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hisAt (hierarchical indexing for spliced alignment of 
transcripts) is a highly efficient system for aligning reads  
from rnA sequencing experiments. hisAt uses an indexing 
scheme based on the Burrows-Wheeler transform and the 
Ferragina-manzini (Fm) index, employing two types of 
indexes for alignment: a whole-genome Fm index to anchor 
each alignment and numerous local Fm indexes for very rapid 
extensions of these alignments. hisAt’s hierarchical index for 
the human genome contains 48,000 local Fm indexes, each 
representing a genomic region of ~64,000 bp. tests on real  
and simulated data sets showed that hisAt is the fastest 
system currently available, with equal or better accuracy than 
any other method. despite its large number of indexes, hisAt 
requires only 4.3 gigabytes of memory. hisAt supports genomes 
of any size, including those larger than 4 billion bases.

Since its introduction in 2008, RNA-seq1 has become ubiquitous 
as a tool for the study of gene expression, transcript structure 
and the identification of long noncoding RNAs and fusion tran-
scripts2–5. As RNA-seq has matured, sequencing throughput and 
read lengths have increased dramatically to 100–500 million reads 
per run with lengths of 100 bp or longer. These large and ever-
increasing data volumes necessitate fast and scalable computa-
tional analysis systems.

RNA-seq analysis begins by aligning reads against a reference 
genome to determine the location from which the reads origi-
nated6–8, a step that has become a time-consuming bottleneck; 
for example, widely used alignment programs such as TopHat2 
(ref. 9) and GSNAP10 can take several days to process a single 
RNA-seq experiment. The recently introduced STAR program11 
uses suffix arrays to provide substantially faster processing  
than most other methods, including TopHat2. However, the  
suffix-array method has very large memory requirements  
(28 gigabytes (GB) for the human genome) as compared to meth-
ods using the Burrows-Wheeler transform.

To create a fast spliced aligner that uses a modest amount of 
random access memory (RAM), we designed HISAT with a novel 
indexing strategy based on the Burrows-Wheeler transform12 and 
the FM index13.
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As a result of HISAT’s greatly reduced memory requirements, 
users can shift these computations from special-purpose servers 
to a single conventional desktop computer, on which it is pos-
sible to run multiple samples at the same time. As developers of 
TopHat, we intend to make HISAT the core alignment engine 
for the next major version of that program, TopHat3. HISAT is 
open-source software freely available at http://www.ccb.jhu.edu/
software/hisat/.

results
design principles of hisAt
HISAT uses the Bowtie2 (ref. 14) implementation to handle many 
of the low-level operations required to construct and search an 
FM index. In contrast to most other aligners, our algorithm 
employs two different types of indexes: (i) a global FM index that 
represents the entire genome and (ii) numerous small FM indexes 
for regions that collectively cover the genome, where each index 
represents 64,000 bp. For the human genome, we create ~48,000 
local FM indexes, each overlapping its neighbor by 1,024 bp,  
to cover the entire 3 billion bases. The overlapping boundaries 
make it easier to align reads that would otherwise span the regions 
covered by two indexes.

The program stores the large number of local indexes in a small 
set of files and implements other optimizations to minimize the 
memory requirements, allowing us to index the human genome 
in approximately 4 GB of space.

RNA-seq reads may span large gaps corresponding to introns, 
which in mammalian genomes can be over 1 Mbp in length. Exons 
are relatively short, and thus when 100-bp reads are used, a substan-
tial proportion of reads (~34.5% in our simulated data set) will span 
two exons. For the purpose of alignment, we divide these exon-
spanning reads into three categories: long-anchored reads, which 
have at least 16 bp in each of the two exons; intermediate-anchored 
reads, which have 8–15 bp in one exon; and short-anchored reads, 
with just 1–7 bp aligned to one of the exons (Fig. 1a).

