	46	CGCGTGCGCGATGAAG	GCCTTCGGGTTGTAAAGCG		GAAACCT 105
Sbjct	375		SCCTTCGGGTTGTAAAGCG		GAAACTT 434
Query	106		GCTCGGGCTAAGTTTGTGC		
Sbjct	435		GCTCGGGCTAAGTTTGTGC		
Query	166		ATCACTGGGCATAAAGGGC		
Sbjct	495		ATCACTGGGCATAAAGGGC		
Query	226	GTGAAATACTTCAGCT	CAACTGGAGAACTGCCTCG	GATACTGGGAATCTCGAG	TAATGTA 285
Sbjct	555	GTGAAATACTTCAGCT	CAACTGGAGAACTGCCTCG	GATACTGGGAATCTCGAG	TAATGTA 614
Query	286		TGGTGGAGCGGTGAAATG		
Sbjct	615	GGGGCACGTGGAACGG	TGGTGGAGCGGTGAAATG	CGTTGATATCAGTCGGA	ACTCCGGT 674
Query	346	GGCGAAGGCGATGTGC	GGACATTTACTGACGCTG	AGGCGCGAAAGCCAGGGG	AGCAAAC 405
Sbjct	675	GGCGAAGGCGATGTGC	rggacatttactgacgctg	AGGCGCGAAAGCCAGGG	AGCAAAC 734

Telmatocola sphagniphila strain SP2 16S ribosomal RNA gene, partial sequence

NCBI Reference Sequence: NR_118328.1

FASTA Graphics

<u>Go to:</u> 🖂

LOCUS	NR_118328 1422 bp rRNA linear BCT 03-FEB-2015
DEFINITION	Telmatocola sphagniphila strain SP2 16S ribosomal RNA gene, partial
ACCESSIO VERSION DBLINK	NR_118328 IIII:645321338 Project: 33175
DDDIRK	BioProject: PRJNA33175
KEYWORDS	RefSeq.
SOURCE	Telmatocola sphagniphila
ORGANISM	Telmatocola sphagniphila
	Bacteria; Planctomycetes; Planctomycetia; Planctomycetales;
	Planctomycetaceae.
REFERENCE	1 (bases 1 to 1422)
AUTHORS	Kulichevskaya,I.S., Serkebaeva,Y.M., Kim,Y., Rijpstra,W.I.,
	Damste,J.S., Liesack,W. and Dedysh,S.N.
TITLE	Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform
	planctomycete from northern wetlands
JOURNAL	Front Microbiol 3, 146 (2012)
PUBMED	22529844
REMARK	Publication Status: Online-Only
	2 (bases 1 to 1422)
CONSRTM	
TITLE	Direct Submission
JOURNAL	Submitted (28-APR-2014) National Center for Biotechnology
	Information, NIH, Bethesda, MD 20894, USA
REFERENCE	3 (bases 1 to 1422)
AUTHORS	Dedysh, S.N.
TITLE	Direct Submission
JOURNAL	Submitted (20-OCT-2011) Winogradsky Institute of Microbiology RAS,
CONVENT	Prospect 60-Letya Octyabrya 7/2, Moscow 117312, Russia
COMMENT	REVIEWED <u>REFSEQ</u> : This record has been ourgoed by mail staff. The
	reference sequence is identical to JN880417:1-1422.

Blast columns

OTU_2 seed has a best BLAST hit with the reference sequence AJ496032.1.1410

The reference sequence taxonomic affiliation is this one.

#blast_taxonomy	blast_subject	blast_perc_identity	blast_perc_query_coverage	blast_evalue	blast_aln_length
Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Metascardovia; Multi-affiliation	multi-subject	100.0	100.0	0.0	411
Bacteria;Fibrobacteres;Fibrobacteria;Fibrobacterales;Fibrobacteraceae;Fibrobacter;Fibrobacter succinogenes	AJ496032.1.1410	100.0	100.0	0.0	419
Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae	EU240886.1.1502	100.0	100.0	0.0	427
Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Psychrobacter; Psychrobacter immobilis	U39399.1.1477	100.0	100.0	0.0	426
Bacteria;Thermotogae;Thermotogae;Thermotogales;Thermotogaceae;Petrotoga;Petrotoga miotherma	FR733705.1.1499	100.0	100.0	0.0	419
${\tt Bacteria}; {\tt Proteobacteria}; {\tt Alphaproteobacteria}; {\tt Rhizobiales}; {\tt Phyllobacteriaceae}; {\tt Pseudahrensia}; {\tt Pse$	GU575117.1.1441	100.0	100.0	0.0	401
Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Persicitalea;Persicitalea jodogahamensis	multi-subject	100.0	100.0	0.0	421
${\tt Bacteria}; {\tt Proteobacteria}; {\tt Deltaproteobacteria}; {\tt Bdellovibrionales}; {\tt Bdellovibrionaceae}; {\tt Bdellovibrio}; {\tt Multi-affiliation}; {\tt Multi-af$	multi-subject	100.0	100.0	0.0	404

Convert to TSV

FROGS BIOM to TSV
Abundance file
Sequences file
tsv_file (tabular) 🛛 🔅 🤇
multi_affi_file (tabular) 🖂 🤇

Evaluation variables of BLAST

Does

Kennard Play

Classical

Guitar

Songs?

Or Folk

Blast columns

Observe line of Cluster 1 inside abundance.tsv and multi_hit.tsv files, what do you conclude ?

blast_subject	blast_perc_identity	blast_perc_query_coverage	blast_evalue	blast_aln_length
multi-subject	100.0	100.0	0.0	411
AJ496032.1.1410	100.0	100.0	0.0	419
EU240886.1.1502	100.0	100.0	0.0	427
U39399.1.1477	100.0	100.0	0.0	426
FR733705.1.1499	100.0	100.0	0.0	419
GU575117.1.1441	100.0	100.0	0.0	401
multi-subject	100.0	100.0	0.0	421
multi-subject	100.0	100.0	0.0	404
	multi-subject AJ496032.1.1410 EU240886.1.1502 U39399.1.1477 FR733705.1.1499 GU575117.1.1441 multi-subject	multi-subject100.0AJ496032.1.1410100.0EU240886.1.1502100.0U39399.1.1477100.0FR733705.1.1499100.0GU575117.1.1441100.0multi-subject100.0	multi-subject100.0100.0AJ496032.1.1410100.0100.0EU240886.1.1502100.0100.0U39399.1.1477100.0100.0FR733705.1.1499100.0100.0GU575117.1.1441100.0100.0multi-subject100.0100.0	multi-subject 100.0 100.0 0.0 AJ496032.1.1410 100.0 100.0 0.0 EU240886.1.1502 100.0 100.0 0.0 U39399.1.1477 100.0 100.0 0.0 FR733705.1.1499 100.0 100.0 0.0 GU575117.1.1441 100.0 100.0 0.0 multi-subject 100.0 100.0 0.0

Cluster_1 has 5 identical blast hits, with different taxonomies as the species level

Blast columns

Observe line of Cluster 11 inside abundance.tsv and multi_hit.tsv files, what do you conclude ?

multi-subject

100.0

Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae; Henriciella; Henriciella marina

Cluster_11 has 2 identical blast hits, with identical species but with different strains (strains are not written in our data)

100.0

Blast columns

Observe line of Cluster 43 inside abundance.tsv and multi_hit.tsv files, what do you conclude ?

Bacteria;Firmicutes;Ne	gativicutes;Selenomonadales;Veillonellaceae;Multi-affiliation;Multi-affiliation	multi-subject	99.3	100.0
Cluster_43	Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Selenomonas 3;unknown s	pecies	JQ4	447821.1.1420
Cluster_43	Bacteria;Firmicutes;Negativicutes;Selenomonadales;Veillonellaceae;Centipeda;Centipeda perio	dontii	AJO	10963.1.1494

Cluster_43 has 2 identical blast hits, with different taxonomies at the genus level

1st to 6th columns – Blast

blast_subject	blast_perc_identity	blast_perc_query_coverage	blast_evalue	blast_aln_length
AY576654.1.1447	100.0	100.0	0.0	421
AF099064.1.1523	100.0	100.0	0.0	427
GU575117.1.1441	100.0	100.0	0.0	401
AF004845.1.1337	100.0	100.0	0.0	400
multi-subject	100.0	100.0	0.0	425
multi-subject	100.0	100.0	0.0	402
AB495251.1.1512	100.0	100.0	0.0	426
multi-subject	100.0	100.0	0.0	420
Y17600.1.1463	100.0	100.0	0.0	401
	AY576654.1.1447 AF099064.1.1523 GU575117.1.1441 AF004845.1.1337 multi-subject multi-subject AB495251.1.1512	AY576654.1.1447 100.0 AF099064.1.1523 100.0 GU575117.1.1441 100.0 AF004845.1.1337 100.0 multi-subject 100.0 multi-subject 100.0 AB495251.1.1512 100.0 multi-subject 100.0	AY576654.1.1447100.0100.0AF099064.1.1523100.0100.0GU575117.1.1441100.0100.0AF004845.1.1337100.0100.0multi-subject100.0100.0multi-subject100.0100.0AB495251.1.1512100.0100.0multi-subject100.0100.0	AY576654.1.1447100.0100.00.0AF099064.1.1523100.0100.00.0GU575117.1.1441100.0100.00.0AF004845.1.1337100.0100.00.0multi-subject100.0100.00.0multi-subject100.0100.00.0AB495251.1.1512100.0100.00.0multi-subject100.00.00.0

Cluster_6 has 38 identical blast hits, with different taxonomies as the species level

1st to 6th columns – Blast

blast_subject	blast_perc_identity	blast_perc_query_coverage	blast_evalue	blast_aln_length
AY576654.1.1447	100.0	100.0	0.0	421
AF099064.1.1523	100.0	100.0	0.0	427
GU575117.1.1441	100.0	100.0	0.0	401
AF004845.1.1337	100.0	100.0	0.0	400
multi-subject	100.0	100.0	0.0	425
multi-subject	100.0	100.0	0.0	402
AB495251.1.1512	100.0	100.0	0.0	426
multi-subject	100.0	100.0	0.0	420
s Y17600.1.1463	100.0	100.0	0.0	401
	AY576654.1.1447 AF099064.1.1523 GU575117.1.1441 AF004845.1.1337 multi-subject multi-subject AB495251.1.1512	AY576654.1.1447 100.0 AF099064.1.1523 100.0 GU575117.1.1441 100.0 AF004845.1.1337 100.0 multi-subject 100.0 multi-subject 100.0 AB495251.1.1512 100.0 multi-subject 100.0	AY576654.1.1447100.0100.0AF099064.1.1523100.0100.0GU575117.1.1441100.0100.0AF004845.1.1337100.0100.0multi-subject100.0100.0multi-subject100.0100.0MB495251.1.1512100.0100.0multi-subject100.0100.0	AY576654.1.1447100.0100.00.0AF099064.1.1523100.0100.00.0GU575117.1.1441100.0100.00.0AF004845.1.1337100.0100.00.0multi-subject100.0100.00.0multi-subject100.0100.00.0AB495251.1.1512100.0100.00.0multi-subject100.00.00.0

Cluster_8 has 2 identical blast hits, with different taxonomies as the genus level

Blast variables : e-value

The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance when searching a database of a particular size.

The lower the E-value, or the closer it is to zero, the more "significant" the match is.

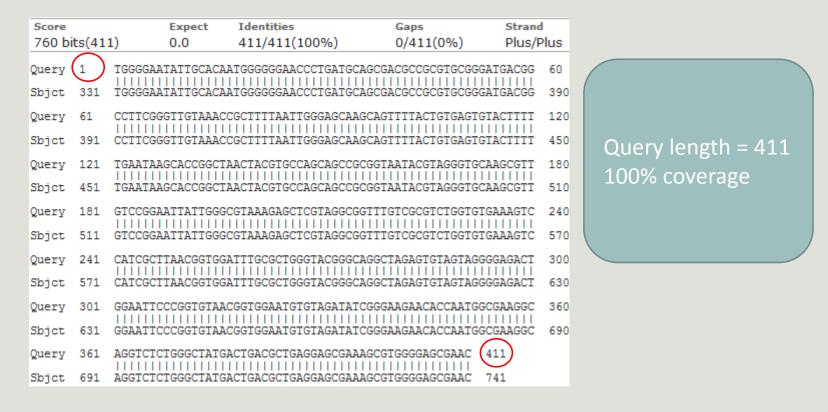
Blast variables : blast_perc_identity

Identity percentage between the Query (OTU) and the subject in the alignment (length subject = 1455 bases)

Score		Expect	Identities	Gaps	Strand		
760 bit	s(411) 0.0	411/411(100%)	0/411(0%)	Plus/P	lus	
~	-	111111111111111111	ATGGGGGGAACCCTGATG 			60 390	
Query Sbjct		1111111111111111111	CGCTTTTAATTGGGAGCAA			120 450	Query length = 411 Alignment length = 4
~ 1		111111111111111111	TAACTACGTGCCAGCAGCCC			180 510	0 mismatch
~ -		1111111111111111111	CGTAAAGAGCTCGTAGGCC			240 570	-> 100% identity
~ -			GATTTGCGCTGGGTACGGG 			300 630	
~ -		111111111111111111	ACGGTGGAATGTGTAGATA ACGGTGGAATGTGTAGATA			360 690	
~		1111111111111111111	GACTGACGCTGAGGAGCGAA 		411 741		

