Programme de la journée

Sarah Maman, Ibouniyamine Nabihoudine

Initiation à l'utilisation de Galaxy

Maria Bernard, Laurent Cauquil

- Etape 1 : Analyse de séquences 16S : Preprocessing des lectures
- Etape 2 : Alignement des lectures et filtre
- Etape 3 : Analyse taxonomique des séquences
- Etape 4 : Construction des OTUs et analyse taxonomique

Analyse d'ARN 16S bactériens

Séquençage 454 et MiSeq

01 Introduction

Introduction

Objectifs: Etude de la communauté bactérienne par séquençage haut-débit

- Mise en évidence du polymorphisme d'un gène entre les espèces microbiennes
- Gène choisi : gène codant pour l'ARNr 16S
 - Molécule ubiquitaire
 - Régions conservées (production d'amplicons)
 - Régions hypervariables (permet de différencier les espèces)
- Calcul des courbes de raréfaction par échantillon
- Indices de diversité (Ace, Shannon...), coverage

Comparison of the microbial community structures of untreated wastewaters from different geographic locales.

Shanks OC, Newton RJ, Kelty CA, Huse SM, Sogin ML, McLellan SL. Appl Environ Microbiol. 2013 May;79(9):2906-13. doi: 10.1128/AEM.03448-12. Epub 2013 Feb 22.

Méthode

Prélèvement d'échantillons

Extraction d'ADN

Amplification par PCR

Séquençage

Nettoyage des séquences

Affiliation taxonomique

Regroupement en OTU (Operationnal Taxonomic Unit)

Objectifs de la formation

- A partir de données de séquençage 454/Miseq sur une région d'intérêt de l'ARN 16S :
- Identification des taxonomies de chaque lecture
- Quantification des populations bactériennes pour chaque échantillon
- Recherche des différents « Operational Taxonomic Unit » (OTU)
- Quantification des OTUs par échantillon
- Calcul des courbes de raréfaction par échantillon
- Indices de diversité (Ace, Shannon...), estimation de la couverture de Good.

- Galaxy: interface web
 - Le projet initial : http://galaxyproject.org/
 - L'instance de Toulouse, Sigenae/Genotoul http://sigenae-workbench.toulouse.inra.fr/
- Mothur / Swarm: analyse métagénomique
 - http://www.mothur.org/wiki/Main_Page Schloss P.D. et al. Appl Environ Microbiol, 2009. 75(23):7537-41
 - https://github.com/torognes/swarm Mahé F et al. PeerJ PrePrints 2:e386v1
- Krona : « Hierarchical data browser », pour la visualisation des populations et de leur quantité
 - http://sourceforge.net/projects/krona/ Ondov BD et al. BMC Bioinformatics. 2011 Sep 30; 12(1):385.

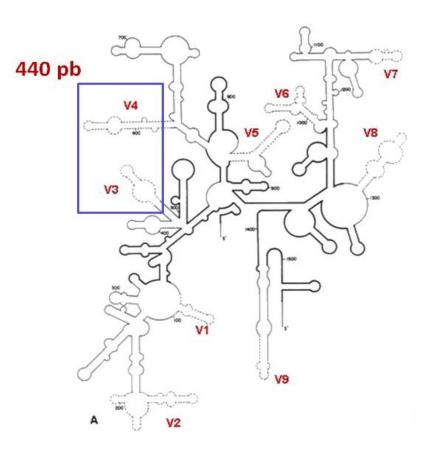
Pré requis de la formation

- Base pour l'utilisation de Galaxy
 - Formation initiation à Galaxy

ou

 Suivez la formation «Galaxy» disponible sur le elearning: http://sig-learning.toulouse.inra.fr/

Données - Construction des amplicons

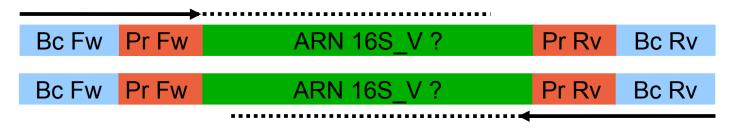

Détermination des populations bactériennes présentes dans un échantillon:

Sélection d'une ou plusieurs régions variables grâce à un couple de primer

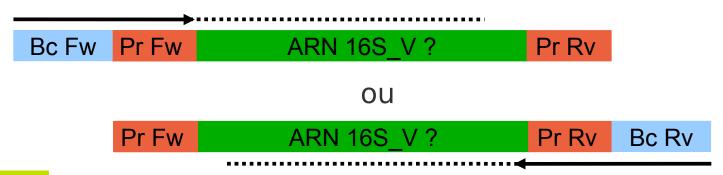
Chakravorty 2007,

"A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria" Klindworth 2012.

"Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies"


Données - Construction des amplicons

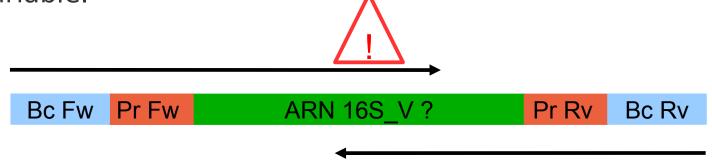
- Critère de définition des régions:
- >Taille des séquences obtenues au séquençage
- Communauté étudiée
 - bactéries, archaea, eucaryotes
 - groupe taxonomique particulier (phylum, genre, espèce...)