For a simulated human RNA-seq data set (100-bp reads)  
with realistic parameters (Supplementary Note), ~25.1% of the 
reads span two exons with long anchors (>15 bp) in both exons  
(Fig. 1b), which in most cases can be mapped to a unique location 
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in the human genome. 5.1% of the reads spanned two exons with 
an intermediate-length anchor (8–15 bp) on one exon. Alignment 
programs that rely on a global index have great difficulty  
mapping these anchors uniquely (for example, an 8-bp sequence 
is expected to occur ~48,000 times in the human genome). This 
is where the use of a local index provides a substantial advan-
tage. In HISAT, each local index covers 64,000 bp; thus, over 90% 
of annotated human introns are completely contained in one of 
these indexes. After mapping the longer part of a read to identify  
the relevant local index, HISAT can usually align the remaining 
small anchor within a single local index rather than searching 
across the whole genome. On average, an 8-bp sequence will occur 
just once in a local index of this size.

In our simulated data, 4.2% of the reads span two exons with 
a very short anchor (1–7 bp) in one exon. Because these anchors 
are so short, the best approach is, where possible, to align these 
reads by making use of splice site information found by aligning 
other reads in the same data or by using known splice sites. Note 
that ~3.1% of reads span more than two exons. In many mapping 
algorithms, the alignment of short- and intermediate-anchored 
reads and reads spanning more than two exons (12.4% of the total 
reads) takes up to 30–60% of the total run time, and many of those 
reads are ultimately aligned incorrectly or left unaligned.

HISAT solves these challenging spliced-alignment problems 
using hierarchical indexing and several alignment strategies 
specifically designed for handling different read types (Online 
Methods).

comparison to other tools for accuracy and speed
We compared the accuracy and speed of HISAT to several of 
the leading spliced-alignment programs, including STAR11, 
GSNAP10, OLego15 and TopHat2 (ref. 9), using both simulated 
and real reads. We tested three versions of HISAT (HISATx1, 
HISATx2 and HISAT), which we ran with different parameters. 
HISATx1 uses a one-pass approach that aligns each pair of  
reads independently of others. HISATx2 is a two-pass version 
of HISAT to mimic the two-step approach used in TopHat2.  

In this version, the first run reports a list of splice sites  
supported by reads with long anchors. The second run makes use  
of that splice site information to align reads with short anchors 
(Online Methods). As expected, HISATx2 takes twice as long to 
run, but it discovers more alignments. The STAR program also 
has a two-pass mode, denoted here as STARx2, which we included 
in our evaluation. We found that STARx2 was more than twice as 
slow as STAR’s default one-pass mode because, before its second 
pass, STAR must build a new index for the splice junctions found 
in the first pass.

The third variant of HISAT (its default version) combines the 
first two ideas to gain sensitivity without the large performance cost 
incurred by running the program twice. In this algorithm, we allow 
HISAT to make use of splice sites found during the alignment of 
earlier reads when aligning later reads in the same run. This hybrid 
approach finds almost all the alignments found by HISATx2, with 
run time nearly as fast as that of HISATx1. To the best of our knowl-
edge, this hybrid approach is the first such single-pass method that 
bypasses the time-consuming step of remapping reads but matches 
the sensitivity of two-pass methods. HISAT also includes an option 
to use known splice sites from gene annotations.

For our simulated data sets, we generated 20 million 100-bp reads 
with a mismatch rate of 0.5% and up to three mismatches per read 
from 17,647 randomly chosen transcripts from known protein- 
coding genes, based on the GRCh37 assembly of the human 
genome. Each transcript was assigned expression values according  
to a model provided by the Flux Simulator16 (Supplementary 
Note). Because we know the true alignments for the simulated 
reads, we can calculate alignment sensitivity as well as the sensi-
tivity and precision of splice site detection for each program. We 
also ran all programs on an error-free simulated data set. These 
results are consistent with the results on data with mismatches 
(Supplementary Fig. 1 and Supplementary Table 1).