411

Blast variables : blast_perc_identity

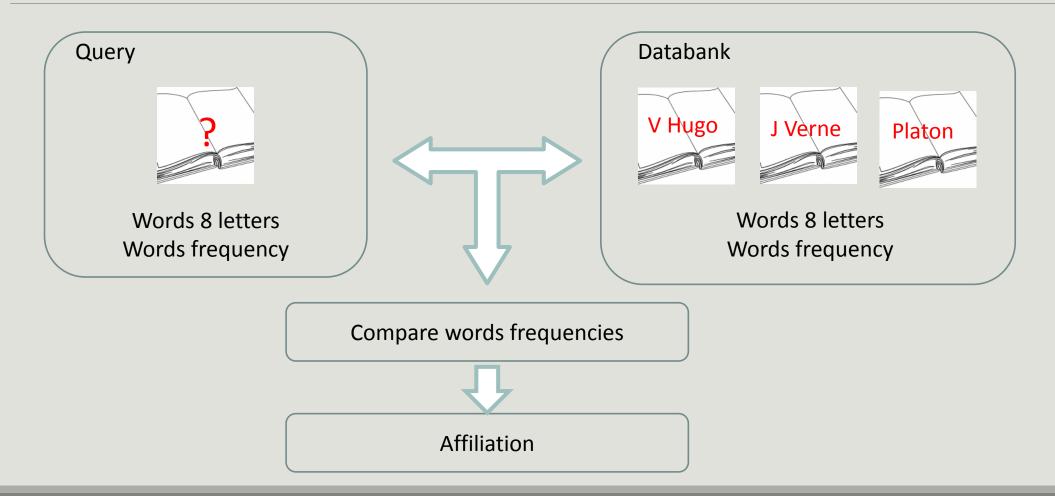

Identity percentage between the Query (OTU) and the subject in the alignment (length subject = 1455 bases)

Score		Expect	Identities	Gaps	Strand	
614 bi	ts(332)	5e-172	385/411(94%)	5/411(1%)	Plus/Plus	
Query	1	TGGGGAATATTGCAC	AATGGGGGGGAACCCTGATGCA	GCGACGCCGCGTGCGG		60
Sbjct	140728		AATGGGCGAAAGCCTGATGCA			140787
Query	61		CCGCTTTTAATTGGGAGCAAG		GTACTTTT	120
Sbjct	140788		CCGCTTTTGATTGGGAGCAAG			140842
Query	121		IAACTACGTGCCAGCAGCCGC			180
Sbjct	140843		IAACTACGTGCCAGCAGCCGC			140902
Query	181		GCGTAAAGAGCTCGTAGGCGG			240
Sbjct	140903		GCGTAAAGRGCTCGTAGGCGG			140962
Query	241	CATCGCTTAACGGTG	GATTTGCGCTGGGTACGGGCA		GGGAGACT	300
Sbjct	140963		GATCTGCGCCGGGTACGGGCG			141022
Query	301		ACGGTGGAATGTGTAGATATC			360
Sbjct	141023		ACGGTGGAATGTGTAGATATC			141082
Query	361	AGGTCTCTGGGCTAT	GACTGACGCTGAGGAGCGAAA		411	
Sbjct	141083		IACTGACGCTGAGGAGCGAAA		141133	

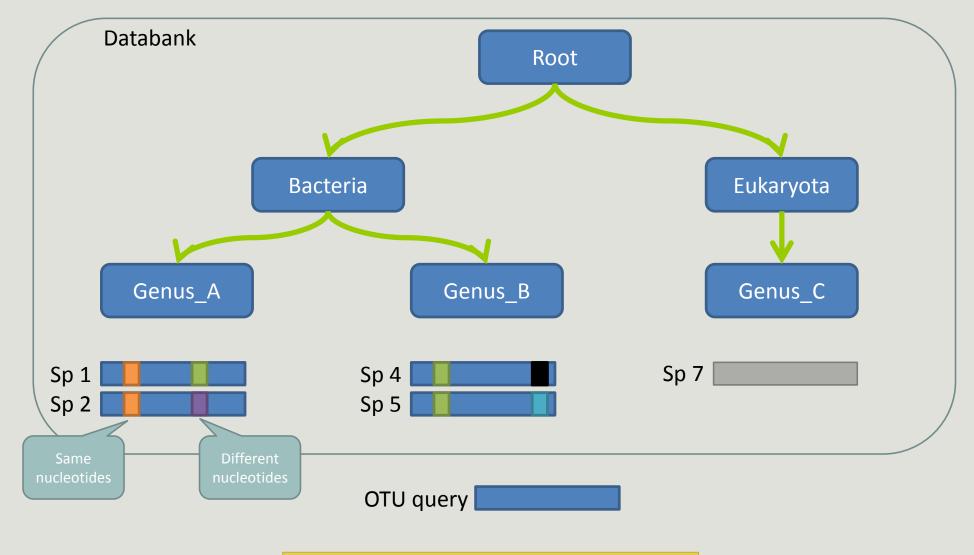
Query length = 411 Alignment length = 411 26 mismatches (gaps included) -> 94% identity

Blast variables : blast_perc_query_coverage

Coverage percentage of alignment on query (OTU)

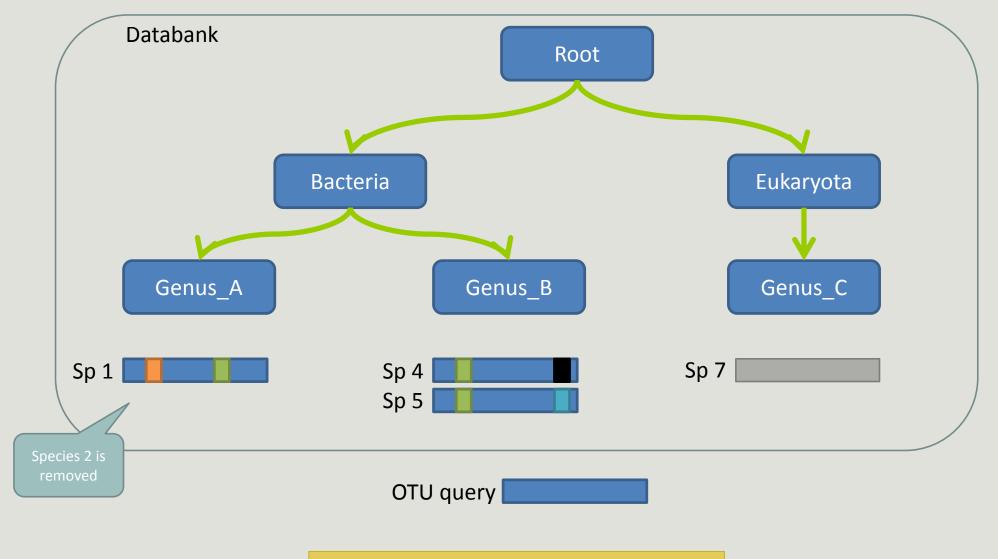

Blast variables : blast-length

Length of alignment between the OTUs = "Query" and "subject" sequence of database

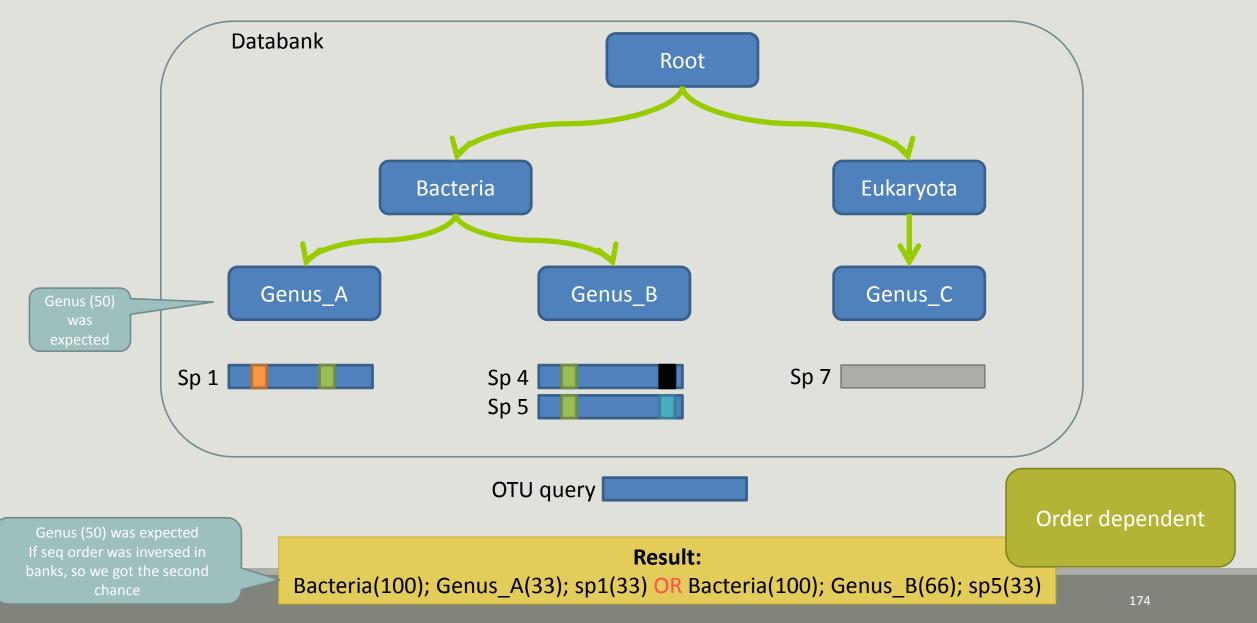

	Coverage %	Identity %	Length alignment
OTU1	100	98	400
OTU2	100	98	500

S Affiliation OTU	FROGS Affiliation OTU (version 0.8.0)	
seed sequence dance file	Using reference database: silva123 165 - Select reference from the list	
_affiliation (biom1) 🗃 🤇 hary (html) 🔹	Also perform RDP assignation?: Optional and not in our guidelin	
Affiliation	Taxonomy affiliation will be perform thanks to Blast. This option allow you to perform it also with RDP classifier (OTU seed sequence: 55: FROGS Filters: sequences.fasta OTU sequences (format: fasta). Abundance file: 56: FROGS Filters: abundance.biom OTU abundances (format: BIOM). Who have already used RDP previously ?	(derault No)
	Execute	Why not RD FROGS SO

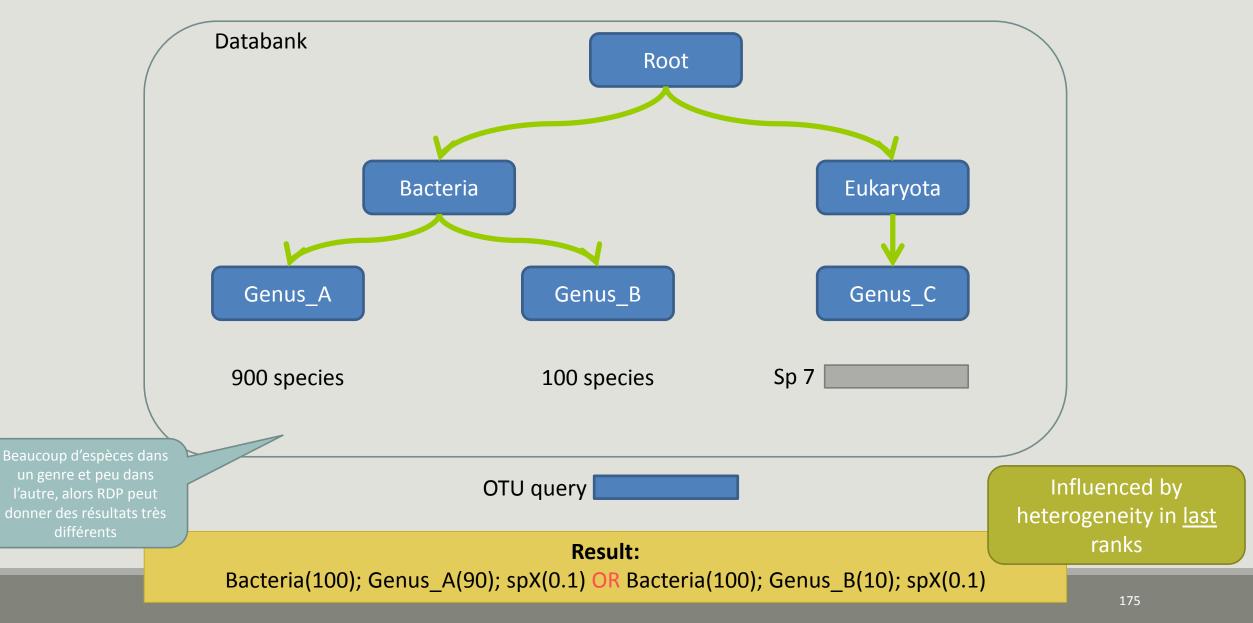
How works RDP ?



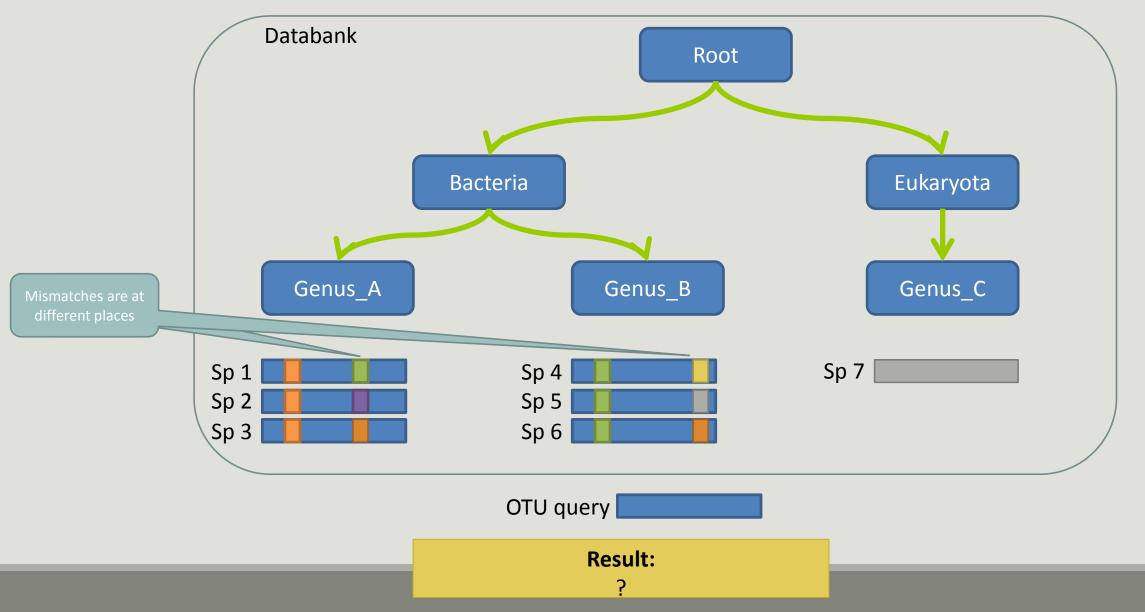
How works RDP ?