Données - Construction des amplicons (454)

On peut ensuite multiplexer les séquences (utilisation de barcodes) pour traiter plusieurs échantillons dans un même run (diminution des coûts)

Séquençage plate-forme Get

Séquençage Texas (SCOT)



Données - Construction des amplicons (MiSeq)

Pour le séquençage MiSeq on utilise le séquençage paire-end 2 x 250 bases avec une zone de chevauchement entre les 2 lectures (au moins 10 bases)

Cette zone de chevauchement ne doit pas avoir de région variable.

Données - Construction des amplicons

- Bilan du séquençage :
 - 454 : 2 fichiers par run.

Fichier de lectures au format fasta : run_name.fasta	>F11Fcsw_92 AGAGAGCAAGTGCATGCCTCCCGTAGG
Fichier de qualité de séquençage au format fasta : run_name.qual	>F11Fcsw_92 40 40 40 40 40 40 40 40 40 40 40 37 37 37 37 37 37 40 40 40 40 40 40 40 40 40 40 40 40

Un fichier fasta contient les informations de chaque lectures sur 2 lignes.

- La première ligne commence par « > » et contient l'identifiant de la séquence
- La seconde ligne contient la séquence proprement dite ou la qualité associée à chaque base

Données - Construction des amplicons

- Bilan du séquençage :
 - MiSeq: 2 fichiers par run et par échantillon.

Fichier de lectures au format fastq : sample_name_run_name_ R1 .fastq	@M00967:43:000000000-A3JHG:1:1101:18327:1699 1 :N:0:188 NACGGAGGATGCGAGCGTTATCCGG + #>>AABABBFFFGGGGGGGGGGGGGG
Fichier de lectures au format fastq : sample_name_run_name_ R2 .fastq	@M00967:43:000000000-A3JHG:1:1101:18327:1699 2 :N:0:188 CCTGTTTGATCCCCGCACTTTCGTG + BABBBFFFFFFGEGGGGGGGGGGGGGGGGGGGGGGGGGGG

Un fichier fastq contient les informations de chaque lectures sur 4 lignes.

- La première ligne commence par « @ » et contient l'identifiant de la séquence
- La seconde contient la séquence proprement dite
- La troisième est un « + »
- La quatrième contient les scores de qualité de chaque base

Données : échantillon de données test

Séquençage 454 :

Costello et al, ont publié en 2009,

http://www.sciencemag.org/content/326/5960/1694,

une étude sur les différences de populations bactériennes entre différents tissus du corps humain et entre différents individus. Pour cela ils ont prélevé 27 tissus différents chez 9 individus et ont séquencé les régions V1-V2 (27f-338r) de l'ADN 16S sur une plateforme Roche 454.

Données test : 24 échantillons d'ADN 16S V1-V2 (4 tissus de 3 femmes et 3 hommes)

Séquençage MiSeq :

Schloss et al (développeur de mothur) est en cours de publication, http://aem.asm.org/content/early/2013/06/17/AEM.01043-13,

d'un protocole d'analyse d'amplicon sur plateforme de séquençage Illumina MiSeq. Dans cette étude ils s'intéressent à l'analyse des effets du microbiome de l'intestin sur la santé. Pour cela ils ont prélevé les fèces de souris à différents temps après sevrage et ont analysé les régions V3-V4, V4, V4-V5 de l'ADN16S.

Données test : 10 échantillons d'ADN 16S V4 (5 temps juste après sevrage et 5 temps en fin d'expérience) d'une souris.

Données : un fichier de configuration

- Un fichier de configuration tabulé décrivant la construction des amplicons:
 - Multiplexage simple

sample_name	tag_f	primer_f	tag_r	primer_r	16S_domain	extra
F11Fcsw	NONE	NONE	AGAGAGCAAGTG	CATGCTGCCTCCCGTAGGAGT	16S_V ?	
F12Fcsw	NONE	NONE	AGTAGTATCCTC	CATGCTGCCTCCCGTAGGAGT	16S_V ?	

Multiplexage double

sample_name	tag_f	primer_f	tag_r	primer_r	16S_domain	extra	
MgArd0001	ACAGCGT	AYTGGGYDTAAAGV G	ACGTACA	TACCVGGGTATCTAATCC	16S_V4	Myodes	
MgArd0002	ACAGCGT	AYTGGGYDTAAAGV G	ACGTCAG	TACCVGGGTATCTAATCC	16S_V4	Myodes	

Données : les bases de référence

Base de données de référence

Cette référence est constituée de deux fichiers :

- Un alignement d'ARN 16S (contenant à minima votre région d'intérêt). Le fichier doit être au format fasta, l'alignement au format ARB (http://www.arb-home.de/home.html)
- Les taxonomies associées à chacune des séquences de références :

Sequence ID	Taxonomy
U87775.1	Bacteria; Alphaproteobacteria; Rhizobiales; Azorhizobium_et_rel.; Methylobacterium_et_rel.; Bosea;

Données : les bases de référence

Limite des bases de données :

On ne peut identifier que ceux qu'on a déjà vu!