We plotted the alignment speed of the programs for all reads 
(Fig. 2). HISATx1 and HISAT were fastest, at 121,331 and 110,193 
reads processed per second (r.p.s.), respectively, and STAR was 
third fastest at 81,412 r.p.s. As expected, HISATx2 (56,397 r.p.s.) 
and STARx2 (40,639 r.p.s.) took approximately twice as long as 
HISATx1 and STAR, respectively. Note that the speed reported 
for STARx2 did not include the index-building time. GSNAP was 
substantially slower at 14,611 r.p.s., and the slowest programs 
were TopHat2 (1,954 r.p.s.) and OLego (848 r.p.s.).
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Figure � | RNA-seq read types and their relative  
proportions from 20 million simulated 100-bp  
reads. (a) Five types of RNA-seq reads: (i) M,  
exonic read; (ii) 2M_gt_15, junction reads  
with long, >15-bp anchors in both exons;  
(iii) 2M_8_15, junction reads with intermediate,  
8- to 15-bp anchors; (iv) 2M_1_7, junction  
reads with short, 1- to 7-bp, anchors; and (v)  
gt_2M, junction reads spanning more than two  
exons. (b) Relative proportions of different types of 
reads in the 20 million 100-bp simulated read data.
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Figure � | Alignment speed of spliced alignment software for 20 million 
simulated 100-bp reads. Alignment speed for all read types (defined in 
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by the indicated tools. supplementary Figure � provides the alignment 
speed for each type of read separately.
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The current version of GSNAP uses a suffix array in addition to 
its use of a 15-mer hash table, which makes it several times faster 
than earlier versions that used only the hash table. OLego aligns 
reads using a global index based on an FM index, similarly to 
HISAT’s algorithm. However, OLego runs very slowly, presumably 
because it relies on a global index to handle all the different types 
of reads. Overall for this simulated data set, HISATx1 was 49% 
faster than STAR, eight times faster than GSNAP, 62 times faster 
than TopHat2 and 143 times faster than OLego. HISAT was more 
accurate and only 10% slower than HISATx1.

comparison of sensitivity
We calculated alignment sensitivity (reads that are aligned cor-
rectly, for which the beginning, end and all GT/AG splice sites 
within the alignment must match precisely) for all programs on 
the simulated reads (Fig. 3 and Supplementary Table 2). For 
non-GT/AG splice sites, an alignment was counted as correct 
if the intron boundaries matched within a 5-bp window. (Note 
that nonconsensus splice sites occur in just 0.6% of all reads. In 
Supplementary Table 3, we provided separate accuracies on this 
subset of splice sites when they were required to match precisely.) 
Among the one-pass algorithms (HISATx1, STAR, GSNAP and 
OLego), GSNAP and HISATx1 provided the highest alignment 
sensitivity at 93.8% and 93.5%, respectively. OLego and STAR 
yielded lower sensitivity, at 91.6% and 90.5%, respectively.

Compared to the one-pass programs, two-pass approaches 
(HISAT, HISATx2, STARx2, TopHat2) obtained higher overall 
accuracies. These four methods had sensitivity from 97.4% to 
99.3%, over 3% better than the one-pass methods.

For reads with shorter anchors (1–7 bp), the two-pass algo-
rithms (HISATx2, STARx2, TopHat2 and HISAT) generated much 
better alignment sensitivity, and we observed a similar result for 
reads spanning more than two exons (Fig. 4 and Supplementary 
Fig. 2). For reads with intermediate-length anchors, HISATx2, 

STARx2, HISAT and TopHat2 each correctly aligned >95.5% of 
the reads, whereas values for the one-pass methods ranged from 
52.2% to 89.4%. For the reads with the shortest anchors, HISATx2, 
STARx2, HISAT and TopHat2 all provided sensitivity higher than 
92%, whereas the other aligners correctly aligned fewer than 10% 
of these reads.

Accuracy of splice site detection
We separately calculated accuracy for detection of splice sites 
(Table 1). The simulated reads contained a total of 87,944 pairs 
of splice sites (acceptor and donor sites). We asked how many 
of these sites were correctly detected by each program, and we 
gave a program credit if at least one alignment supported a given 
splice site. We defined precision, or positive predictive value, as 
the percentage of predicted sites that matched a true splice site.  
By these measures, HISAT and GSNAP obtained the highest sen-
sitivity (97.3%), and HISAT obtained the second highest precision 
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indicated by the colors. For multimapped reads, an aligner was credited 
with a correct alignment if it mapped a read to multiple locations and  
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reads reported by the various aligners may be different, depending on  
each program’s alignment policy and default behavior. The upper numbers 
are the percentages corresponding to correctly and uniquely mapped  
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In supplementary table �, we provide detailed percentages on all four  
categories for each aligner.
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Figure 4 | Alignment accuracy of spliced-alignment software for reads 
with small anchors from 20 million simulated reads. This figure shows 
the alignment sensitivity for reads with small anchors (2M_8_15 and 
2M_1_7). Reads are categorized as in Figure 3. The upper numbers on 
each bar show the percentages corresponding to correctly and uniquely 
mapped reads. The numbers inside parentheses represent the percentages 
for cases correctly and uniquely mapped and correctly multimapped 
combined. There were 1,022,348 and 843,420 reads in 2M_8_15 and 
2M_1_7, respectively.