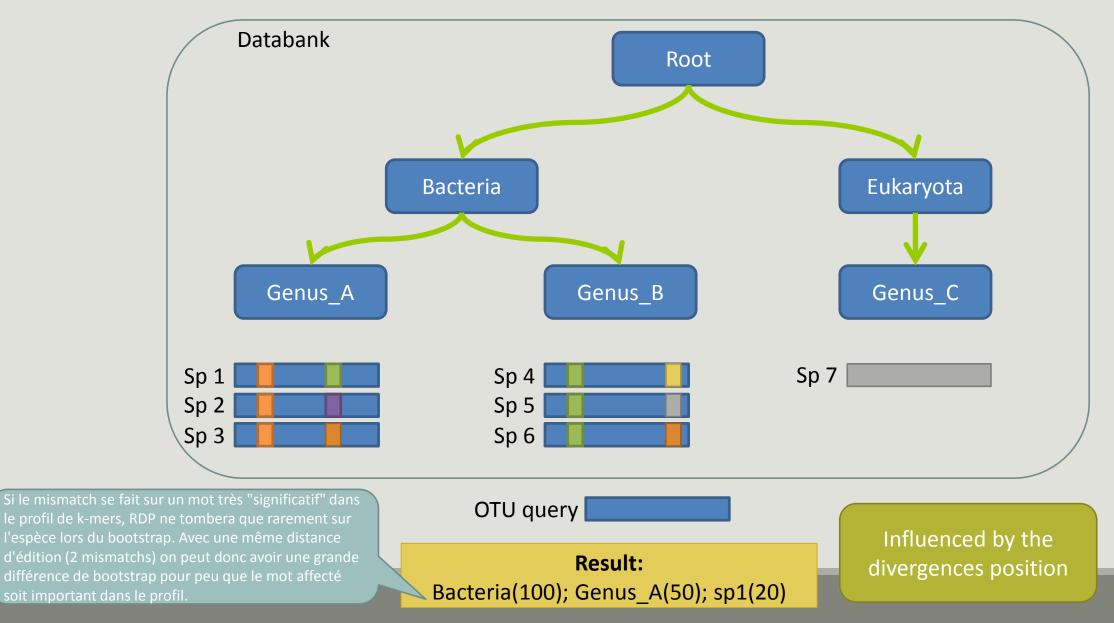

Result: Bacteria(100) ; Genus_A(50) ; Sp1(25)

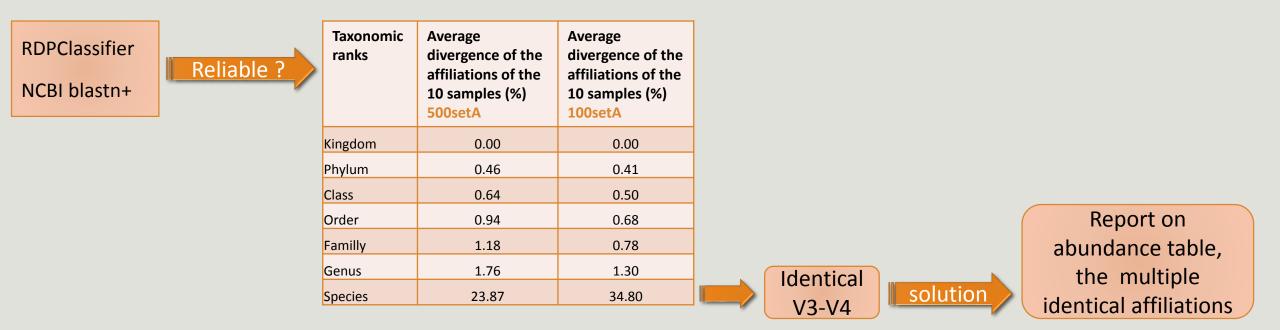
The dysfunctions of RDP ?



Result:


The dysfunctions of RDP n°1?


The dysfunctions of RDP n°2 ?


The dysfunctions of RDP n°3 ?

The dysfunctions of RDP n°3 ?

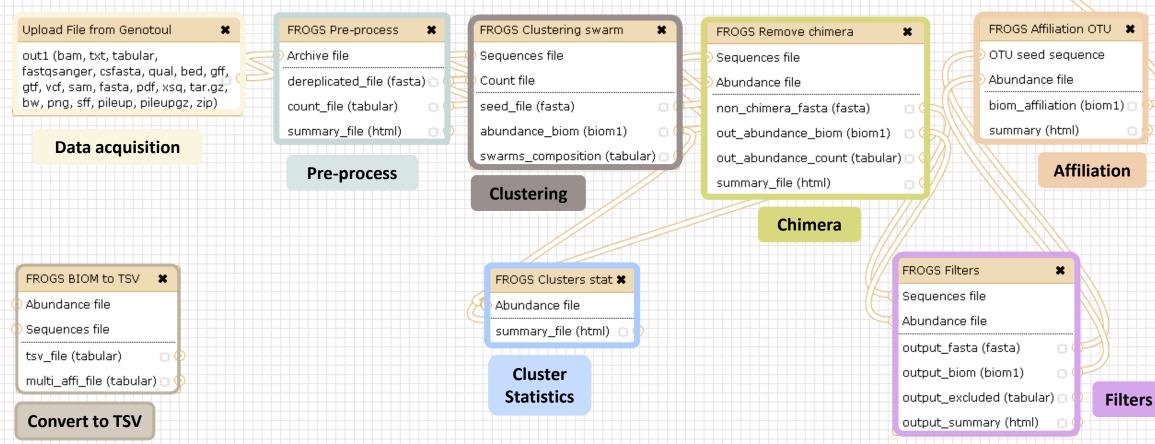
Divergence on the composition of microbial communities at the different taxonomic ranks

Only one best hit				Multiple best hit				
Taxonomic ranks	Average divergence of the affiliations of the 10 samples (%) 500setA	Average divergence of the affiliations of the 10 samples (%) 100setA		Taxonomic ranks	Median divergence of the affiliations of the 10 samples (%) 500setA	Median divergence of th affiliations of th 10 samples (%) 100setA		
Kingdom	0.00	0.00		Kingdom	0.00	0.00		
Phylum	0.46	0.41		Phylum	0.46	0.41		
Class	0.64	0.50		Class	0.64	0.50		
Order	0.94	0.68		Order	0.93	0.68		
Familly	1.18	0.78		Familly	1.17	0.78		
Genus	1.76	1.30		Genus	1.60	1.00		
Species	23.87	34.80		Species	6.63	5.75		
						_		
		W FROG	ith the S guide		Median divergence of the affiliations of the 10 samples (%) 500setA filter: 0.005% - 505 OTUs	Median divergence of th affiliations of th 10 samples (%) 100setA filter: 0.005% - 100 OTUs		
				Kingdom	0.00	0.00		
				Phylum	0.38	0.38		
				Class	0.57	0.48		
				Order	0.81	0.64		
				Familly	1.08	0.74		
			_	Genus	1.43	0.76		

Species

1.53

0.78


he he

Careful: Multi hit blast table is non exhaustive !

- Chimera (multiple affiliation)
- V3V4 included in others
- Missed primers on some 16S during database building

Affiliation Stat

FROGS Affiliations stat (version 1.1.0)	FROGS Affiliations stat (version 1.1.0)
Abundance file:	Abundance file:
93: FROGS Affiliation OTU: affiliation.biom	93: FROGS Affiliation OTU: affiliation.biom
OTUs abundances and affiliations (format: BIOM).	OTUs abundances and affiliations (format: BIOM).
Rarefaction ranks:	Rarefaction ranks:
Class Order Family Genus Species	Class Order Family Genus Species
The ranks that will be evaluated in rarefaction. Each rank is separated by one space.	The ranks that will be evaluated in rarefaction. Each rank is separated by one space.
Affiliation processed:	Affiliation processed:
FROGS blast 💌	OR FROGS rdp
Seleccine type or affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.	Select the type of amiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.
Execute	
Taxonomy distribution Alignment distribution	Taxonomy distribution Bootstrap distribution Affiliation processed Custom Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'. Taxonomic ranks Domain Phylum Class Order Family Genus Species The ordered taxonomic ranks levels stored in BIOM. Each rank is separated by one space. Taxonomy tag: Taxonomy tag: The metadata title in BIOM for the taxonomy. Bootstrap tag: The metadata title in BIOM for the taxonomy bootstrap.
	The metadata tag used in BIOM file to store the alignment identity.
	Coverage tag:
	The metadata tag used in BIOM file to store the alignment OTUs coverage.
	Execute

Exercise 7.2

FROGS Affiliations stat (version 1.1.0)

Abundance file:

17: FROGS Affiliation OTU: affiliation.biom

OTUs abundances and affiliations (format: BIOM).

Rarefaction ranks:

Class Order Family Genus Species

The ranks that will be evaluated in rarefaction. Each rank is separated by one space.

Affiliation processed:

FROGS blast 💲

Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.

Execute

FROGS Affiliations stat (version 1.1.0)

Abundance file:

17: FROGS Affiliation OTU: affiliation.biom

OTUs abundances and affiliations (format: BIOM).

Rarefaction ranks:

Class Order Family Genus Species

The ranks that will be evaluated in rarefaction. Each rank is separated by one space.

Affiliation processed:

Is it adequate on our data ? Why ?

0

Select the type of affiliation processed. If your affiliation has been processed with an external tool: use 'Custom'.

