
A Quick and focused
overview of R data types
and ggplot2 syntax
MAHENDRA MA R I A D A S S O U , MARIA BE R NA R D , GERALDINE PA S C A L ,
LAURENT CA UQ UI L

1

R and RStudio
OVERVIEW

2

R and RStudio
 R is a free and open environment for computational statistics and graphics (Open source, Open
development, under GNU General Public Licence): http://www.r-project.org/

3

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/

R and RStudio
 R is an interpreted language

 There is no compilation

 One can work in the console (this tutorial) or in an script file

 Good for interactive use of the language

 Bad for speed (when performing heavy computations)

4

R and RStudio
 Rstudio provides a nice front-end to R with 4 panels (script, console, workspace, graphics) :
https://www.rstudio.com/

5

https://www.rstudio.com/

R and RStudio
Installing packages

 From CRAN :
 The main strength of R comes from the thousands of packages that provide nice functions and utilities to the

language. Most are available from the CRAN (Comprehensive R Archive Network) and easy to install:
 install.packages("package_name")

 From Bioconductor :
 Bioconductor , is an other repository. It stores packages dedicated to biology analysis
 source("http://bioconductor.org/biocLite.R")
 biocLite ("package_name")

Loading packages is equally easy:
library(ggplot2) # comming from CRAN

library(phyloseq) # comming from Bioconductor

 Most packages must be loaded at each new session (see the ”Packages” tab in R-studio)

6

R and RStudio
Getting help

Widely used packages include detailed help files for the functions they provide.

 For a particular function
 help("function name") leads to the help page of function name

Try it !
help("mean") ## or ?mean

 For a particular packages
 vignette("vignette name")

Try it !
vignette("extending-ggplot2")

vignette("phyloseq-basics")

7

R and RStudio
The console is a gloried calculator,
 you submit some R code and press Enter

 R evaluates the expression and returns the answers

2+2

[1] 4

When using R-studio, you can use "CTRL + Enter" to execute some code from the script (as
opposed to "Enter" to execute it from the console).

8

R and Rstudio
Variable assignment

 You can save the value of some R code using the "arrow operator": <-

 The syntax is simple: variable_name <- value.

a <- 2*4

 And you can access and manipulate the value of that variable

a

[1] 8

a/2

[1] 4

9

R and RStudio
 Variable assignment

 The arrow is also used to change the value of an object:

 a <- 4

 a

 ## [1] 4

 Modifications made to a copy do no impact the original object:

 b <- a; b <- 8 # ; simply separates two commands

 a; b

 ## [1] 4

 ## [1] 8

10

R and RStudio
 Variable deletion

 The rm() function is used to remove an object from the workspace:

 a

 ## [1] 4

 rm(a)

 a ## a does not exist anymore

 ## Error in eval(expr, envir, enclos): objet 'a' introuvable

11

R and RStudio
DATA/VARIABLE

12

Data/Variable
In R every basic object has four characteristics:

 a name

 a mode

 a length

 a content

The three main modes are numeric, logical, character.

13

Data/Variable
The class function return the mode of a variable

 a logical can only take value TRUE or FALSE

 a character can be defined using simple (') or double (") quotes

14

Numeric Character Logical

x <- 1

class(x)

[1] "numeric"

x <- "hello"

class(x)

[1] "character"

x <- TRUE

class(x)

[1] "logical"

Data/Variable : length
 The length() function returns the length of an object:

 a <- 2

 a

 ## [1] 2

 length(a)

 ## [1] 1

In the previous example, a is a vector of length 1, with a single element

Hence the mysterious [1] in the output of a

17

Data/Variable : special value
 There are two important special values in R :

 NA stands for Not Available and is a code for missing data.

 NULL is the R code for a null object. It has length 0.

 a <- NA; length(a); is.na(a)

 ## [1] 1

 ## [1] TRUE

 x <- NULL; length(x); is.null(x) ## NULL

 ## [1] 0

 ## [1] TRUE

18

Data/Variable : structure
 R offers many data structures to organize data. The main ones are

 vector (1D array)

 factor

 matrix (2D array)

 data.frame

19

Data/Variable : vector
 Multiples elements of the same mode (numeric, character, logical) can be collected in a vector (1D
array) using the c command:
 x <- c(2, 4, 8, 9, 0)

 x

 ## [1] 2 4 8 9 0

 Elements of x can be accessed with the indexing operations:

 x[1] ## first element x[c(3, 5)] ## third and fifth elements
 ## [1] 2 ## [1] 8 0