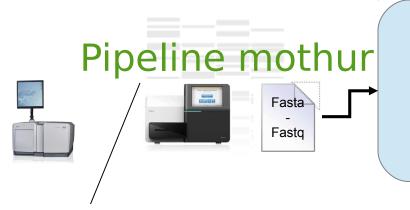
Suivant la base de référence utilisée l'affiliation taxonomique pourra être plus ou moins précise suivant les groupes (classe, ordre, famille, genre, espèce) et les embranchements (Firmicutes, Bacteroidetes...)

Base disponibles:

Silva, RDP, Greengenes, NCBI (Mothur fourni une version des séquences Silva correctement formatée avec les assignations taxonomiques des différentes bases, ici)

Possibilité d'utiliser une bases personnalisée

Données : bilan des entrées


- Vous avez donc à fournir :
 - Un/des fichiers de séquences (fasta ou fastq) multipléxées pour le 454, multipléxées ou non mais non contiguées pour le MiSeq
 - Un fichier de configuration décrivant la construction des amplicons
 - 2 fichiers d'ADN 16S de référence : les séquences alignées et les taxonomies associées.

02

Pipeline d'analyse mothur Théorie

Démultiplexage et/ou Contigage des lectures Sélection des séquences uniques

Démultiplexage et/ou Contigage des lectures Sélection des séquences uniques

2_Alignment

Alignement des séquences sur une base 16S de référence Sélection des séquences sur la région d'intérêt Filtres des erreurs de séquençage Sélection des alignements uniques

Démultiplexage et/ou Contigage des lectures Sélection des séquences uniques

2_Alignment

Alignement des séquences sur une base 16S de référence Sélection des séquences sur la région d'intérêt Filtres des erreurs de séquençage Sélection des alignements uniques

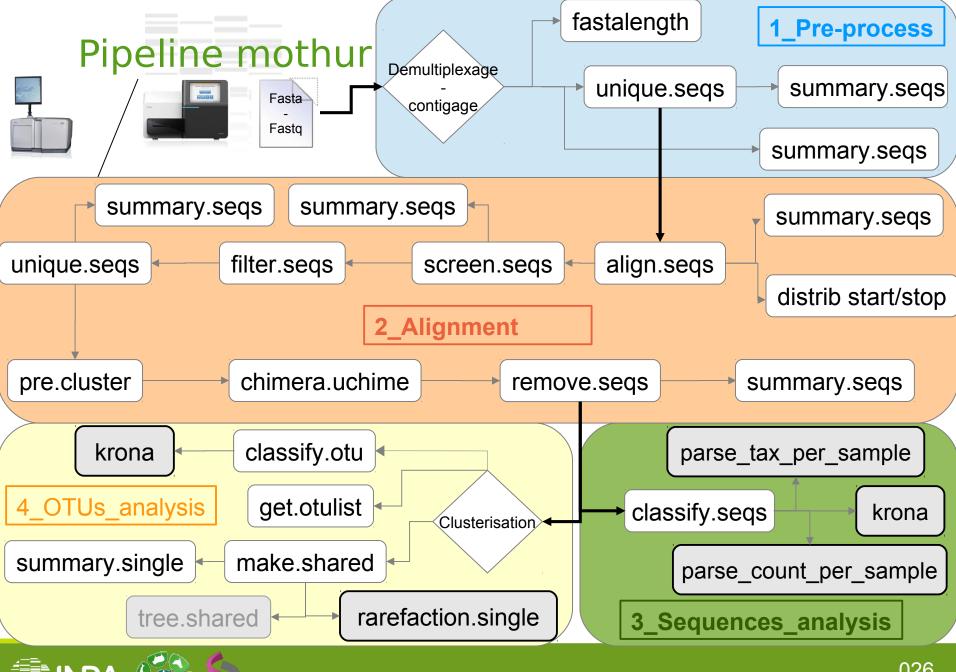
3_Sequences_analysis

Assignation taxonomique de chaque séquence

Démultiplexage et/ou Contigage des lectures Sélection des séquences uniques

2_Alignment

Alignement des séquences sur une base 16S de référence Sélection des séquences sur la région d'intérêt Filtres des erreurs de séquençage Sélection des alignements uniques


4_OTUs_analysis

Construction des « Operational Taxonomic Units » Calcul de la diversité alpha Assignation taxonomique des OTUs

3_Sequences_analysis

Assignation taxonomique de chaque séquence

Pipeline mothur

Vous avez vu qu'il y a un grand nombre d'étapes pour arriver à générer les assignations taxonomiques d'un ensemble d'échantillons.

Dans le pipeline Galaxy que l'on vous propose, ces étapes sont résumées en 4 grands modules que nous allons maintenant détailler.

Sous Galaxy, ces modules sont présents dans la section « 8 - Trainings » , « Metagenomics Mothur » .