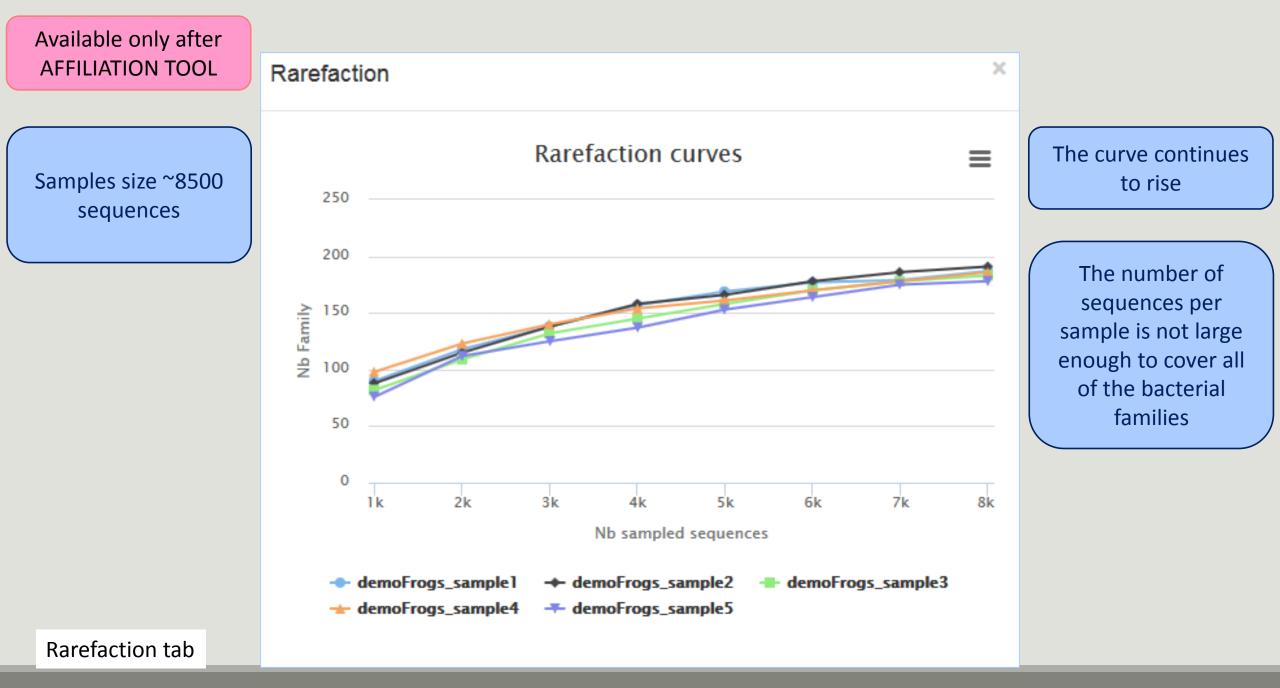
Execute

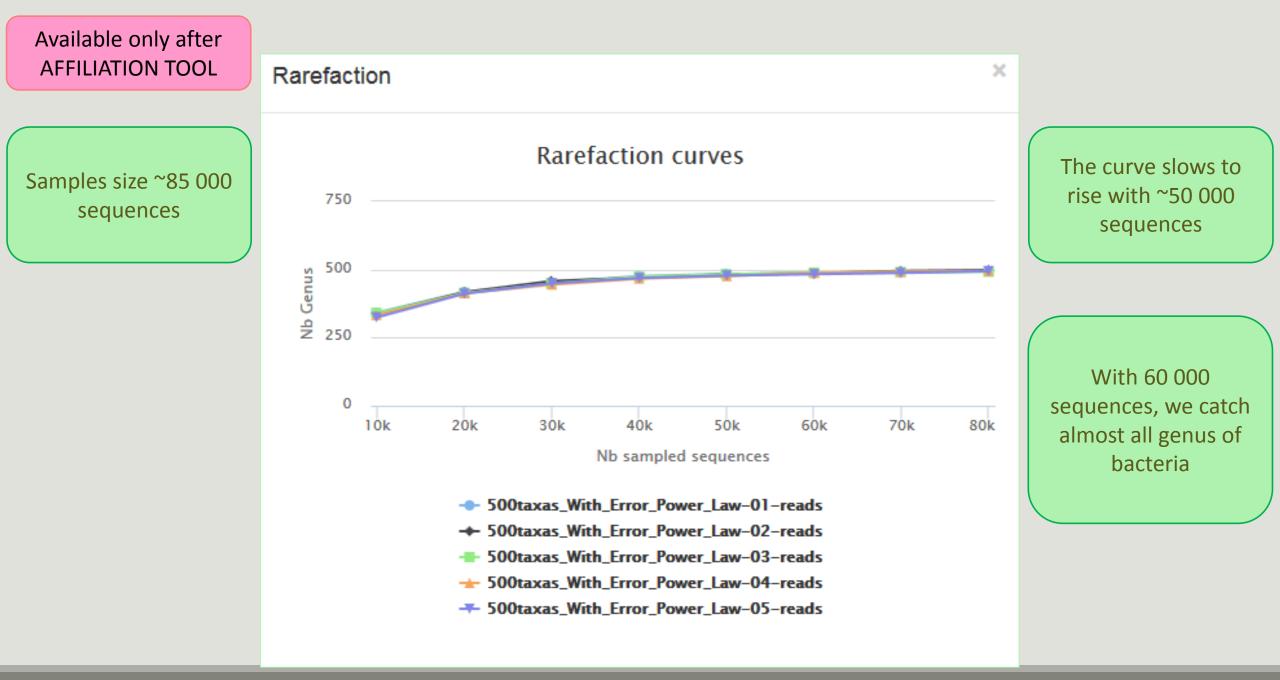
FROGS rdp

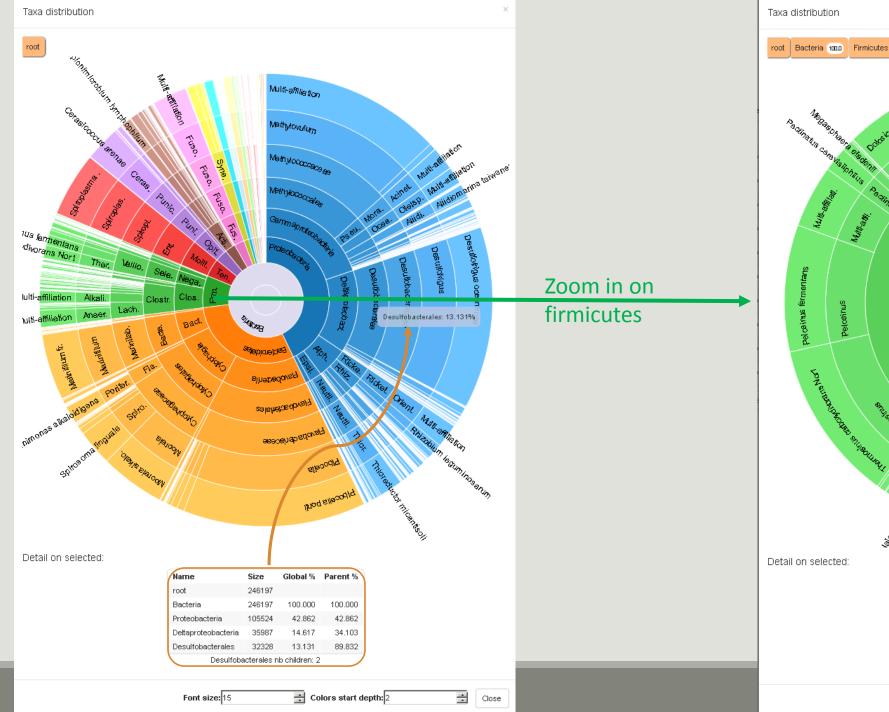
 <u>23: FROGS</u>
 <u>● ℓ ×</u>
 <u>Affiliations stat: summary.html</u>

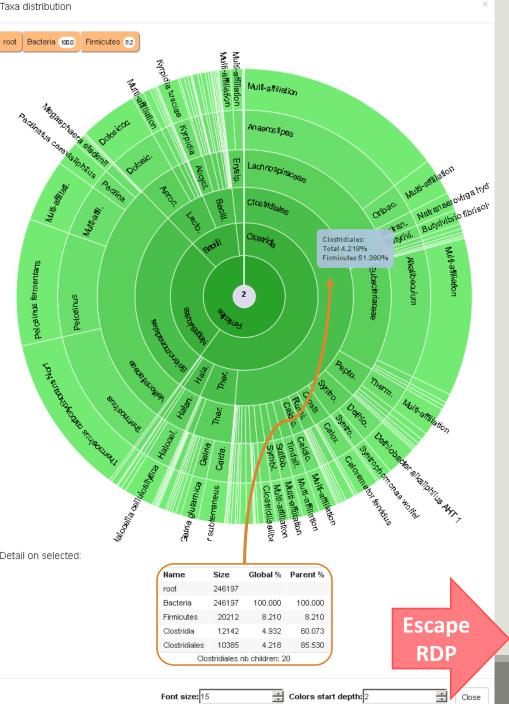
Exercise 7.2

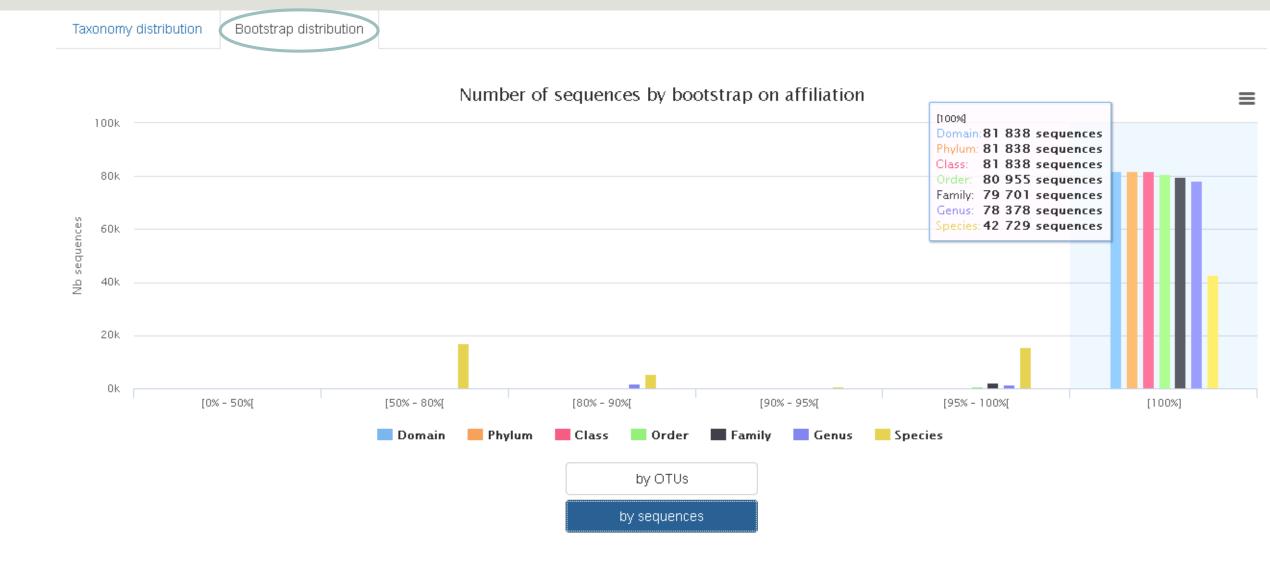
 \rightarrow objectives :

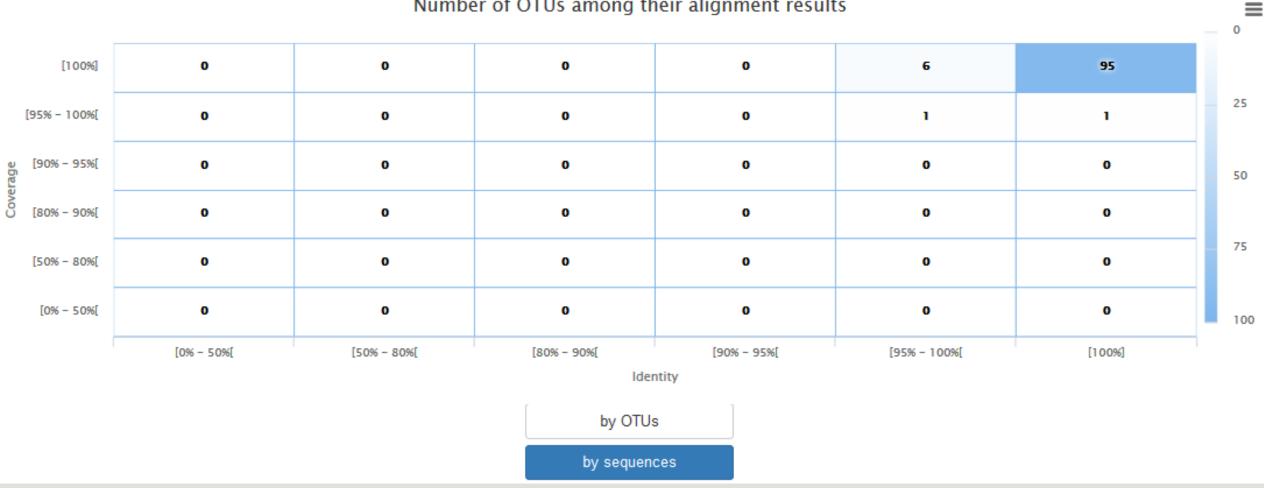

understand rarefaction curve and sunburst

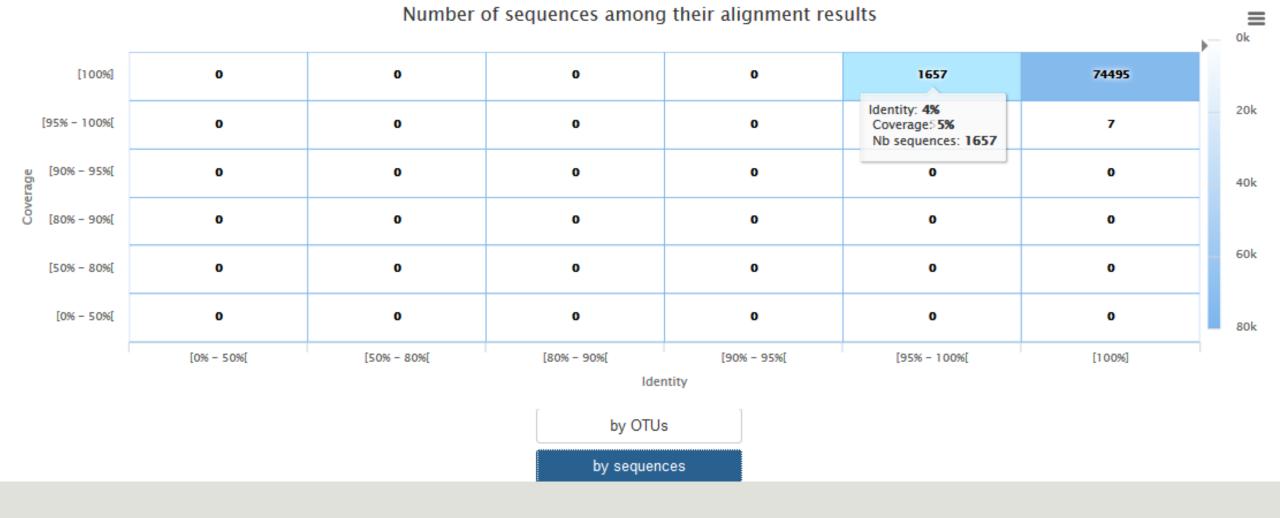

1. Explore the Affiliation stat results on FROGS blast affiliation.


2. What kind of graphs can you generate? What do they mean?


💳 Sigenae - Welcom	e mbernard	Analyze Data Workflow Shared	Data∓ Visualization∓ A	Admin Help∓ User∓			Us	ing 6%
Tools RADSEQ - STACKS RADsegSTACKS	Taxonomy distribution Alignment distribution						History imported: 500WEPL_setA 451.3 MB	2 * ⁄/ =
METHYLATION - BISULFITE <u>Bisulfite BISMARK</u> DEEPTOOLS		di Display	global distribution				<u>106: FROGS Clusters stat:</u> summary.html	• / X
deepTools						k⊂sv	105: report_download	• / ×
FROGS - FIND RAPIDLY OTU WITH GALAXY SOLUTION	Show 10 💌 entries				Search:			• 0 ×
FROGS pipeline	Taxonomies by sample						102: FROGS Affiliations stat: 4 summary.html	•/×
FROGS Upload archive from your computer	☐ Samples	Nb domain Nb phylum	🕴 Nb class 🔶 Nb order	Nb family 🔶 Nb gen	nus 🔶 Nb species 🔶	Nb sequences 🔶	299.1 KB format: html, database: <u>?</u>	
<u>FROGS Demultiplex reads</u> Split by samples the reads in	☑ 500taxas_With_Error_Power_Law-01-reads	1 29	59 129	243 491	492	81,572	## Application Software: affiliations_stat.py (version: 1.1 Command: /usr/local/bioinfo	0)
function of inner barcode. <u>FROGS Pre-process</u> Step 1 in	i00taxas_With_Error_Power_Law-02-reads	1 29	59 130	243 491	492	82,466	/src/galaxy-dev/galaxy-dist/tool /FROGS/tools/affiliations_stat.pr	
metagenomics analysis: denoising and dereplication.	500taxas_With_Error_Power_Law-03-reads	1 29	59 130	243 491	493	82,159	input-biom /galaxydata/datab /files/054/dataset_54829.dat	-
FROGS Clustering swarm Step 2 in metagenomics	500taxas_With_Error_Power_Law-04-reads	1 29	59 130	243 491	492	81,985	output-file /work/galaxy-dev/d	lata 🧷 🖻
analysis : clustering.	500taxas_With_Error_Power_Law-05-reads	1 29	59 130	241 487	488	82,039	HTML file	
FROGS Remove chimera Step 3 in metagenomics analysis : Remove PCR chimera in each	500taxas_With_Error_Power_Law-06-reads	1 29	59 130	244 493	494	81,758	<u>101: swarm cluster stat</u>	• / X
sample.	50 taxas_With_Error_Power_Law-07-reads	1 29	59 130	244 491	492	81,714	100: FROGS BIOM to std	• / ×
<u>FROGS Filters</u> Filters OTUs on several criteria.	500taxas_With_Error_Power_Law-08-reads	1 29	58 129	243 493	494	82,255	BIOM: blast metadata.tsv	- 6 - 64
<u>FROGS Affiliation OTU</u> Step 4 in metagenomics analysis : Tameragen of States and States	500taxas_With_Error_Power_Law-09-reads	1 29	59 130	244 493	494	82,113	<u>99: FROGS BIOM to std</u>	• / ×
Taxonomic affiliation of each OTU's seed by RDPtools and BLAST	500taxas_With_Error_Power_Law-10-reade	i 29	58 128	240 487	489	82,300	98: FROGS BIOM to TSV: 4 multi hits.tsv	• / %
<u>FROGS BIOM to TSV</u> Converts a BIOM file in TSV file.	With selection: Class V Display rarefa	tion Display distribution					97: FROGS BIOM to TSV:	• / ×
FROGS Clusters stat Process some metrics on clusters. FROGS Affiliations stat Process some metrics on taxonomies.	Showing 1 to 10 of 10 entries				Pre	vious 1 Next	96: FROGS Affiliations stat: summary.html 295.0 KB format: html, database: <u>2</u> ## Application Software:	D () X
FROGS BIOM to std BIOM Converts a FROGS BIOM in							affiliations_stat.py (version: 1.1 Command: /usr/local/bioinfo	0)
<								