table 1 | Sensitivity and precision of leading spliced aligners

Program
no. of splice sites 

reported
no. of true splice 

sites reported
sensitivity 

(%)
Precision 

(%)

HISATx1 91,904 85,546 97.3 93.1
HISATx2 90,331 85,603 97.3 94.8
HISAT 90,300 85,587 97.3 94.8
STAR 95,892 84,678 96.3 88.3
STARx2 92,254 84,734 96.3 91.8
GSNAP 92,547 85,598 97.3 92.5
OLego 86,779 82,879 94.2 95.5
TopHat2 96,474 79,705 90.6 82.6
Sensitivity and precision of leading spliced aligners for 87,944 true splice sites contained in 
20 million simulated reads from the human genome, with a mismatch rate of 0.5%. Sensitiv-
ity is the percentage of true splice sites found out of the total that were present. Precision 
(or positive predictive value) is the percentage of reported splice sites that are correct.
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(94.8%) among all the aligners. OLego yielded slightly higher pre-
cision (95.5%), but at the expense of lower sensitivity (94.2%).

comparison on real data
We compared the aligners using 108,749,331 101-bp RNA-seq reads 
collected from fetal lung fibroblasts (GEO accession GSM981249; 
Supplementary Note). Because we do not know the true align-
ments for these reads, we evaluated alignment quality in two ways: 
(i) the cumulative number of alignments detected, up to an edit 
distance of 3, and (ii) the number of spliced alignments found that 
correspond to known human splice sites, based on the Ensembl 
GRCh37 gene annotation. At all distances, HISATx2, STARx2 
and HISAT aligned the greatest number of reads, in a tight range  
from 95.9 million to 96 million (Supplementary Fig. 3). We then 
examined the cumulative number of spliced alignments that cor-
respond to annotated human splice sites, also separated according 
to edit distance (Supplementary Fig. 4). At every distance and for 
the overall total, HISATx2, STARx2 and HISAT found the highest  
numbers of alignments, ranging from 34.6 million to 35.2 million. 
STAR and OLego found the lowest numbers of spliced alignments, 
at just 26.9 million and 26.2 million, respectively.

HISATx1 and HISAT took 23 and 27 min, respectively, and 
STAR took 25 min to process the 109 million reads. In contrast, 
TopHat2 took 1,170 min, OLego took 990 min and GSNAP took 
292 min. In terms of memory usage, the suffix-array methods 
STAR and GSNAP used 28 and 20.2 GB of RAM. The Burrows-
Wheeler transform–based programs (HISATx1, HISAT, HISATx2, 
OLego and TopHat2) required memory ranging from 3.7 to 4.3 GB  
of RAM (Table 2).

We provide alignment results for additional sets of simulated 
reads and for an additional real data set from Chen et al.17 con-
taining 217 million paired-end reads (Supplementary Figs. 5–7  
and Supplementary Tables 4–6). In all cases, the relative per-
formances of the alignment programs remained the same as 
described above. In Supplementary Table 7, we provide details 
of the input parameters and version numbers for all programs 
used in these evaluations.

discussion
Although HISAT is the first system to employ a hierarchical 
indexing strategy for spliced alignment, the strategy itself could 
be adopted by other methods if their data structures can be suit-
ably redesigned. All the programs that were included in our 
study—GSNAP, STAR, OLego and TopHat2—could in principle 
use hierarchical indexing and thereby improve their alignment 

speed and quality. HISAT gains additional sensitivity from align-
ment algorithms specifically designed to handle different types 
of intron-spanning reads. The combination of these algorithms 
with hierarchical indexing enables dramatically faster alignment 
while matching or exceeding the accuracy of the best previous 
spliced aligners.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknoWledgments
We thank G. Pertea and L. Song for their invaluable contributions to our 
discussions on HISAT. We also thank C. Trapnell for the use of his TuxSim 
simulation program. This work was supported in part by the National Human 
Genome Research Institute (US National Institutes of Health) under grants  
R01-HG006102 and R01-HG006677 to S.L.S.