 Elements of different types are coerced to the most general mode before collection:

 c(3.4, 2, TRUE) c(3.4, "MaIAGE", TRUE)

 ## [1] 3.4 2.0 1.0 ## [1] "3.4" "MaIAGE" "TRUE"

20

Data/Variable : vector
 If x is a named vector, elements can be accessed by name rather than by position:

 x <- c("first" = 1, "second" = 4, "third" = 9)

 x

 ## first second third

 ## 1 4 9

 Guess :

 x[1] x["first"]

 ## first ## first

 ## 1 ## 1

21

Data/Variable : vector
 Names can be set or changed after creating a vector using the function names
 x <- c(1, 4, 9)

 x

 ## [1] 1 4 9

 names(x) <- c("first", "second", "third")

 x

 ## first second third

 ## 1 4 9

Exercice : Guess the result of the following code, check your guess in the console:
x <- c("O", "G", "F", "S", "R")

x[c(3, 5, 1, 2, 4)]

"F" "R" "O" "G" "S"

22

Data/Variable : vector
 Logical indexing

 A vector x can be indexed by a logical vector index specifying which elements should be kept. In that
case, index and x should have the same length...

 x <- 1:6

 index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE)

 x[index] ## = x[c(1, 3, 4)]

 ## [1] 1 3 4

 ...otherwise strange things can happen.

 index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE)

 x[index] ## = x[c(1, 3, 4, 7)] but x[7] does not exist

 ## [1] 1 3 4 NA

23

Data/Variable : vector
 Exercice:

 Try to reorder this rank’s vector!

 rank <-c("Order", "Kingdom", "Genus", "Class", "Family",

"Species", "Phylum")

 reordered_rank <- ???

24

Data/Variable : matrix
 Matrices are essentially 2-D vectors: all elements must have the same mode. Indexing works the
same way as for vectors but with two indices: the first for rows, the second for columns.

 x <- matrix(1:18, nrow = 3, ncol = 6)

 x

 ## [,1] [,2] [,3] [,4] [,5] [,6]

 ## [1,] 1 4 7 10 13 16

 ## [2,] 2 5 8 11 14 17

 ## [3,] 3 6 9 12 15 18

 x[2, 4] ## element in 2nd row, 4th column

 ## [1] 11

25

x[, 2] ## 2nd column

[1] 4 5 6

x[2,] ## 2nd row

[1] 2 5 8 11 14 17

Data/Variable : matrix
 x <- as.matrix(read.csv("data/introR/matrix.tsv", sep= "\t", row.names=1)

 x

 sample_1 sample2 sample3

 otu_1 45 60 0

 otu_2 10 5 21

 otu_3 0 54 32

 Try to guess what the following commands do, check in the console

 x[, 3] x["otu_2",]

 x[c(1, 2),] x[c(1, 3), c(2, 3)]

 How to access to the count of sample2 for otu_3?

26

Data/Variable : factor
 Factors are used for categorical variables that only take a finite number of values (also called
levels)

 x <- factor(c("a", "a", "b", "a", "c"))

 class(x)

 ## [1] "factor"

 Levels can be accessed with levels

 levels(x)

 ## [1] "a" "b" "c"

 Internally, R treats x as an integer vector and associates each level to a value: here 1 = "a", 2 =
"b" and 3 = "c" (alphabetical order by default) so that x = c(1, 1, 2, 1, 3).

27

Data/Variable : factor
 Sometimes it's convenient to impose a different ordering with the argument levels of the factor
function.

 y <- factor(x, levels = c("b", "a", "c"))

 levels(y)

 ## [1] "b" "a" "c"

28

Data/Variable : factor
 Compare the two different codes and try to guess the results. Check with the console.

 x <- c("a" = 1, "b" = 2, "c" = 3)

 y <- c("a", "b", "c")

 x[y]

 z1 <- factor(y, levels = c("a", "b", "c"))

 z2 <- factor(y, levels = c("b", "a", "c"))

 z1

 x[z1]

 z2

 x[z2]

 Did you guess right? If not, remember that factor are coded as integer vectors and try to guess
the representation of z1 and z2 as numeric vectors.