💳 Sigenae - Welcome	e gpascal		Analyze Data Wor	kflow Shared Data -	Visualization - He	elp∓ User∓				Using 88.3 GE
Tools	Taxonomy distributi	on Alignment di	stribution						History	C 0
Split by samples the reads in function of inner barcode.									Formation 9sample	s 🖉 📄
<u>FROGS Pre-process</u> Step 1 in metagenomics analysis: denoising and dereplication.	_		Number of	f OTUs among th	neir alignment re	esults		•	21: FROGS BIOM to TSV: multi hits.tsv	<u>0</u>
FROGS Clustering swarm Step 2 in metagenomics	[100%]	0	0	0	0	22	89		20: FROGS BIOM to	<u>0</u>
analysis : clustering. FROGS Remove chimera Step	[95% - 100%[0	0	0	0	20	1	25	TSV: abundance.tsv 19: FROGS Affiliation	
3 in metagenomics analysis : Remove PCR chimera in each sample.	ย [90% - 95%[ซี	0	0	0	0	10	1	50	stat: summary.html 230.0 KB format: html, databa	
<u>FROGS Filters</u> Filters OTUs on several criteria.	ی ۱۳۵۵ – ۱۳۵۶ کی ۱۳۵۵ – ۱۳۵۵ کی	0	0	0	0	2	0		## Application Softw affiliations_stat.py (v	vare: version:
FROGS Affiliation OTU Step 4 in metagenomics analysis :	[50% - 80%[0	0	0	0	0	0	75	1.1.0) Command: /us /bioinfo/src/galaxy-d dist/tools/FROGS/too	ev/galaxy-
Taxonomic affiliation of each OTU's seed by RDPtools and BLAST	[0% - 50%[0	0	0	0	0	0	100	/affiliations_stat.py - /galaxydata/databas /060/dataset_60522	se/files
FROGS BIOM to TSV Converts a BIOM file in TSV file.		[0% - 50%[[50% - 80%[[80% – 90%[Idei	[90% - 95%[ntity	[95% – 100%[[100%]	I	output-file /work/g dev/data	alaxy-
FROGS Clusters stat Process some metrics on clusters.				by OTU:	s				HTML file	47 🖻
FROGS Affiliations stat Process some metrics on taxonomies.				by sequen	ces				18: FROGS Affiliation	<u>on</u> • 1 %





Number of OTUs among their alignment results

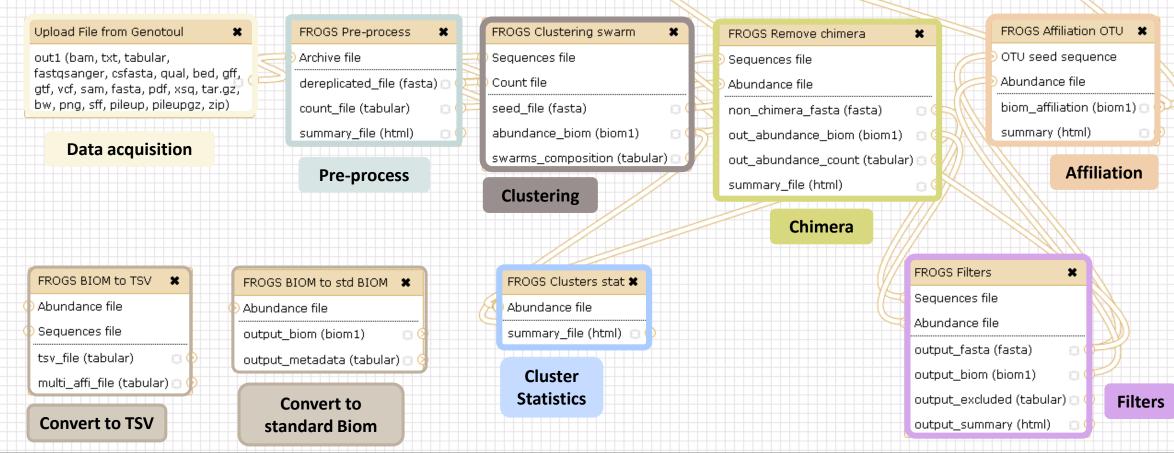
Alignment distributio	nment distributio	t distribution
-----------------------	-------------------	----------------

Filters on affiliations

Do not forget, with filter tool we can filter the data based on their affiliation

Input

Sequences file:	
12: FROGS Remove chimera: non_chimera.fasta	Fasta sequences and its
The sequence file to filter (format: fasta).	-
Abundance file:	rresponding abundance biom files
19: FROGS Affiliation OTU: affiliation.biom	
The abundance file to filter (format: BIOM).	
* * * THE FILTERS ON RDP:	
Apply filters 🔻	
If you want to filter OTUs on their taxonomic affiliation produced by RDP.	
Rank with the bootstrap filter:	Filter 2 & 3:
Domain 💌	
Minimum bootstrap % (between 0 and 1):	affiliation
0.8	
*** THE FILTERS ON BLAST:	
Apply filters 💌	
If you want to filter OTUs on their taxonomic affiliation produced by Blast.	
Maximum e-value (between 0 and 1):	
Fill the field only if you want this treatment	
Minimum identity % (between 0 and 1):	
0.95	
Fill the field only if you want this treatment	
Minimum coverage % (between 0 and 1):	
0.95	
Fill the field only if you want this treatment	
Minimum alignment length:	



6. Apply filters to keep only data with perfect alignment.7. How many clusters have you keep ?

Normalization

FROGS Demultiplex reads FROGS Abundance normalisation 🗱 × Demultiplexing Seauences file Barcode file Select fastq dataset Abundance file output_fasta (fasta) demultiplexed_archive (data) 0 undemultiplexed archive (data) 🖂 🤇 output biom (biom1) Normalization summary (tabular) summary_file (html)

FROGS Affiliations stat 🗶

Abundance file

Affiliation

Statistics

summary_file (html)

Normalization

Conserve a predefined number of sequence per sample:

- update Biom abundance file
- update seed fasta file

May be used when :

- Low sequencing sample
- Required for some statistical methods to compare the samples in pairs

Your Turn! – 8

LAUNCH NORMALIZATION TOOL

Exercise 8

Launch Normalization Tool

- 1. What is the smallest sequenced samples ?
- 2. Normalize your data from Affiliation based on thist number of sequence
- 3. Explore the report HTML result.

TSV to BIOM

FROGS Demultiplex reads FROGS Abundance normalisation 🗶 × Demultiplexing FROGS Affiliations stat 🗶 Seauences file Barcode file Abundance file Select fastq dataset demultiplexed_archive (data) output_fasta (fasta) undemultiplexed archive (data) 🖂 🤇 output biom (biom1) Normalization summary (tabular) summary file (html)

Upload File from Genotoul × out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsg, tar.gz, bw, png, sff, pileup, pileupgz, zip)

0

Data acquisition

FROGS BIOM to TSV

-multi_affi_file (tabular) 🖂 🌗

Abundance file

Sequences file

tsv_file (tabular)

Convert to TSV

FROGS Pre-process × Archive file Sequences file dereplicated_file (fasta) 🖸 Count file count file (tabular) seed file (fasta) E (summary_file (html) 13 🕒 **Pre-process** Clustering FROGS BIOM to std BIOM 🗱 Abundance file Abundance file output_biom (biom1) output_metadata (tabular) 🖸 Cluster **Statistics Convert to** standard Biom

FROGS Clustering swarm × abundance_biom (biom1) 00 swarms_composition (tabular)

FROGS Clusters stat 🕱 summary_file (html) 🔅

FROGS Remove chimera × Sequences file Abundance file non chimera fasta (fasta) out abundance biom (biom1) out_abundance_count (tabular) 🖂 🤇 summary_file (html)

Chimera

FROGS TSV to BIOM X Abundance TSV File Multi hits TSV File biom file (biom1) sequence_file (fasta) **Convert TSV to** Biom

Abundance file summary_file (html)

Affiliation **Statistics**

FROGS Affiliation OTU OTU seed sequence Abundance file biom_affiliation (biom1) summary (html)

Affiliation

FROGS Filters × Sequences file Abundance file output_fasta (fasta) output_biom (biom1) output_excluded (tabular) 🖂 output_summary (html)

Filters

TSV to BIOM

After modifying your abundance TSV file you can again:

- generate rarefaction curve
- sunburst 🔌

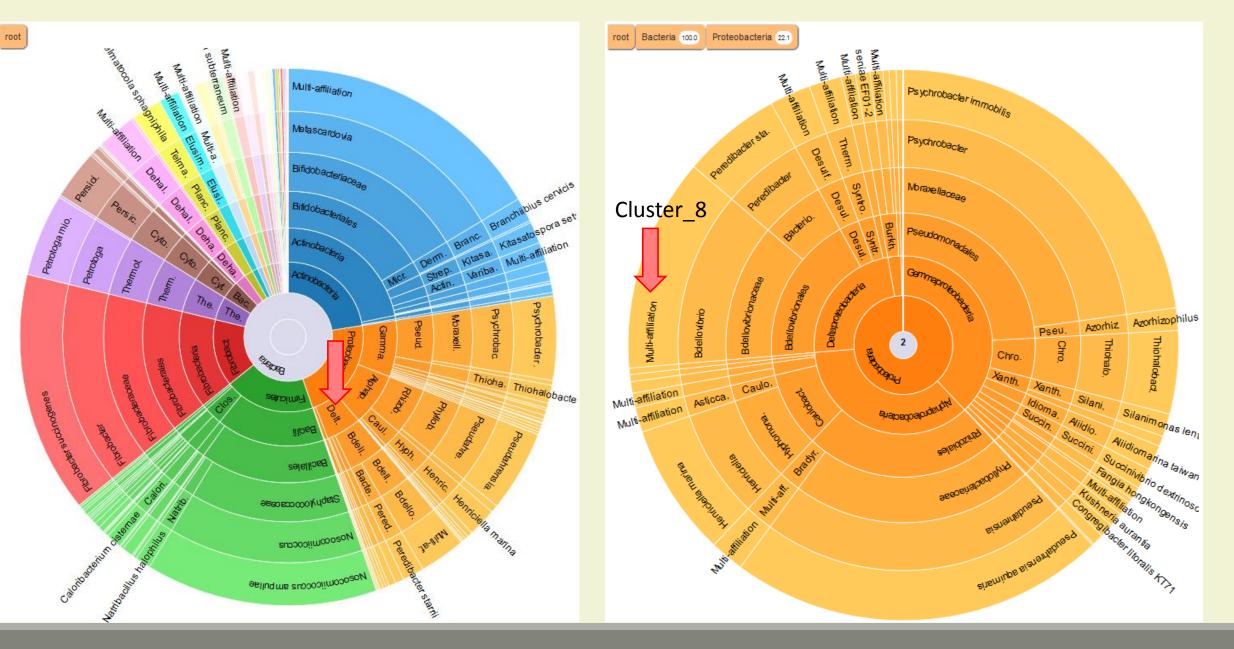
Careful :

- <u>do not</u> modify column name
- <u>do not</u> remove column
- take care to choose a taxonomy available in your multi_hit TSV file
- if deleting line from multi_hit, take care to not remove a complete cluster without removing all "multi tags" in you abundance TSV file.
- if you want to rename a taxon level (ex : genus "Ruminiclostridium 5;" to genus "Ruminiclostridium;"), do not forget to modify also your multi_hit TSV file.