Author contriButions
D.K., B.L. and S.L.S. performed the analysis and discussed the results of HISAT. 
D.K. implemented HISAT. D.K., B.L. and S.L.S. wrote the manuscript. All authors 
read and approved the final manuscript. 

comPeting FinAnciAl interests
The authors declare no competing financial interests.

reprints and permissions information is available online at http://www.nature.
com/reprints/index.html.

1. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping 
and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 
621–628 (2008).

2. Trapnell, C. et al. Differential gene and transcript expression analysis of 
RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 
(2012).

3. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. 
Post-transcriptional processing generates a diversity of 5′-modified long 
and short RNAs. Nature 457, 1028–1032 (2009).

4. Cabili, M.N. et al. Integrative annotation of human large intergenic 
noncoding RNAs reveals global properties and specific subclasses.  
Genes Dev. �5, 1915–1927 (2011).

5. Kim, D. & Salzberg, S.L. TopHat-Fusion: an algorithm for discovery of 
novel fusion transcripts. Genome Biol. ��, R72 (2011).

6. Garber, M., Grabherr, M.G., Guttman, M. & Trapnell, C. Computational 
methods for transcriptome annotation and quantification using RNA-seq. 
Nat. Methods 8, 469–477 (2011).

7. Grant, G.R. et al. Comparative analysis of RNA-Seq alignment algorithms 
and the RNA-Seq unified mapper (RUM). Bioinformatics �7, 2518–2528 
(2011).

8. Engström, P.G. et al. Systematic evaluation of spliced alignment programs 
for RNA-seq data. Nat. Methods �0, 1185–1191 (2013).

9. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence 
of insertions, deletions and gene fusions. Genome Biol. �4, R36 (2013).

10. Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants 
and splicing in short reads. Bioinformatics �6, 873–881 (2010).

11. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 
�9, 15–21 (2013).

12. Burrows, M. & Wheeler, D.J.A. Block-sorting lossless data compression 
algorithm (Technical report 124). (Digital Equipment Corp., Palo Alto, 1994).

13. Ferragina, P. & Manzini, G. in Proc. 41st Annual Symp. Found. Comput. 
Sci. 390–398 (IEEE, 2000).

14. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. 
Nat. Methods 9, 357–359 (2012).

15. Wu, J., Anczuków, O., Krainer, A.R., Zhang, M.Q. & Zhang, C. OLego:  
fast and sensitive mapping of spliced mRNA-Seq reads using small seeds. 
Nucleic Acids Res. 4�, 5149–5163 (2013).

16. Griebel, T. et al. Modelling and simulating generic RNA-Seq experiments 
with the flux simulator. Nucleic Acids Res. 40, 10073–10083 (2012).

17. Chen, R. et al. Personal omics profiling reveals dynamic molecular and 
medical phenotypes. Cell �48, 1293–1307 (2012).

table 2 | Run times and memory usage for HISAT and  
other spliced aligners

Program run time (min) memory usage (gB)

HISATx1 22.7 4.3
HISATx2 47.7 4.3
HISAT 26.7 4.3
STAR 25 28
STARx2 50.5 28
GSNAP 291.9 20.2
OLego 989.5 3.7
TopHat2 1,170 4.3
Run times and memory usage for HISAT and other spliced aligners to align 109 million 
101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the 
programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM981249
http://www.nature.com/doifinder/10.1038/nmeth.3317
http://www.nature.com/doifinder/10.1038/nmeth.3317
http://www.nature.com/doifinder/10.1038/nmeth.3317
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


©
20

15
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.3317 nAture methods

online methods
HISAT uses its hierarchical indexing algorithm along with several 
adaptive strategies, based on the position of a read with respect to 
splice sites, which we describe below. To begin processing each read, 
it first tries to find candidate locations across the target genome 
from which the read may have originated. It identifies these loca-
tions by first mapping part of each read using the global FM index, 
which in most cases identifies one or a small number of candidates 
(Supplementary Figs. 8–11). HISAT then selects one of the ~48,000 
local indexes for each candidate and uses it to align the remainder 
of the read. For reads sequenced in pairs, each mate is separately 
aligned and the alignments of both mates are combined. If a read 
fails to align, then the alignments of its mate are used as anchors to 
map the unaligned mate. The extension of each alignment uses an 
efficient local index–based search as explained below.