8 - TRAININGS

Reads alignment and SNP calling

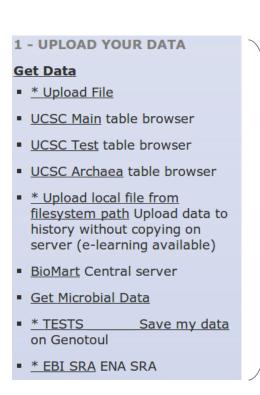
RNA-Seq

sRNAseq

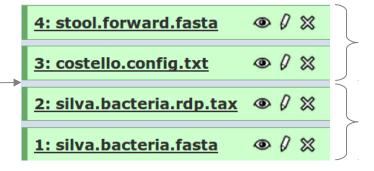
SNP annotation

Metagenomics Mothur 454 and MiSea

- *454* 1 Pre process (e-learning available)
- *MiSeg* 1 Pre process
- *2 Alignment (e-learning available)
- *3 Sequences analysis (elearning available)
- *454* 4 OTUs analysis (elearning available)
- *MiSeq* 4 OTUs analysis (elearning available)


03

Pipeline d'analyse mothur Galaxy / Etape 1
Preprocessing des lectures


Pipeline d'analyse mothur : Données 454

Chargement des fichiers d'entrées

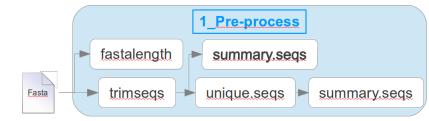
Proposition de base de référence fourni par mothur ici :

http://www.mothur.org/w/images/9/ 98/Silva.bacteria.zip

Les lectures et le fichier de configuration

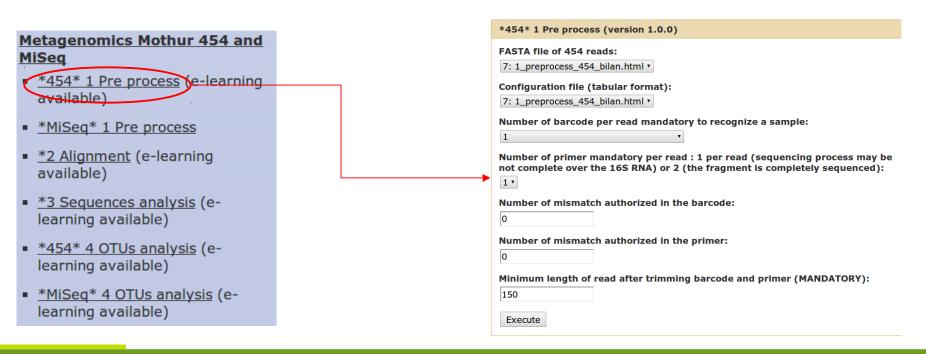
Les fichiers des références

Pipeline d'analyse mothur : Données MiSeq

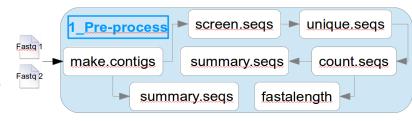

Chargement des fichiers d'entrées

1 - UPLOAD YOUR DATA **Get Data** * Upload File UCSC Main table browser le fichier de UCSC Test table browser configuration UCSC Archaea table browser @ 0 × 3: Schloss.config.txt * Upload local file from @ 0 X 2: silva.bacteria.fasta filesystem path Upload data to Les fichiers des history without copying on server (e-learning available) @ 1 X 1: silva.bacteria.rdp.tax références BioMart Central server Get Microbial Data * TESTS Save my data on Genotoul Les lectures seront chargés en * EBI SRA ENA SRA indiquant le chemin du dossier genotoul dans lequel vous les avez stockées.

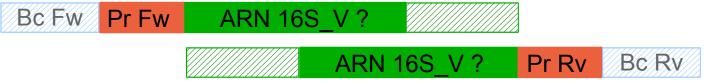
Outil « 1_Pre-process »

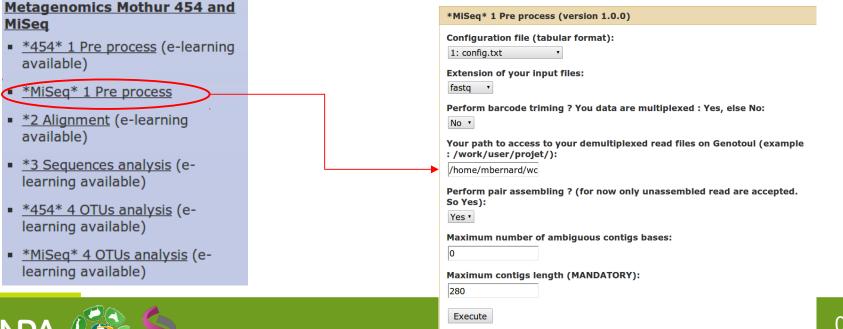

Pipeline mothur Etape 1: 454 preprocess

Les lectures sont sous la forme :



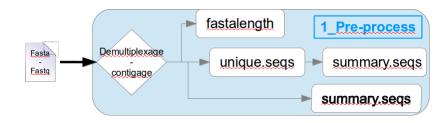
La première étape du pipeline consiste à démultipléxer les données, et à supprimer les primers : outil « *454*_1_Pre-process»




Pipeline mothur Etape 1 : MiSeq preprocess

Les lectures sont sous la forme :

La première étape du pipeline consiste à démultipléxer les données, et à contiguer les lectures: outil « *MiSeq* 1_Pre-process »



Résultats de « 1_Pre-process »

Pipeline mothur Etape 1 : preprocessing

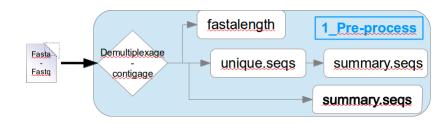
Résultats

Fichier HTML:

fichier html présentant les résultats du module

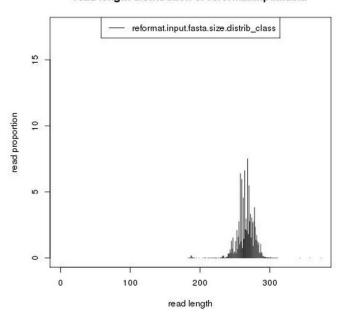
Fichier « count » :

fichier tabulé contenant le nombre d'occurences de chaque séquence unique dans chaque échantillon