TSV to BIOM

FROGS TSV to BIOM (version 1.0.0)

Abundance TSV File:
29: FROGS BIOM to TSV: abundance.tsv 👻
Your FROGS abundance TSV file. Take care to keep intact column name.
Multi_hits TSV File:
30: FROGS BIOM to TSV: multi_hits.tsv -
TSV file describinh multi blast hit.
Extract seed FASTA file:
If there is a 'seed_sequence' column, you can extract seed sequence in a separated FASTA file.
Execute


Your Turn! – 9

Exercise 9

\rightarrow objectives : Play with multi-affiliation and TSV_to_BIOM

#blast_taxonomy	blast_subject	observation_name	observation_sum
Bacteria; Actinobacteria; Actinobacteria; Bifidobacteriales; Bifidobacteriaceae; Metascardovia; Multi-affiliation	multi-subject	Cluster_1	13337
Bacteria;Fibrobacteres;Fibrobacteria;Fibrobacterales;Fibrobacteraceae;Fibrobacter;Fibrobacter succinogenes	AJ496032.1.1410	Cluster_2	11830
Bacteria;Firmicutes;Bacilli;Bacillales;Staphylococcaceae;Nosocomiicoccus;Nosocomiicoccus ampullae	EU240886.1.1502	Cluster_3	11405
Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Psychrobacter;Psychrobacter immobilis	U39399.1.1477	Cluster_4	4125
Bacteria;Thermotogae;Thermotogae;Thermotogales;Thermotogaceae;Petrotoga;Petrotoga miotherma	FR733705.1.1499	Cluster_5	4034
Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae; Pseudahrensia; Pseudahrensia aquimaris	GU575117.1.1441	Cluster_6	3966
Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagaceae;Persicitalea;Persicitalea jodogahamensis	multi-subject	Cluster_7	2433
${\sf Bacteria}; {\sf Proteobacteria}; {\sf Deltaproteobacteria}; {\sf Bdellovibrionales}; {\sf Bdellovibrionaceae}; {\sf Bdellovibrio}; {\sf Multi-affiliation}; {\sf Multi-af$	multi-subject	Cluster_8	2268

Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio Bdellovibrio bacteriovorus	CP007656.1036900.1038415	
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio Bdellovibrio bacteriovorus str. Tiberius	CP002930.1837665.1839157	
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus str. Tiberius	CP002930.842397.843889	
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus	AJ292760.1.1334	
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus	Bdellovibrio bacterio	vorus
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus	Buellovibilo bacterio	vorus
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus	AF084850.1.1436	
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus HD100	BX842648.123565.125058	
Cluster_8	Bacteria; Proteobacteria; Deltaproteobacteria; Bdellovibrionales; Bdellovibrionaceae; Bdellovibrio; Bdellovibrio bacteriovorus HD100	BX842650.295616.297109	

1. How to change affiliation of cluster 8 ????

Tool descriptions

What it does

FROGS Pre-process filters and dereplicates amplicons for use in diversity analysis.

¹ Inputs/Outputs

Inputs

By sample your sequences and their qualities.

Illumina inputs

Usage: The amplicons have been sequenced in paired-end. The amplicon expected length is inferior than the R1 and R2 length. R1 and R2 can be merge by the common region.
 Files: One R1 and R2 by sample (format <u>FASTQ</u>)
 Example: splA_R1.fastq.gz, splA_R2.fastq.gz, splB_R1.fastq.gz, splB_R2.fastq.gz

OR

 Usage:
 The single end sequencing cover all the amplicons or the R1 and R2 have already been overlaped.

 Files:
 One sequence file by sample (format FASTQ).

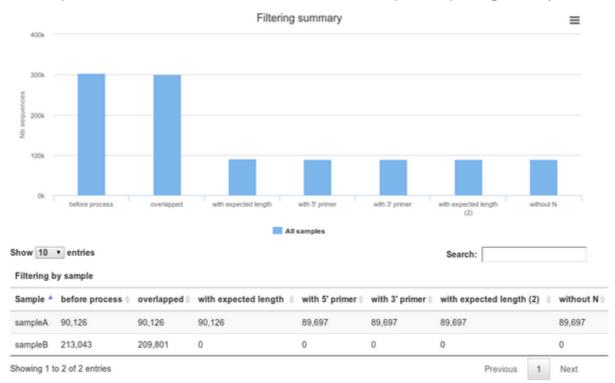
Example: splA.fastq.gz, splB.fastq.gz

454 inputs

Files: One sequence file by sample (format <u>FASTQ</u>) Example: splA.fastq.gz, splB.fastq.gz

These files must be added sample by sample or provide in an archive file (tar.gz). Remark: In an archive if you use R1 and R2 files they names must end with _R1 and _R2.

Outputs


Sequence file (dereplicated.fasta):

Only one file with all samples sequences (format <u>FASTA</u>). These sequences are dereplicated: strictly identical sequence are represented only one and the initial count is kept in count file.

Count file (count.tsv):

This file contains the count of all uniq sequences in each sample (format TSV).

Summary file (excluded_data.html):

This file presents the ordered filters and the number of sequences passing these (format HTML).

¹ How it works

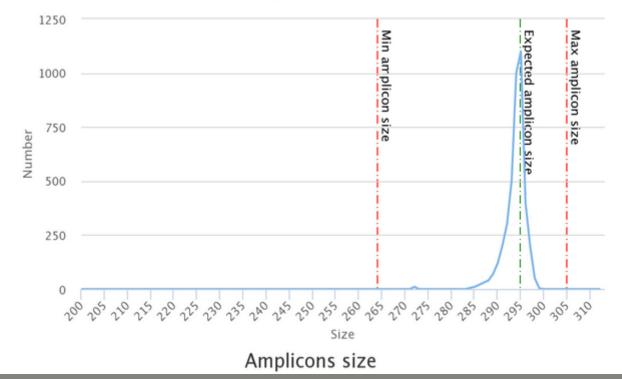
Steps	Illumina	454
1	For uncontiged data: contig read1 and read2 with a maximum of 10% mismatch in the overlaped region (<u>FLASh</u>)	/
2	Filter contig sequence on its length which must be between Minimum amplicon size" and "Maximum amplicon size"	/
3	Remove sequences where the two primers are not persent and remove primers sequence (<u>cutadapt</u>). The primer search accept 10% of differences	Remove sequence where the two primers are not persent, remove primers sequence and reverse complement the sequences with strand - (<u>cutadapt</u>). The primer search accept 10% of differences
4	Filter sequences on its length and with ambiguous nucleotids	filter sequences on its length, with ambiguous nucleotids, with at least one homopolymer with size >7nt and with distance between two poor qualities ()< 10) of <= 10 nt
5	Dereplicate sequences	Dereplicate sequences

¹ Advices/details on parameters

Primers parameters

The primers must provided in 5' to 3' orientation.

Example:


5' ATGCCC GTCGTCGTAAAATGC ATTTCAG 3'

Value for parameter 5' primer: ATGCC

Value for parameter 3' primer: ATTTCAG

Amplicons sizes parameters

The two following images shown two examples of perfect values fors sizes parameters.

Amplicons size

Workflow creation

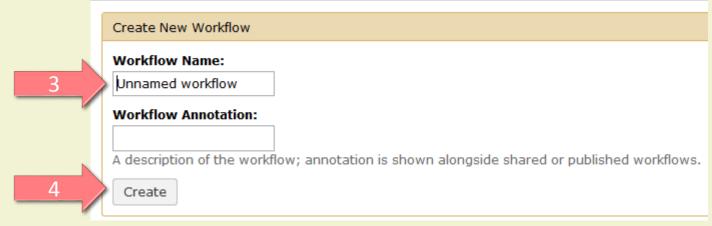
Workflow Canvas | frogs v1.0

Details

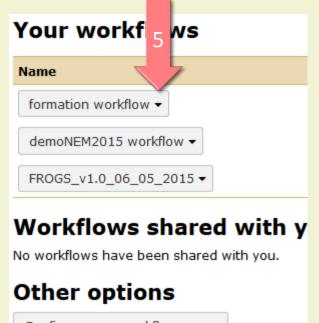
				Tool: (beta) FROGS Filters (beta)
Upload File X out1 (bam, txt, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png) Archive file dereplicated_file (fast count_file (tabular) summary_file (html)	ta)	e_biom (txt)	(beta) FROGS Clusters stat ★ (beta) Cluster file summary_file (html) ● (beta) FROGS Remove chimera ★ (beta) FROGS Remove chimera ★ (beta) ● Sequences file ● Abundance file ● non_chimera_fasta (fasta) ● out_abundance_biom (txt) ●	(beta) Version: 1.0.0 None: ▼ Biom File Data input 'biom' (txt) Fasta File Data input 'fasta' (fasta) Remove phiX: ▼ PhiX databank: ▼ phiX ▼ *** THE FILTERS ON OTUS IN SAMPLES, OTUS SIZE and SEQUENCE PERCENTAGE :
	(beta) FROGS Filters (beta) ¥ © Biom File © Fasta File summary (txt) © fasta_output (fasta) © web (html) © biom_output (txt) © ©	(beta) OTU abondance i OTU seed sequer	out_abundance_count (tabular) summary_file (html)	Apply filters Remove OTUs that are not present at least in XX samples; how many samples do you choose? : When sorted by abundance, how many OTU do you want to keep ?:
	krona (html) (beta) FROGS Clust (beta) Cluster file summary_file (html		-	proportion/number of sequences threshold to remove an OTU: • 0.0000: *** THE FILTERS ON RDP : No filters • No filters •

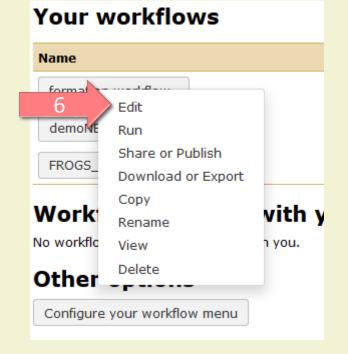
Your Turn! – 10

CREATE YOUR OWN WORKFLOW !


Other options

Configure your workflow menu


Exercise 10



Exercise 10

Configure your workflow menu

Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip) FROGS Pre-process

×

dereplicated_file (fasta) 0 0 count_file (tabular) 0 0

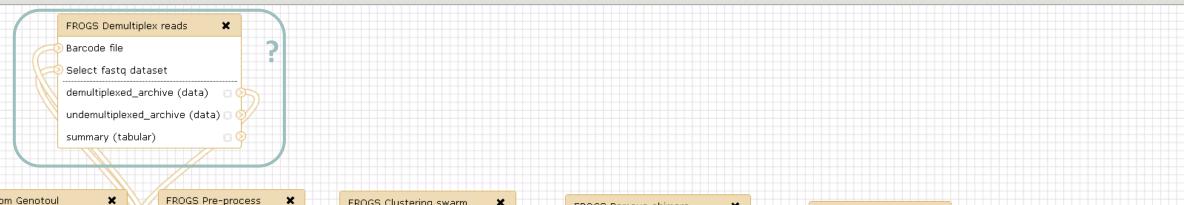
summary_file (html)

FROGS Clustering swarm

Count file

×

seed_file (fasta) abundance_biom (biom1)


swarms_composition (tabular) 🗆 📀

×

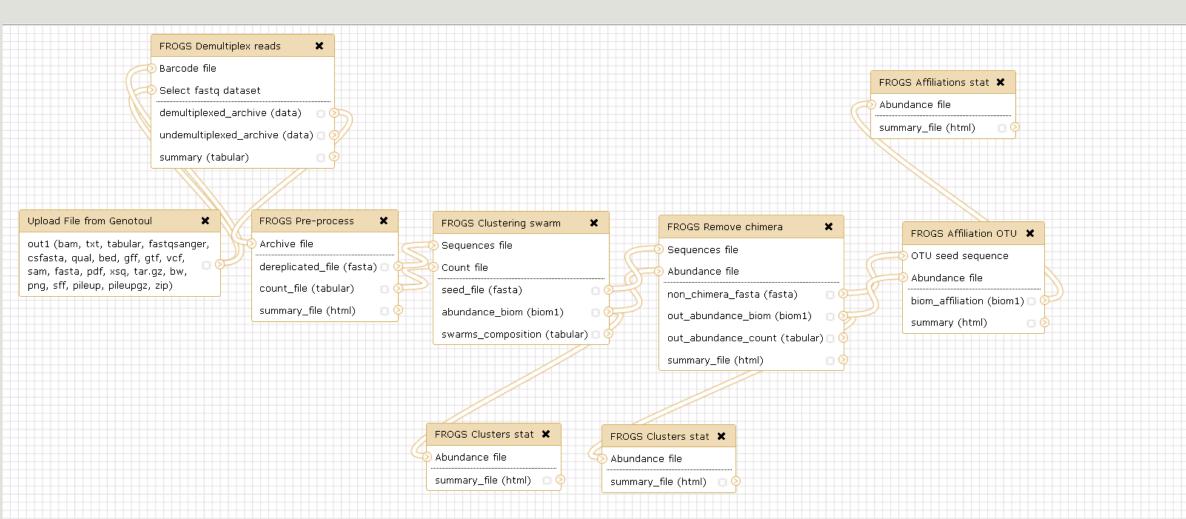
FROGS Remove chimera X Sequences file Abundance file non_chimera_fasta (fasta) Image: Comparison (fasta) out_abundance_biom (biom1) Image: Comparison (fasta) out_abundance_count (tabular) Image: Comparison (fasta) summary_file (html) Image: Comparison (fasta)

FROGS Affiliation OTU X OTU seed sequence Abundance file biom_affiliation (biom1)