Although searching the global FM index is much faster in prin-
ciple than k-mer–based (or hashing) search, in practice it tends to 
be slower owing to properties of the low-level memory manage-
ment strategy in a modern computer. The core memory includes 
both random access memory (RAM) and cache memory, with 
cache being much smaller but also much faster. When retrieving 
a block of data, the operating system searches cache first and looks 
in RAM only if the block is not found in cache.

Search through a global FM index of the human genome suffers 
from many cache ‘misses’ because the alignment algorithm proceeds 
one base at a time through a read and the corresponding locations 
in a very large FM index (about 913 MB for the human genome). 
As a match is extended base by base, the search jumps to completely 
different regions of the index, i.e., the FM index is not organized 
according to the sequence of the genome itself. Each time the search 
jumps, the computer has to search RAM and bring in a new piece of 
the FM index, which is rarely present in the cache already.

In contrast, the far smaller size of our local indexes, 24 KB, 
allows the entire index to fit in cache, which means that search 
through the local indexes generates considerably fewer cache 
misses and therefore runs much faster.

In addition to its two basic operations (global and local 
searches), HISAT uses an even faster operation for alignment 
extension. This operation, which performs direct comparisons 
of read sequences with genomic sequences, is used only when 
we know the genomic location to which a read is being mapped. 
The extension operation requires the entire genomic sequence to 
be loaded into memory for fast access; in the case of the human 
genome, this requires 682 MB. Strategically combining these three 
operations can dramatically reduce the use of relatively slow oper-
ations such as global search and even local search.

Here, we present three different alignment strategies based on 
three groupings of reads: (i) reads that map within an exon, across 
two exons with at least 15 bp in each exon, or across two exons 
with 8–15 bp mapping to one exon; (ii) reads that map to two 
exons with just 1–7 bp in one exon or that map across more than 
two exons; and (iii) reads that are likely to be incorrectly mapped 
to processed pseudogenes.

We illustrate each alignment strategy using examples (error-free 
reads) that for the purposes of illustration are relatively simple but 
that still provide insight into how hierarchical indexing enables 
fast and sensitive alignment. Although we use error-free reads in 
these examples, HISAT easily handles reads with both mismatches  
and indels (Supplementary Note and Supplementary Fig. 11). 

Note that HISAT is optimized for reads ranging from 75 to 150 bp, 
the most commonly used (and least expensive) type, but it will also 
handle the 250- to 300-bp reads generated by MiSeq instruments.

All the strategies that use local indexes initially retrieve just 
one index, based on the location of the current match. Among 
the 246,208 introns from the annotated protein-coding genes in 
the human genome, 222,503 (90.4%) are completely included in 
one local HISAT index, each of which spans 64,000 bp. One local 
index, therefore, is almost always sufficient to align a read. When 
reads involve long introns, HISAT uses two or more local indexes, 
up to a maximum intron length of 500,000 bp.

For the examples here, we search for matches in one direction, 
from right to left, in order to minimize HISAT’s memory foot-
print, currently 4.3 GB. (Bidirectional search using our method 
would require 7.5 GB for the human genome.) This unidirec-
tional search does not affect alignment sensitivity, though it might 
slightly reduce speed.