Representative_Sequence	Total	F11Fcsw	F12Fcsw
F11Fcsw_6529	1568	38	17
F21Fcsw_12128	1764	0	0

• <u>Fichier fasta</u>:

fichier fasta contenant l'ensemble des séquences uniques de tous échantillons confondus


Pipeline mothur Etape 1: 454 preprocess

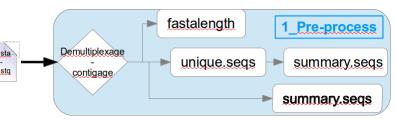
Résultats : le fichier HTML


• statistique de taille Nombre= 37126 Somme= 9866886 Moyenne= 265.77 SD= 12.21 max= 373.00 min= 183.00 Mediane= 267.00

read length distribution of reformat.input.fasta

Statistiques sur le nombre de lectures démultiplexées par echantillon

Nombre= 24 Somme= 36986 Moyenne= 1541.08 SD= 352.67 max= 2007.00 min= 741.00 Mediane= 1641.00


individuals

count details

nombre total de séquences uniques: 17577

Pipeline mothur Etape 1 : MiSeq preprocess

Résultats : le fichier HTML

Le contigage

statistiques générales sur le contigage

	Start	End	NBases	Ambigs	Polymer	NumSeqs	
Minimum:	1	248	248	0	3	1	
2.5%-tile:	1	252 252		0	3	3810	
25%-tile:	1	252	252	0	4	38091	
Median:	1	252 252	252	0	4	76181	
75%-tile:	1	253	253	0	5	114271	
97.5%-tile:	1	253	253	6	6	148552	
Maximum:	1	503	502	249	243	152360	
Mean:	1	252.811	252.811	0.697867	4.44854		

Sélection des contigs

les contigs sont sélectionnés si leur taille est < 280 bases et s'il contiennent au maximum 0 bases ambigues

Statistiques générales sur les contigs filtrés

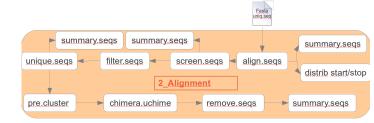
	Start	End	NBases	Ambigs	Polymer	NumSeqs
Minimum:	1	250	250	0	3	1
2.5%-tile:	1	252	252	0	3	3227
25%-tile:	1	252	252	0	4	32265
Median:	1	252	252	0	4	64530
75%-tile:	1	253	253	0	5	96794
97.5%-tile:	1	253	253	0	6	125832
Maximum:	1	270	270	0	12	129058
Mean:	1	252.462	252.462	0	4.36663	

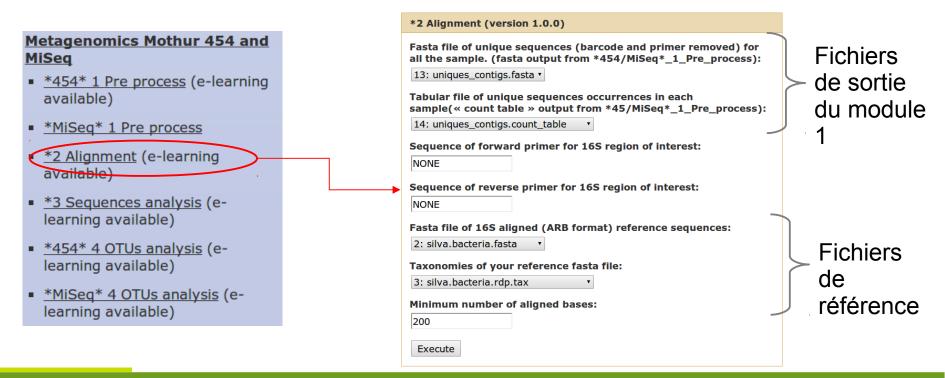
Les tailles des contigs avant filtre étaient de 248 à 503 pb et contenaient jusqu'à 249 bases ambigues.

Après filtres, on conserve 129 058 contigs < 280 pb et sans aucune base ambigue

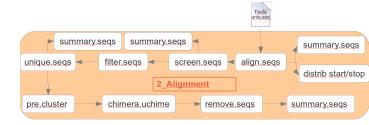
TP: Preprocessing des données

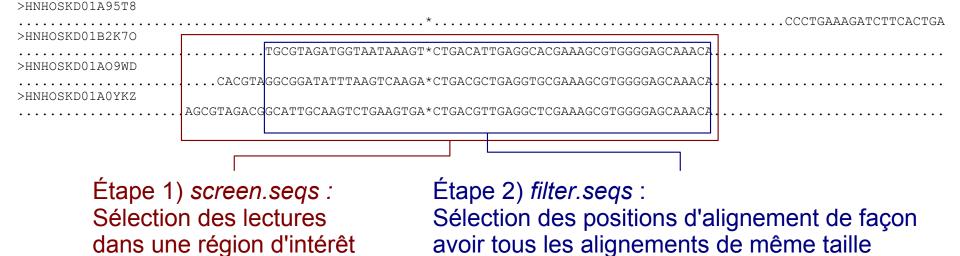
Séquençage 454 vs MiSeq

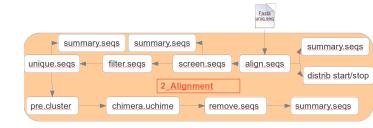



04

Pipeline d'analyse mothur Galaxy / Etape 2 Alignement des séquences

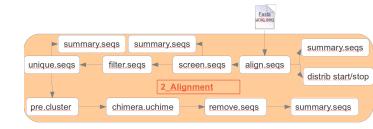



Les séquences uniques précédentes vont être alignées sur un alignement multiple de référence : outil « 2_Alignment ». Cette étape est commune aux deux types de séquençage.