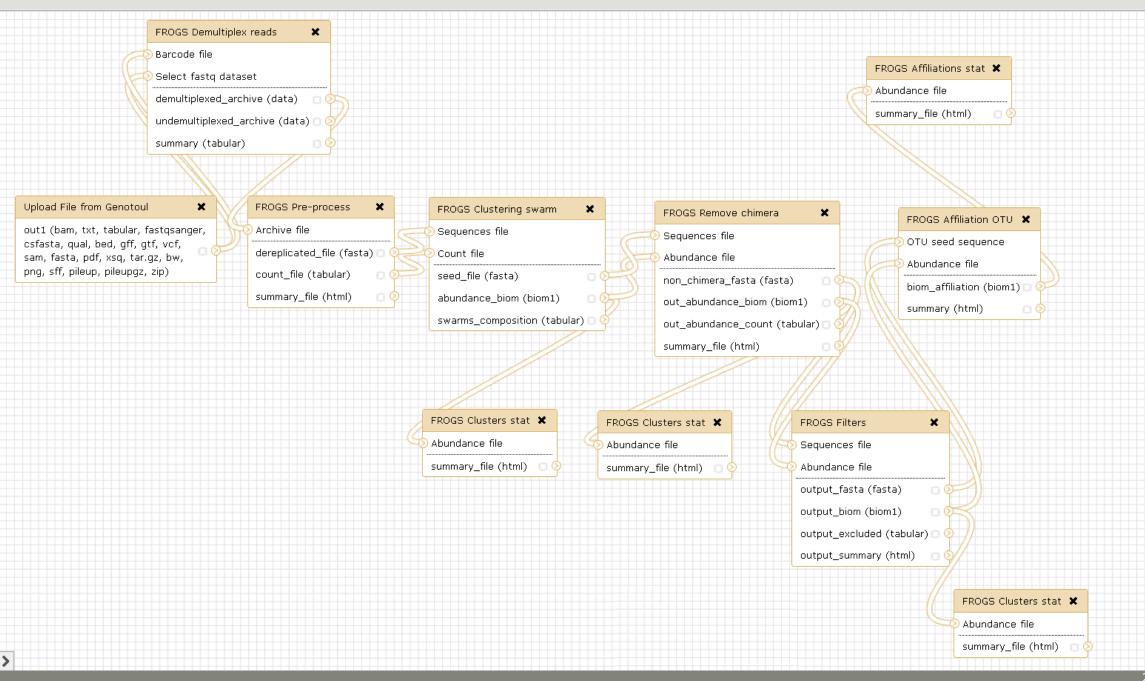
>

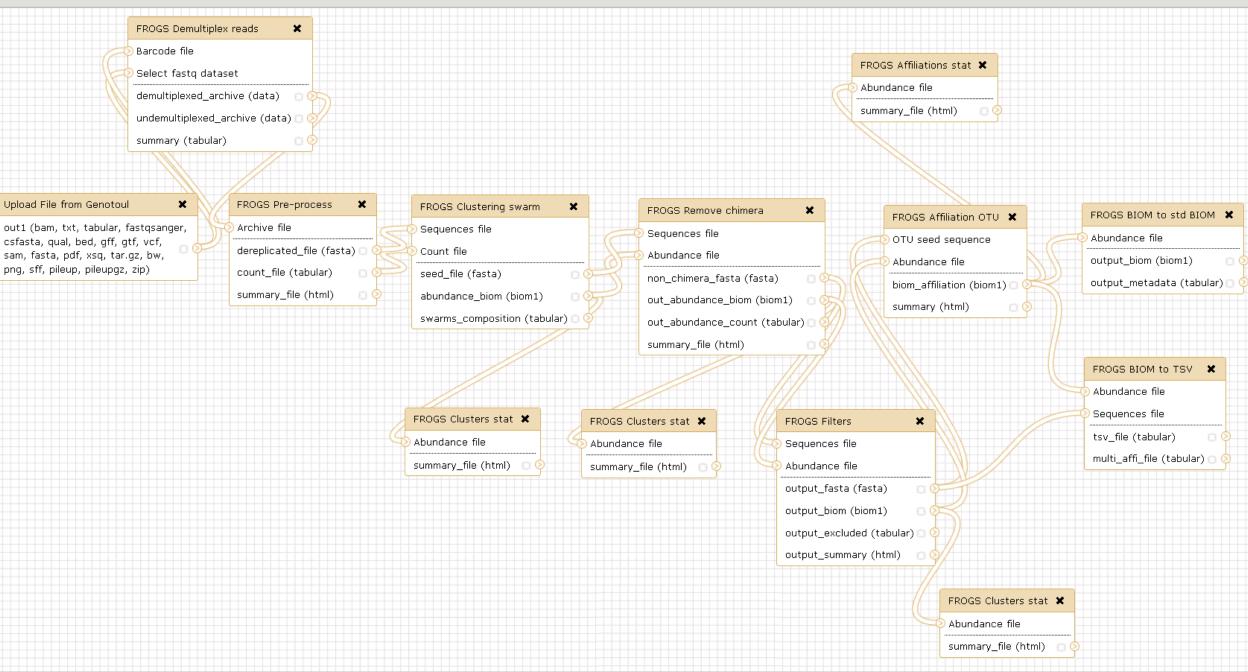
Upload File from Genotoul

out1 (bam, txt, tabular, fastqsanger, csfasta, qual, bed, gff, gtf, vcf, sam, fasta, pdf, xsq, tar.gz, bw, png, sff, pileup, pileupgz, zip)

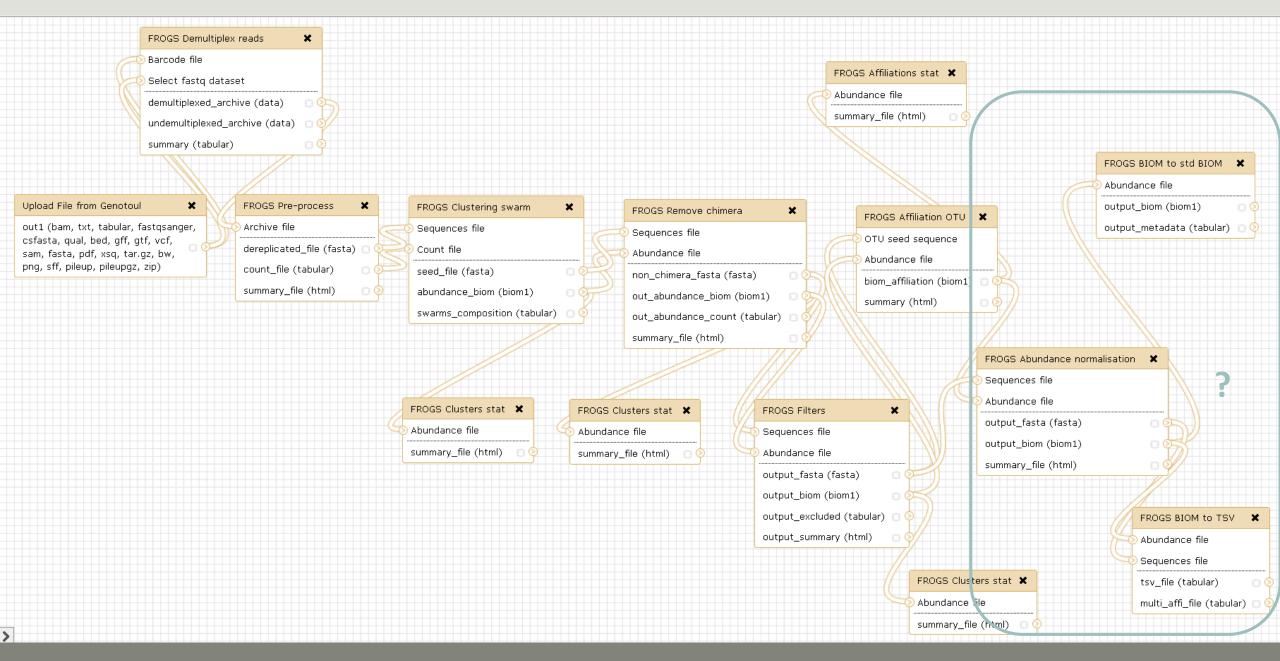

FROGS Pre-process × Archive file dereplicated_file (fasta) | count_file (tabular) summary_file (html)

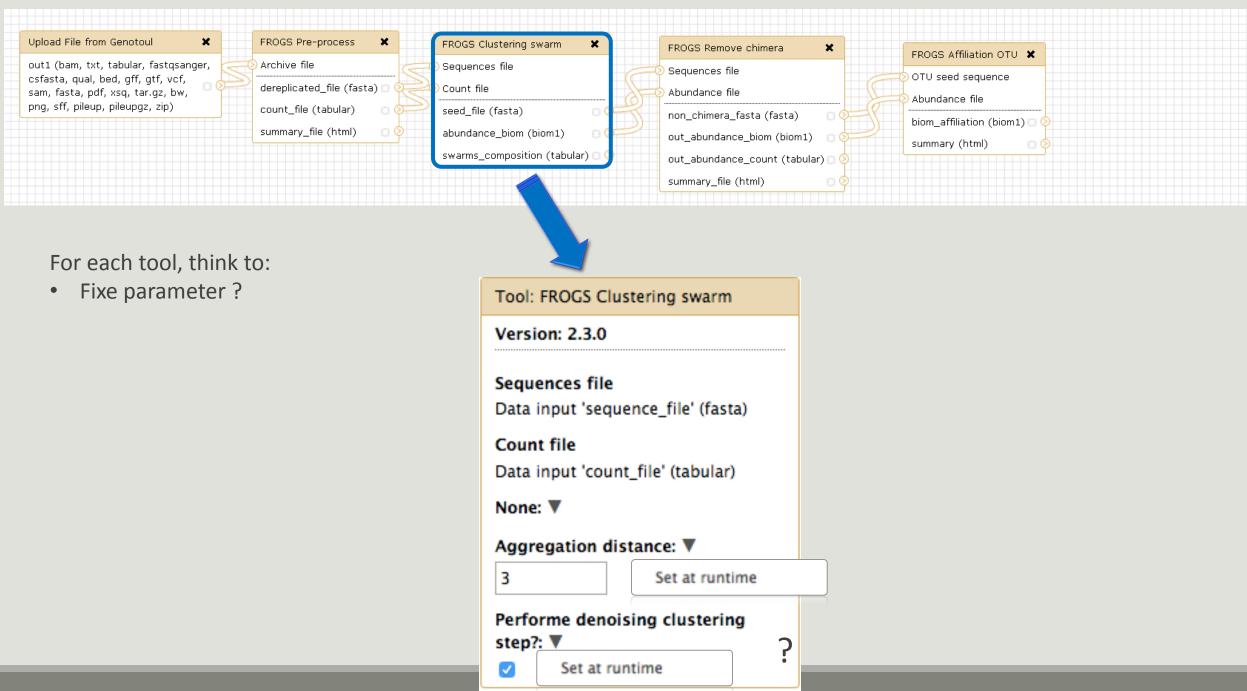
FROGS Clustering swarm) Sequences file Count file seed_file (fasta) abundance_biom (biom1)

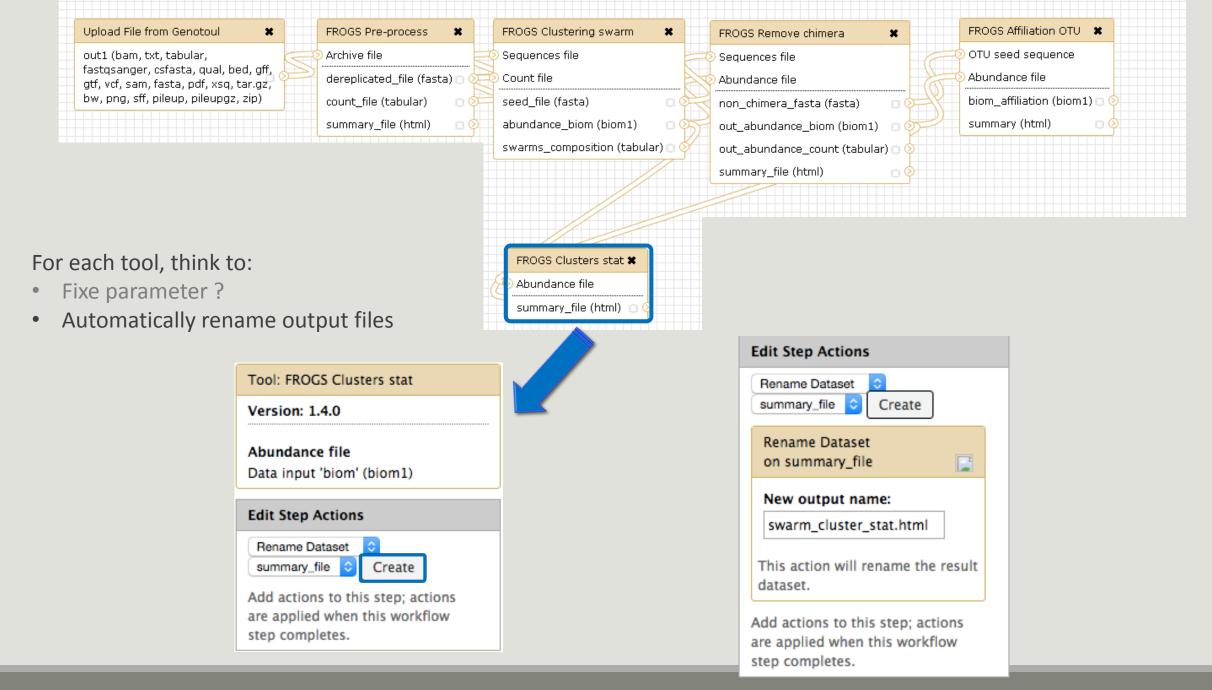

swarms_composition (tabular) 🗆 📀

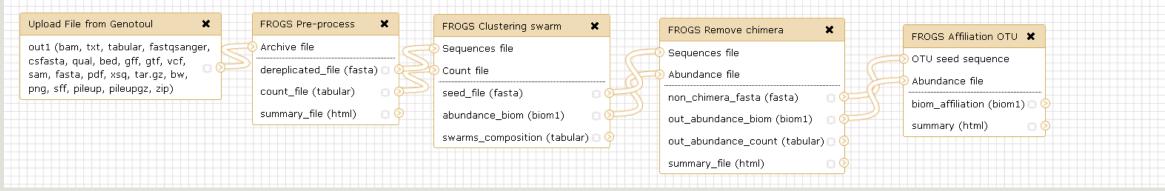

×

	FROGS Remove chimera	×		FROGS Affiliation OTU 🗙
Q	Sequences file			OTU seed sequence
-0	Abundance file		8	Abundance file
	non_chimera_fasta (fasta)	00	=1	biom_affiliation (biom1) 🔘
	out_abundance_biom (biom1)	00		summary (html)
	out_abundance_count (tabular) 🗆 🤇		
	summary_file (html)	00)	