Alignment of exonic reads and long- and intermediate-anchored 
reads. Given two exons from a gene on human chromosome 22, 
separated by a 3,899-bp intron, suppose the genomic region is 
transcribed and spliced and we have three reads sequenced from 
the resulting transcript: (i) an exonic read, (ii) a read spanning two 
exons with an 8-bp anchor in one exon and (iii) a read spanning 
two exons with 50 bp in each exon (Supplementary Fig. 8). All 
the reads are assumed to be error free and 100 bp long. We can 
apply hierarchical indexing to align each of these reads rapidly 
and correctly. We align the first read using the global FM-index 
(Supplementary Fig. 8a). Because global search is relatively time 
consuming, we change strategies when the partial alignment meets 
two conditions: (i) it is at least 28 bp long and (ii) it maps onto 
exactly one location. For the read shown in the figure, the 28-bp 
sequence on its right end maps uniquely, allowing us to stop the 
global search operation at that point. From there, we extend the 
partial alignment by directly comparing the remaining sequence 
and the corresponding genomic sequence, which we can extract 
directly from the genome using the mapped location as an index. 
Because the read is error free and contained within one exon, the 
extension operation sweeps across the remaining 72 bp, completing  
the alignment for the read. Note that we could perform this  
alignment using the global FM index, as TopHat2 does, but the 
combination of global search and local extension is faster.

For the second read, which has a very short 8-bp anchor on the 
left side, we first try to map the read using global search, moving 
right to left (Supplementary Fig. 8b). The first 28 bp on the right 
end of the read maps uniquely, allowing us to anchor the align-
ment and halt the global search. We then extend the alignment 
until we encounter a mismatch at the 93rd base. This mismatch 
occurs when the alignment extension reaches the intron. At this 
point we pause the search, retrieve the local FM index that con-
tains this location and align the remaining 8 bp using this index. 
Because the index covers only a small region, in this case we find 
just one match for the 8-bp segment. Finally, we check whether 
the two partial alignments (8 bp and 92 bp) are compatible with 
each other (for example, in the correct orientation) and then com-
bine them to produce a spliced alignment of the original read.

Note that if we searched for an 8-bp sequence in the global 
index, we would expect to find an average of ~48,000 matching 
locations in the human genome (and sometimes many more). 
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Instead of examining 48,000 possible locations, we use one of 
the local FM indexes, which is expected to contain just one copy 
of a given 8-bp sequence, on average. This two-stage hierarchi-
cal indexing allows us to avoid examining tens of thousands of 
candidate locations for short anchors, which in turn dramatically 
speeds up the overall alignment algorithm.

The third read has long anchors (50 bp each) in each exon.  
We first align the read beginning on the right, using global search 
as we did before. After the first 28 bp is uniquely mapped, we 
switch to the extension operation, which further aligns 22 bp 
and stops after a mismatch at the 51st base. We then choose a 
local FM index and perform a local search using the first 8 bp of 
the remaining part of the read. Once this 8 bp is found, HISAT 
again uses the extension operation to align the rest of the read 
(Supplementary Fig. 8c). Note that if the 8-bp prefix mapped to 
too many locations, HISAT would use a longer prefix to reduce 
the number of potential locations to 5 or fewer.

As we can see from these examples, we can combine global 
search, local search and directed read extension to achieve rapid 
yet sensitive alignment. Note that when a read has multiple 
spliced alignments, HISAT prefers to report alignments that 
use the canonical GT and AG dinucleotides on the ends of the 
intron. From any remaining alignments after this filter, it reports 
the one with the shortest intron length. HISAT provides several 
parameters with which users can customize its alignment strat-
egy, including adjustable penalties for mismatches, indels and  
noncanonical splice sites (Supplementary Note).

Alignment of short-anchored reads and reads spanning three 
exons or more. Exon-spanning reads sometimes have very small 
anchors (defined here as 1–7 bp) in one of the exons. Correctly align-
ing these reads is extremely difficult because a 1- to 7-bp anchor will 
align to numerous locations, even in a local FM index. Arguably 
the most effective approach to align such short-anchored reads is to 
use splice site information to remove the introns computationally 
before alignment. We can identify and collect splice site locations 
when aligning reads with long anchors and then rerun HISAT for 
the short-anchored reads (Supplementary Fig. 9). This two-step 
approach is very similar to the two-step algorithm in TopHat2.