L'outil « 2_Alignment » va, une fois les lectures alignées, procéder à différentes étapes de filtre et de sélection

Etape 3) unique.seqs : Puisque les séquences ont été trimmées aux extrémités, il est possible de réduire encore le nombre de séquences uniques.


Après avoir sélectionné les alignements correspondants à notre région d'intérêt,

« 2_Alignment » va supprimer les lectures dues à des erreurs de séquençage selon 2 stratégies utilisées consécutivement

- Pre.cluster annote les séquences uniques dues à des erreurs de séquençage, et met à jour le fichier «count»
- Chimera.uchime recherche les séquences chimériques, remove.seqs les supprime

Résultats de « 2_Alignment »

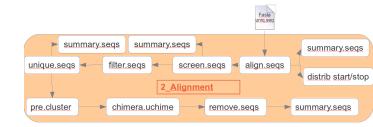
@ 0 X

• Fichier «count»:

le fichier est mis à jour avec les séquences alignées et filtrées

• Fichier fasta:

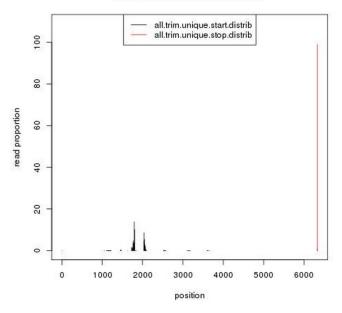
fichier fasta contenant l'ensemble des alignements des séquences uniques tous échantillons confondus


• <u>Fichier HTML</u>:

fichier html présentant les résultats du module

9: final.aln.fasta

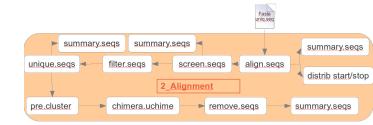
8: 2_align_bilan.html


Résultats : le fichier HTML

Les statistiques d'alignement dans le fichier HTML. Avant screen.seas

Alignment statistics

Angument statistics									
	Start	End	NBases	Ambigs	Polymer	NumSeqs			
Minimum:	1044	6332	150	0	3	1			
2.5%-tile:	1726	6333	210	0	4	925			
25%-tile:	1773	6333	226	0	5	9247			
Median:	1795	6333	234	0	5	18494			
75%-tile:	2037	6333	241	0	5	27740			
97.5%-tile:	2080	6333	254	0	6	36062			
Maximum:	3660	6334	310	0	6	36986			
Mean:	1881.84	6333	232.762	0	4.96201				


alignment position distribution

Comment analyser ces tableaux?

- L'idée est de sélectionner la plus grande région couverte par le plus grand nombre de séquences
- Pour ce jeu de donnée les séquences se terminent assez précisement à la même position ~6 333, alors que la position start est plus variable entre 1044 et 3660. De même le nombre de bases alignées est assez variable.

Résultats : le fichier HTML

Les statistiques d'alignement dans le fichier HTML.

Après screen.segs

Sélection des alignement

Les lectures dont les start est < à 2042 et le stop > à 6333 sont sélectionnées

Les lectures dont les start est < à 2042 et le stop > à 6333 sont sélection									
	Start	End	NBases	Ambigs	Polymer	NumSeqs			
Minimum:	1044	6333	210	0	3	1			
2.5%-tile:	1726	6333	223	0	4	793			
25%-tile:	1773	6333	229	0	5	7926			
Median:	1793	6333	235	0	5	15851			
75%-tile:	2032	6333	242	0	5	23776			
97.5%-tile:	2042	6333	254	0	6	30909			
Maximum:	2042	6334	310	0	6	31701			
Mean:	1837.76	6333	235.895	0	5.00864				

Après unique.seqs, filer.seqs, pre.cluster, chimera.uchime, remove.seqs

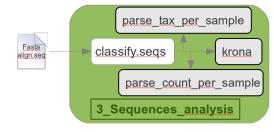
alignements selectionnés	Pre clustering	chimere	3	d'échantillons conservés	nombre moyen de lectures par échantillon (min - max)
12206 alignements uniques de 456 positions (31701 lectures)	4403		5 387 alignements uniques (28 518 lectures)		14.5 (3.00 - 26.00)

Comment analyser ces tableaux?