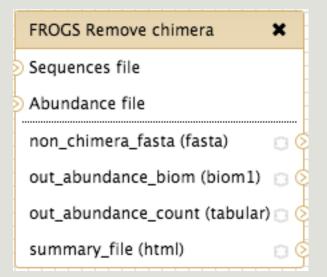


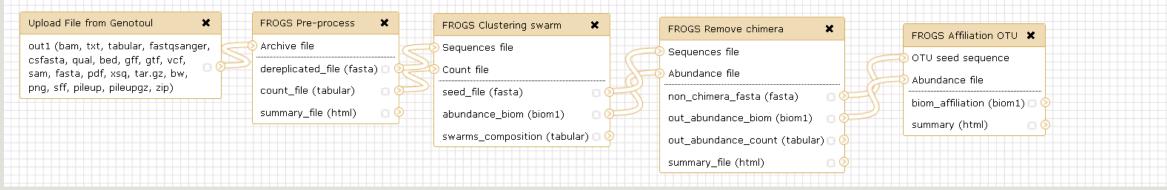




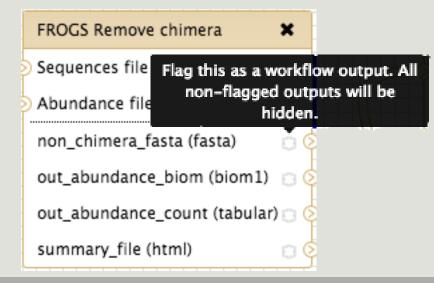


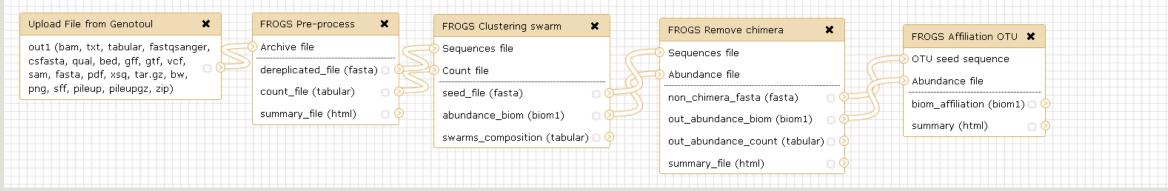
>



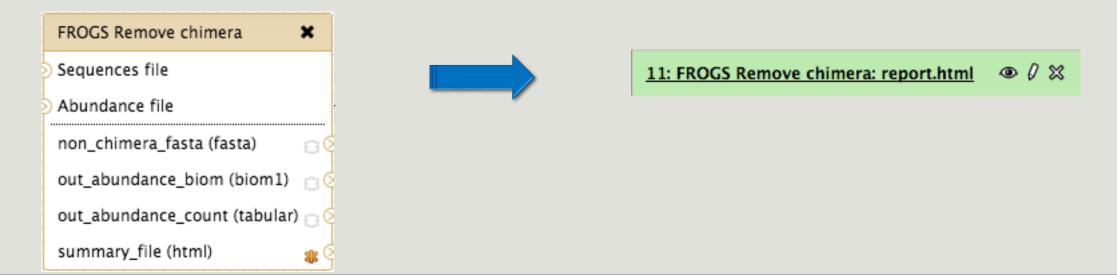

For each tool, think to:

- Fixe parameter ?
- Automatically rename output files
- Hide intermediate files ?



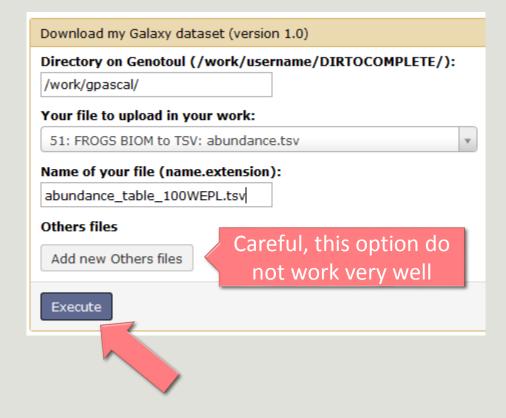

11: FROGS Remove chimera: report.html	• / ¤
10: FROGS Remove chimera: non chimera abundance.biom	• / %
<u>9: FROGS Remove chimera:</u> non_chimera.fasta	• / %

For each tool, think to:


- Fixe parameter ?
- Automatically rename output files
- Hide intermediate files ?

For each tool, think to:

- Fixe parameter ?
- Automatically rename output files
- Hide intermediate files ?

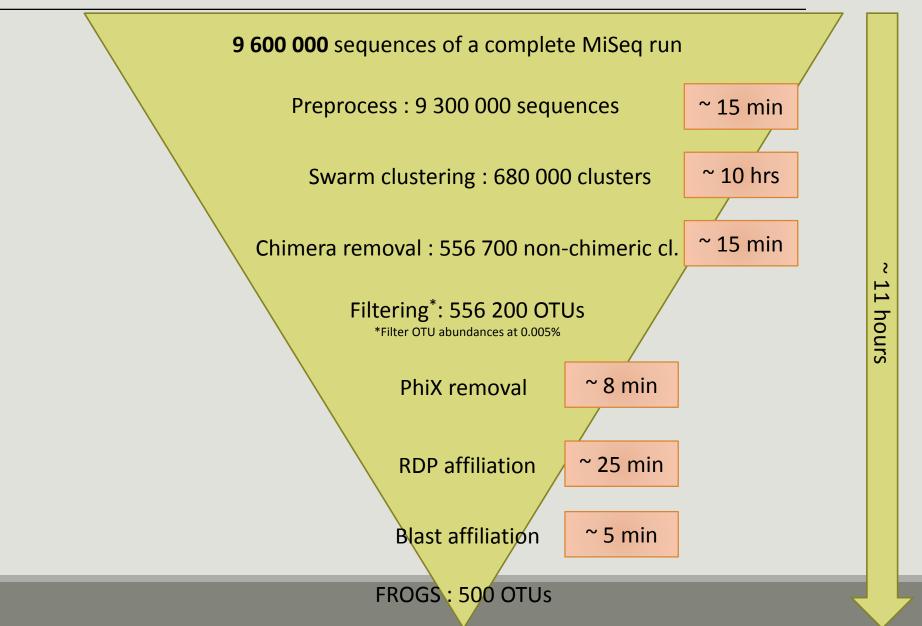

Download your data

You have to download one per one your files

55: FROGS Affiliation • 1 X OTU: excluded data report.html 11.4 KB format: html, database: ? ## Application Software: affiliation_OTU.py (version: 0.4.0) Command: /usr/local/bioinfo /src/galaxy-test/galaxy-dist/tools /FROGS/affiliation_OTU.py --reference /save/galaxytest/bank/FROGS/silva_119-1 /prokaryotes /silva_119-1_prokaryotes.fasta --abundance - 🛈 边 🥢 📄 HTML file

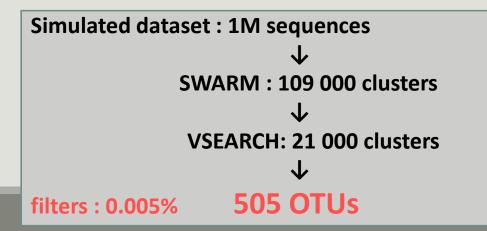
OR

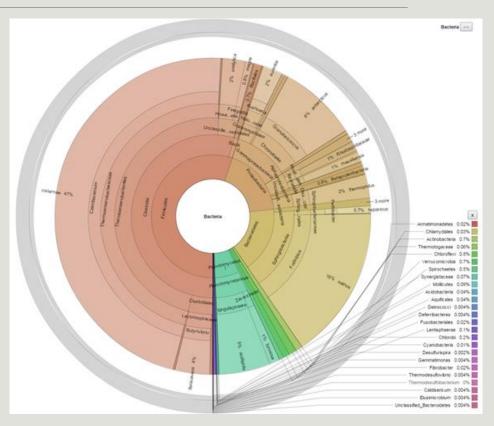
This tool will save your datasets in your work on genotoul (/work/username/dataset-archive-XXX.tar.gz). Then, you could work on these files in your work on Genotoul.



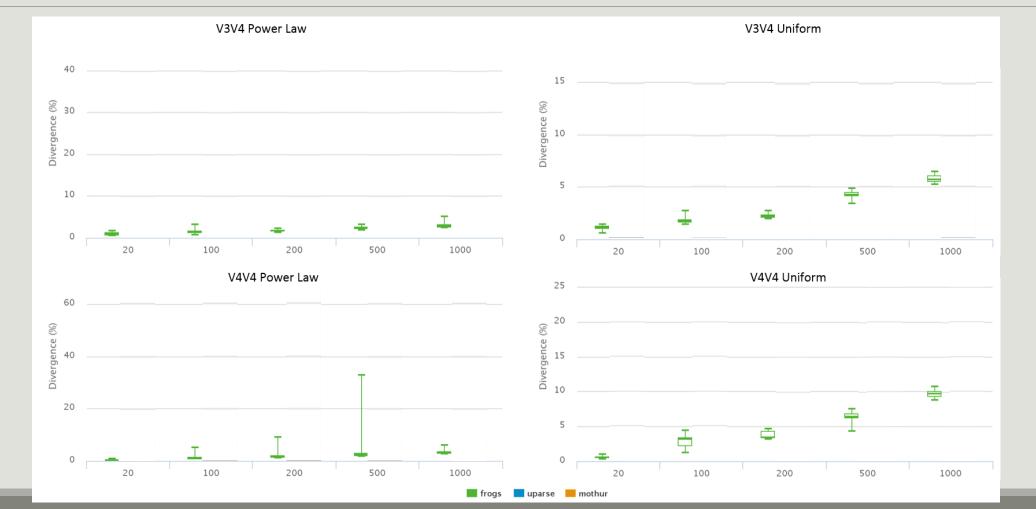
Some figures

Some figures - Fast


NB SEQ	TIME with complete pipeline without Filters
50 000	40 min
400 000	4 hrs
3 500 000	2 days
10 000 000	5 days


Speed on real datasets

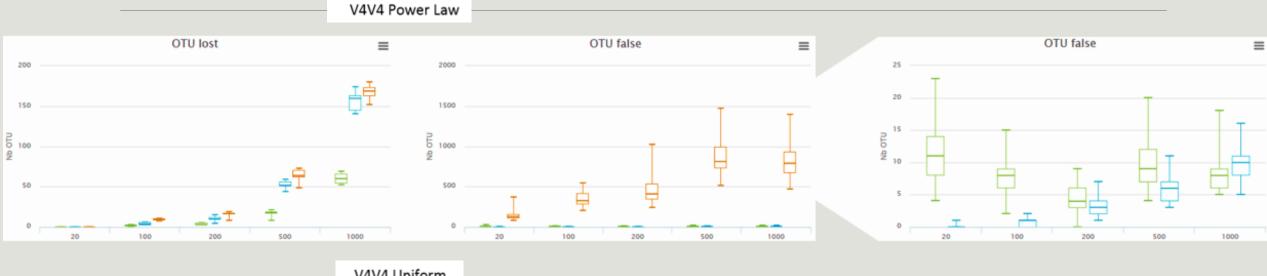
Simulated datasets, for testing FROGS' Accuracy


- 500 species, covering all bacterial phyla
- Power Law distribution of the species abundances
- Error rate calibrated with real sequencing runs
- 20% chimeras
- 10 samples of 100 000 sequences each (IM sequences)

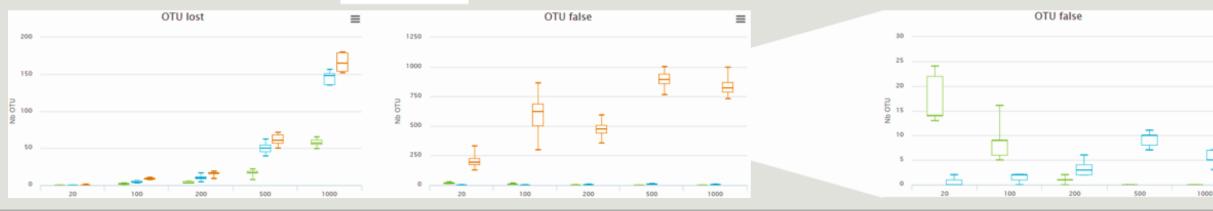
- 10 artificial samples of 100 000 sequences
- 25 sets of species
- 20, 100, 200, 500 or 1000 different species
- power law or a uniform distribution
- 5 to 20% of chimera
- 1.10⁺¹¹ sequences were treated with FROGS, UPARSE and MOTHUR, with their guidelines, to compare their performances
- → Divergence on the composition of microbial communities at the different taxonomic ranks

\rightarrow divergence at "genus" rank

 \rightarrow Lost & False OTU


\$00

÷


\$00

V3V4 Power Law

\rightarrow Lost & False OTU

≡

Conclusions

Why Use FROGS ?

- User-friendly
- Fast
- 454 data and Illumina data
 - sequencing methods change but same tool
 - easier for comparisons
- Clustering without global threshold and independent of sequence order
- New chimera removal method (Vsearch + cross-validation)
- Filters tool
- Multi-affiliation with 2 taxonomy affiliation procedures
- Cluster Stat and Affiliation Stat tools
- A lot of graphics
- Independant tools

How to cite FROGS

In waiting for the publication:

Pipeline FROGS on http://sigenae-workbench.toulouse.inra.fr/

Poster FROGS: Escudie F., Auer L., Bernard M., Cauquil L., Vidal K., Maman S., Mariadassou M., Hernadez-Raquet G., Pascal G., 2015. FROGS: Find Rapidly OTU with Galaxy Solution. In: Environmental Genomics 2015, Montpellier, France, <u>http://bioinfo.genotoul.fr/fileadmin/user_upload/FROGS_ISME2016_poster.pdf</u>

To contact

FROGS:

frogs@toulouse.inra.fr

Galaxy:

sigenae-support@listes.inra.fr

Newsletter – demande d'abonnement:

mailto:sympa@listes.inra.fr?subject=sub%20frogs-newsletter

frogs-newsletter-request@listes.inra.fr

Next training sessions

20th to 23th Februray 2017 4 days :

- 1 Galaxy day
- 2 FROGS days
- 1 Statistics phyloseq day (under R)

If we have time

- Change clustering option ad compare.
- Make a phylogenetic tree from sequences.fasta built with Filter Tool.

 → use the document about phylogeny.fr