More specifically, in the two-step HISATx2 method, we use 
the first run of HISAT (HISATx1) to generate a list of splice sites 
supported by reads with long anchors. In the second run we 
then use the splice sites to align reads with small anchors. For 
example, consider the unmapped read spanning exons e2 and e3  
(the upper portion of Supplementary Fig. 9). The right part of the 
read will be mapped to exon e3 using the global search and exten-
sion operations, leaving a short, 3-bp segment unmapped. We then 
check the splice sites found in the first run of HISAT to find any 
splice sites near this partial alignment. In this example, we find a 
splice site supported by a read spanning exons e2 and e3 with long 
anchors in each exon. On the basis of this information, we directly 
compare the 3 bp of the read and the corresponding genomic 
sequence in exon e2. If it matches, we combine the 3-bp alignment 
with the alignment of the rest of the read. This ‘junction extension’  
procedure that makes use of previously identified splice sites is 
represented by brown arrows in the figure.

As we show in our experiments on simulated reads, this two-step 
strategy produces accurate alignment of reads with anchors as small 
as 1 bp (see Results). Although HISATx2 has considerably better 

 sensitivity, it takes twice as long to run as HISATx1. As an alternative, 
we developed a hybrid method, HISAT, which has sensitivity almost 
equal to that of HISATx2 but with the speed of HISATx1. HISAT 
collects splice sites as it processes the reads, similarly to the first run 
of HISATx2. However, as it is processing, it uses the splice sites col-
lected thus far to align short-anchored reads. In the vast majority of 
cases, it can align even the shortest anchors because it has seen the 
associated splice sites earlier. This result follows from the observa-
tion that most splice sites can be discovered within the first few 
million reads, and most RNA-seq data sets contain tens of millions  
of reads. As our results show, HISAT provides alignment sensitivity 
that very nearly matches the two-step HISATx2 algorithm, with a 
run time nearly as fast as the one-step HISAT method.

The hybrid approach is also effective in aligning reads spanning 
more than two exons, which are more likely to have small anchors. 
The alignment sensitivity for such reads increases from 53% using 
HISATx1 to 95% using HISAT (Supplementary Fig. 2).

Alignment of reads involving pseudogenes. Misalignments 
caused by pseudogenes present additional problems for spliced 
alignment. Processed pseudogenes are nonfunctional copies of 
genes that result when the original gene was transcribed, spliced 
to remove introns and reinserted at a different location in the 
genome. The most recently created pseudogenes are almost 
identical to the original genes, meaning that reads from these 
genes can map equally well to either version of the gene. Intron- 
spanning reads are a particular problem because they map end to 
end on the pseudogene but require a split (spliced) alignment to 
match the original, active gene. As we showed previously9, 2.7% 
of annotated human genes have pseudogene copies, and the corre-
sponding genes can account for as much as 22.5% of an RNA-seq 
data set. Therefore, pseudogenes can introduce a strong mapping 
bias unless they are properly handled. In Supplementary Figure 10,  
we show a gene and its corresponding processed pseudogene, 
where the two exons shown on chromosome 1 have their nearly 
identical copies on chromosome 17 with only a single-base differ-
ence. Unlike the two exons on chromosome 1 that are separated 
by an intron, the two exons on chromosome 17 are adjacent. As a 
result, junction reads originally spanning the two exons on chro-
mosome 1 are likely to be mismapped to chromosome 17, particu-
larly if the alignment program prefers contiguous alignments.

In the presence of pseudogenes, HISAT correctly maps 
reads to their origin by considering several genomic locations 
(Supplementary Fig. 10). In this example, the rightmost portion  
of the read (48 bp) maps to chromosomes 1 and 17. The match 
continues on chromosome 17 (the pseudogene) but is inter-
rupted on chromosome 1 at the 3′ end of the intron. Despite the  
mismatch, HISAT attempts to extend both partial alignments 
because both are sufficiently long (at least 22 bp by default). For 
the partial alignment on chromosome 1, we resume the search 
using a local FM index, which yields a spliced alignment with no 
mismatches. On chromosome 17, the extension of the alignment  
yields a nongapped alignment with one mismatch. Given the 
two candidate alignments, HISAT reports the spliced alignment 
because it has no mismatches, whereas the nonspliced alignment 
has one mismatch. If the two alignments were equally good, then 
HISAT would report both alignments. As shown in our results, 
this alignment strategy allows HISAT to detect more spliced 
alignments than any of the leading aligners.