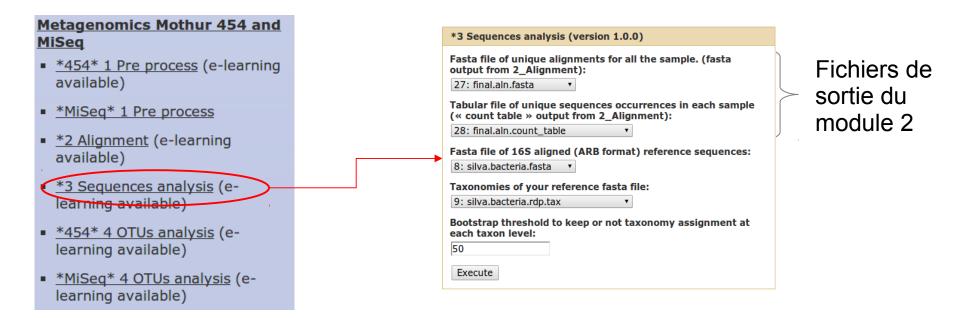
- Screen.seq sélectionne sur une position start < à 85%-tile des séquences et une position stop > à 25%-tile ainsi que sur un nombre minimum de bases (paramètre fourni par l'utilisateur). Sur cet exemple le critère de nombre de bases alignées est celui qui a le plus d'effet.
- On vérifie également le nombre de positions des alignements après *filter.seq* (1^{ere} colonne du tableau bilan) et après *pre.cluster*, et *chimera.uchime* le nombre d'alignements/lectures conservées (4^e colonne).

TP : Alignement des données

Séquençage 454 vs MiSeq

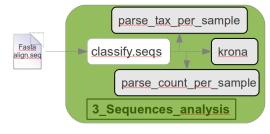


05


Pipeline d'analyse mothur : Galaxy / Etape 3 : classification des séquences

Pipeline mothur Etape 3 : classification des séquences

Cette 3e étape, via l'outil « 3_Sequences_analysis » va rechercher l'assignation taxonomique de chaque séquence unique alignée et calculer des tableaux de comptage pour chaque taxonomie dans chaque échantillon. Cette étape est commune aux deux types de séquençage.

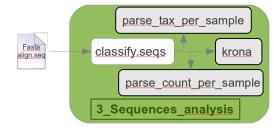


Résultats «3_Sequences_analysis»

Pipeline mothur Etape 3 : classification des séquences

• Fichier de taxonomies :

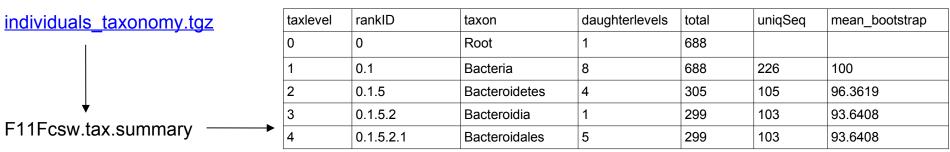
résultats d'assignation taxonomique pour chaque séquence unique sous la forme :


Identifiant d'une séquence unique	Taxonomie détaillée avec valeur de bootstrap
F11Fcsw_455	Bacteria(100); Firmicutes(74); Clostridia(73); Clostridiales(66); unclassified_Clostridiales(60); unclassified; unclassified; unclassified;

Fichier HTML:

fichier html présentant les résultats du module

Pipeline mothur Etape 3 : classification des séquences



Résultats : le fichier HTML

 Un tableau de comptage des lectures par échantillon et par taxonomie

Taxlevel	rankID	taxon	daughterlevels	total	F11Fcsw	F12Fcsw	F12Fcsw	
0	0	Root	1	28599	688	648	860	
1	0.1	Bacteria	8	28599	688	648	860	
2	0.1.1	Bacteroidetes	4	17639	305	133	310	
3	0.1.1.1	Bacteroidia	1	17508	299	131	306	

Une archive contenant un tableau de comptage par échantillon :

Pipeline mothur Etape 3 : classification des séquences

parse_tax_per_sample

classify.seqs

krona

parse_count_per_sample

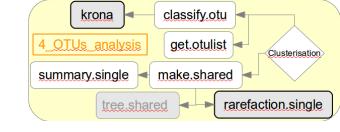
3_Sequences_analysis

Des visualisateurs « Krona »

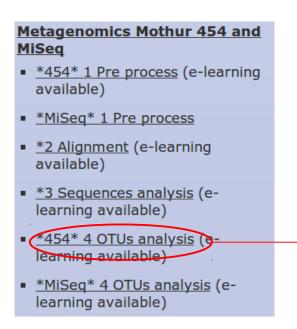
Proportion ou comptage des lectures composants la taxonomie sélectionnée