29

Data/Variable : data.frame
A data.frame is a table-like structure (created with the function data.frame) used to store contextual data
of different modes. Technically a data.frame is a list of equal-length vectors and/or factors.

x <- data.frame(number = c(1:4),

 group = factor(c("A", "A", "B", "B")),

 desc = c("riri", "fifi", "lulu", "picsou"))

 x

 ## number group desc

 ## 1 1 A riri

 ## 2 2 A fifi

 ## 3 3 B lulu

 ## 4 4 B picsou

 class(x)

 ## [1] "data.frame"

 class(x[, 1])

 ## [1] "integer"

 class(x[, 2])

 ## [1] "factor"

 x[2, "desc"] ## or x[2, 3]

 ## [1] "fifi"

30

Data/Variable : data.frame
 A data.frame has two dimensions: rows and columns (just like a matrix)

 dim(x);nrow(x);ncol(x)

 ## [1] 4 3

 ## [1] 4

 ## [1] 3

 Its columns are named and can be accessed with the special operator $.

 x$group

 ## [1] A A B B

 ## Levels: A B

31

Data/Variable : data.frame
Guess what the following code does and check in the console.

 x

 ## ID group value

 ## 1 1 A 1.29891241

 ## 2 2 A -0.06922655

 ## 3 3 A -0.21717540

 ## 4 4 A -0.23028309

 ## 5 5 A -0.17481615

 ## 6 6 B -1.30304922

 ## 7 7 B -1.27979172

 ## 8 8 B -1.54874545

 ## 9 9 B -0.64328443

 ## 10 10 B 0.20690014

 ii <- 1:5

 df <- x[ii, c("ID", "value")]

 df

 df[, 2]

 class(df[, 2])

 df[2,]

 class(df[2,])

32

Data/Variable: summary
 vector (and matrix): 1-D (and 2-D) array of basic data, all of the same type (integer, numeric,
logical, character)

 factor: used for categorical data, collection of elementary variables that can only take a finite
number of values (e.g. small, medium, large)

 data.frame: used for experimental results, a table-like structure (technically, a list of equal-
length vectors). All elements in a column have the same type but different columns may have
different types.

33

Data/Variable: summary
 position : index elements by position in a vector/factor (x[i]) or 2 positions (row, column) in a
matrix/data.frame (x[i, j])

 name: index elements by name in a vector/factor (x["first"]) or 2 names (row, column) in a
matrix/data.frame (x["row", "column"])

 logical index: use a logical mask index of the same size as x that specifies which elements to keep
(x[index])

 name with $ (for list): use a component's name to extract it from a list. Works for data.frame which
are a special kind of list(x$name)

More than one element (or row, column) can be indexed at the same time with a vector of
position/name/logical : x[c(i1, i2, ..., in)]

34

Data/Variable : filtering
 R provides a built-in way to build logical indexes using logical operations (e.g. to filter data)

 x <- 1:5 ; x

 ## [1] 1 2 3 4 5

 z <- (x < 3); z ## the first command returns a logical vector

 ## [1] TRUE TRUE FALSE FALSE FALSE

 z <- (x < 4) & (x > 1); z ## logical AND

 ## [1] FALSE TRUE TRUE FALSE FALSE

 z <- (x < 2) | (x > 4); z ## logical OR

 ## [1] TRUE FALSE FALSE FALSE TRUE

 !z ## logical NOT

 ## [1] FALSE TRUE TRUE TRUE FALSE

35

Data/Variable : filtering
 The logical indexes can be transformed to integer indexes using which

 which(z)

 ## [1] 1 5

 and used to extract part of the data

 z <- (x < 4)

 x[z]

 ## [1] 1 2 3

 ## or equivalently

 x[x < 4]

 ## [1] 1 2 3

36

Data/Variable : import
 The simplest way to import a tabulated text file* is read.table().

 read.table() outputs a data.frame and is very flexible. Its main arguments are:

37

Argument Description

file File name, or complete path to file (can be an URL)

header First line = variable names? (FALSE by default)

sep Field separator character (white character by

default), write "\t" for tabulation.

dec Character used for decimal points ("." by default)

na.string Character vector of strings to be interpreded as NA

(NA by default)

row.names Column number (or name) where the rownames are stored.

* : think excel worksheet, but in text format

Data/Variable : export
 Matrix-like objects (matrices, data.frame) can be exported as tabulated text files (human-
readable) with write.table(). The typical use is:

 ## for tsv

 write.table(matrix_object, file = "my_file.tsv", sep = "\t")

 To save general objects as R -readable objects (more compact), use save() (and load() to load
them back).

 save(object1, object2, file = "data.Rdata")

 load("data.Rdata")

 Finally, save.image() is a shortcut to save the complete workspace.

38 * : think excel worksheet, but in text format

R and Rstudio : website
 http://www.r-project.org/

 http://www.bioconductor.org/help/publications/

 https://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf

39

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.bioconductor.org/help/publications/
http://www.bioconductor.org/help/publications/
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf

ggplot2
OVERVIEW

40

ggplot2 : overview
 ggplot2 is a powerful package by Hadley Wickham to produce elegant statistical graphics

 it has relatively simple syntax

 gg stands for grammar of graphics (Leland Wilkinson, 2005)

 the plot is built one component at a time with smart defaults settings

library(ggplot2)

41

ggplot2: overview
A ggplot is composed of :

 data: must be stored as a data.frame

 aesthetics: Visual characters that represent the data (position, size, color, fill, etc.)

 scales: For each aesthetic, the conversion from data to display value (color scale, size scale,
transparency scales, log-transformation of continuous values, etc)

 geoms: Type of geometric objects used to represent the data (points, line, bar, etc.)

 coord: 2D coordinate systems used to represent the data (cartesian, polar, etc.)

 stat: data-smoothing, statistical transformation used to summarize the data

 facets: a way to split the data into subsets (e.g. male only/female only) and represent the data
as small multiple plots

42

ggplot2 : overview
 These slides are not a complete introduction to ggplot2. They only intend to introduce elements
used in the phyloseq training session and therefore to :

 present the syntax of a ggplot

 present simple examples of ggplot graphs

 illustrate the data to visual characteristics mapping

 show how to modify a graph by:
 adding a custom color scale

 changing the color scale

 subdividing the data to draw small multiple plots

43

ggplot2
BUILD A PLOT

44

ggplot2 : diamonds dataset
 We'll work with the built-in diamonds dataset (10 attributes of almost 54000 diamonds, see
?diamonds for details)

 data(diamonds) ## import datasets

 class(diamonds) ## data.frame

 head(diamonds) ## documented properties

 carat cut color clarity depth table price x y z

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63

45

ggplot2 : build a plot
The ggplot function is used to build the plot layer by layer. The general syntax is

p <- ggplot(data, aes(x, y)) + layer1 + layer2 + ...

46

 ## set base plot, x coordinate is

carat, y is price

 p <- ggplot(diamonds, mapping =

aes(x = carat, y = price))

 ## Add a layer to represent data as

point

 p1 <- p + geom_point()

 plot(p1)

ggplot2 : build a plot, aesthetics
ggplot allow to add easily color scale in function of an other variable

47

 ## set base plot, x coordinate is carat, y
is price and colored by cut

 p <- ggplot(diamonds, mapping = aes(x =
carat, y = price, color = cut))

 ## Add a layer to represent data as point

 p2 <- p + geom_point()

 plot(p2)

 ## Or precise color aesthetics in
geom_point function

 p <- ggplot(diamonds, mapping = aes(x =
carat, y = price))

 ## Add a layer to represent data as point

 p2 <- p + geom_point(aes(color=cut))

 plot(p2)

NB : For color scale you must choose variables with finite number of values.

ggplot2: build a plot, aesthetics
 The first command tells ggplot that

 data is stored in the diamonds data.frame

 global aesthetics (set with aes) are as follows : carat is mapped to x coordinate, price to y
coordinate

 The second one adds a layer in which data are represented by points (geom_point). The
aesthetics are extracted from global aesthetics aes(x = carat, y = price).

 The variant aes(color = cut) adds a new local aesthetic for the point layer. cut value is mapped
to the color of the points and both a legend and a color scale are automatically constructed.

48

ggplot2: build a plot, aesthetics
 The value of each aesthetic can be either

 identical for all observations: the argument must be given outside of aes (e.g.
geom_point(color = "black"))

 mapped to a variable value (here cut): the argument must be given inside of aes (e.g.
geom_point(aes(color = cut)))

 We played with color but with geom_point we can also play with

 shape

 size

 alpha (transparency)

 fill

49

ggplot2: build a plot, aesthetics
About geom:

 Here we used geom_point to represent data as points. We could have used other geometric
representations of the data:

 geom_point

 geom_line

 geom_bar

 geom_density

 geom_boxplot

 geom_histogram

 Each geometry expects and accepts different aesthetics (e.g linetype is useful for lines but
useless for points)

50

ggplot2: build a plot, facetting

p <- ggplot(diamonds, aes(x =

cut, y = price)

p3 <- p + geom_boxplot()

plot(p3)

51

Try to represent the distribution of price in function of cut thanks to a boxplot.

NB : For boxplot you must choose variables with finite number of values for x.

ggplot2: build a plot

p4 <- ggplot(diamonds, aes(x =

cut, y = price, color =

clarity)) + geom_boxplot()

plot(p4)

52

Add some color in function of clarity

ggplot2: build a plot, facetting
 Go back to geom_point plot of price in function of carat colored by cut

 p2 <- ggplot(diamonds, mapping = aes(x = carat, y = price, color =

cut)) + geom_point()

 We can split the data in subsets to draw small multiple plots using facetting. There are two variants
of facetting:

 facet_wrap if only one variable is used for facetting

 facet_grid, usually used for two or more variables (but can be used for one)

53

ggplot2: build a plot, facetting
 Compare facet wrap and facet grid when using only one variable for facetting: facets are
organized differently

 ## facet along cut

 p5 <- p2 + facet_wrap(~ cut)

 plot(p5)

54

ggplot2: build a plot, facetting
 Compare facet wrap and facet grid when using only one variable for facetting: facets are organized
differently

 ## facet along cut, only points from a given cut appear in a facet

 p6 <- p2 + facet_grid(~ cut)

 plot(p6)

55

ggplot2: build a plot, facetting

 facet_grid is most useful when splitting the data along
two factors

 ## facet along clarity(rows) *

cut(column)

 p7 <- p2 + facet_grid(clarity ~ cut)

 plot(p7)

56

ggplot2: build a plot, facetting

 p8 <- p4 + facet_wrap(~cut)

 plot(p8)

 Each cut is represented in only one facet and
the common x-scale wastes a lot of space.

57

Sometimes, facetting wastes spaces. On boxplot : try to facet by cut.
p4 <- ggplot(diamonds, aes(x = cut, y = price, color = clarity))

+ geom_boxplot()

ggplot2: build a plot, facetting

 p9 <- p4 + facet_wrap(~cut,

scales = "free_x")

 plot(p9)

 scales = "free_y" would lead to one y-scale per
facet

 scales = "free" to one y-scale and one x-scale
per facet

58

We facet by cut but do not impose a common x-scale which leads to a
much better use of space.

ggplot2: build a plot, color scales

59

cut is a factor, with a discrete number of values. We can change the color scale manually with the family of
functions scale_color_something

 palette <- c("black", "red",

"blue", "magenta", "gray")

 names(palette) <- c("Fair", "Good",

"Very Good", "Premium", "Ideal")

 ## Manual color scale

 p6.1 <- p6 +

scale_color_manual(values =

palette)

 plot(p6.1)

ggplot2: build a plot, color scales

60

cut is a factor, with a discrete number of values. We can change the color scale manually with the family of
functions scale_color_something

 ## Use built-in color palette

 p7.1 <- p7 +

scale_color_brewer()

 plot(p7.1)

ggplot2: build a plot, aesthetics
About scales:

 Each aesthetic is associated with a scale

 Whenever possible, ggplot2 will try to merge the scales (like color and fill)

 For aesthetics mapped to a variable, the scale will vary depending on the nature of the variable:
numeric (continuous) or factor, logical (discrete)

 every scale is buitd in the following way they all begin with scale_ and

 continue with the aesthetic name (linetype, fill, color)

 and end with the name of the scale (manual, discrete, brewer)

61

ggplot2: build a plot, title and labels
 You can add (or change) title and axis labels with the commands ggtitle, xlab and ylab
 p10 <- p9 + ggtitle("Diamond prices as a function of clarity") +

xlab("Diamond clarity") + ylab("Diamond price")

 plot(p10)

62

ggplot2
EXPORT AND LEARN

63

ggplot2: export
 You can save graphics using ggsave,

 it guesses the file type from the filename extension.

 By default, it saves the last plot with its current dimensions

 but you can override the dimensions at will

 ## the last three arguments are optional

 ggsave("myplot.png", plot = p, width = 10, height = 4)

64

ggplot2: references
 http://had.co.nz/ggplot2/

 http://groups.google.com/group/ggplot2

 http://cran.r-project.org/web/packages/ggplot2/index.html

 Wickman, H. 2009 { ggplot2. Elegant graphics for data analysis. Springer, 212p.

65

http://had.co.nz/ggplot2/
http://had.co.nz/ggplot2/
http://groups.google.com/group/ggplot2
http://groups.google.com/group/ggplot2
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html