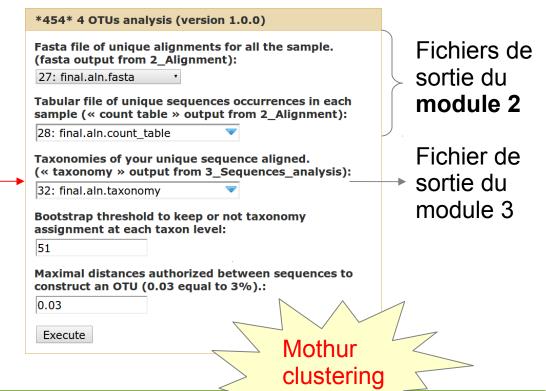
TP: classification des lectures

Séquençage 454 vs MiSeq

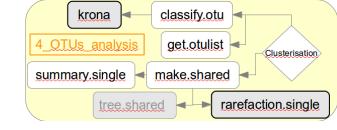

06

Pipeline d'analyse mothur Galaxy / Etape 4 Classification des OTUs

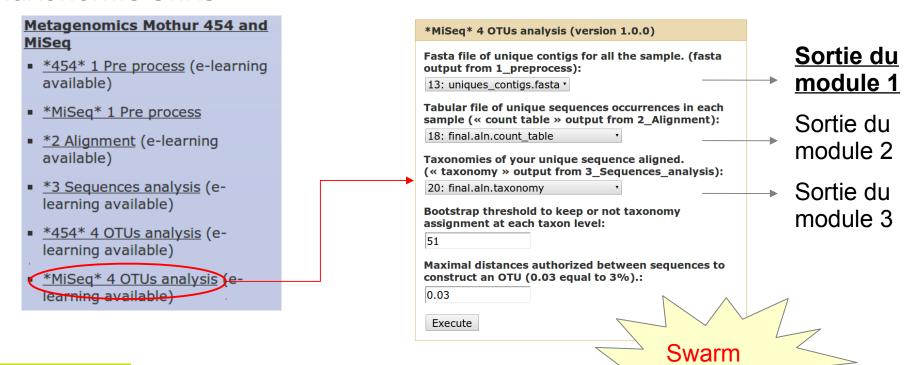

Outil «4_OTUs_analysis»



L'analyse des OTUs permet un classification taxonomique plus fine que lecture par lecture. Ce dernier module, « *454*

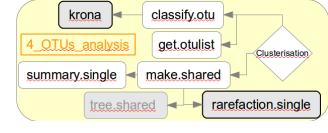

4_OTUs_analysis », va permettre de construires ces « Operational

Taxonomic Units »



clustering

L'analyse des OTUs permet un classification taxonomique plus fine que lecture par lecture. Ce dernier module, « *MiSeq* 4_OTUs_analysis », va permettre de construires ces Operational Taxonomic Units »



Résultats «4_OTUs_analysis»

Pipeline mothur Etape 4: classification des OTUs (454/MiSeq)

Fichier HTML

15: 4_otus_analysis_Miseq_bilan.html

seul le fichier bilan des résultats est retourné ici.

krona classify.otu

4_OTUs_analysis get.otulist clusterisation
summary.single make.shared

tree.shared rarefaction.single

- Résultats : le fichier HTML
- Constitution des OTUs

distance moyenne intra OTU	nombre OTU
unique*	5387
0.01	4282
0.02	2755
0.03	1943
0.04	1460
0.05	1112
0.06	879
0.07	724

Plus la distance intra-groupe est grande, plus on agrège de séquences, plus le nombre d'OTUs est restreint.

Statistique du nombre de lectures composant les OTUs : distance de 3 %

Nombre= 1943 Somme= 5387 Moyenne= 2.77 SD= 9.88 max= 237.00 min= 1.00 Mediane= 1.00

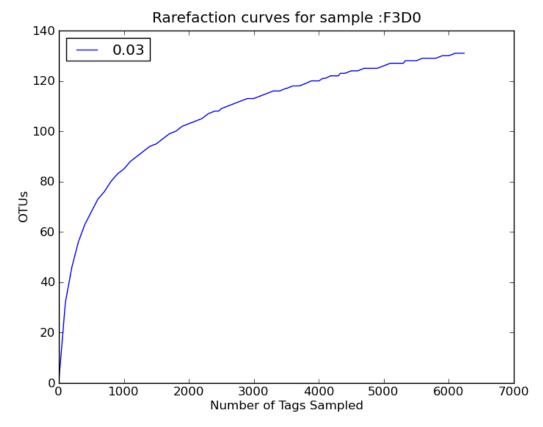
- krona classify.otu

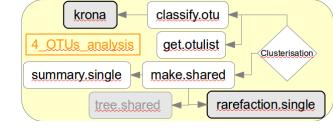
 4_OTUs_analysis get.otulist clusterisation
 summary.single make.shared tree.shared rarefaction.single
- Résultats sur fichier HTML
 - Diversité alpha : couverture des OTUs, estimateurs de richesse/diversité

label	Group	numOtus	Otu0001	Otu0002	Otu0003
0.03	F11Fcsw	1943	74	12	0
0.03	F12Fcsw	1943	19	14	0
0.03	F13Fcsw	1943	75	18	2
0.03	F14Fcsw	1943	56	24	22

Répartition des OTUs selon la contrainte dans les différents échantillons

Tableaux d'estimateurs de richesse (chao/ace/jakknife) et de diversité (shannon/npshannon/simpson) et de leur intervalle de confiance pour chaque contrainte de distance dans chaque échantillon.


	label	group	sobs	chao	chao_lci	chao_hci
	0.03	F11Fcsw	159.000000	333.840000	258.221837	467.087681
_	0.03	F12Fcsw	152.000000	284.840000	225.534816	391.974296
	0.03	F13Fcsw	155.000000	385.052632	281.633347	572.932674
	0.03	F14Fcsw	166.000000	586.428571	391.849040	948.647486


- krona classify.otu

 4_OTUs_analysis get.otulist clusterisation
 summary.single make.shared

 tree_shared rarefaction.single
- Résultats sur fichier HTML
 - Diversité alpha : courbe de raréfaction

- Résultats sur fichier HTML
 - Classification taxonomique des OTUS

(un tableau par contrainte de distance)

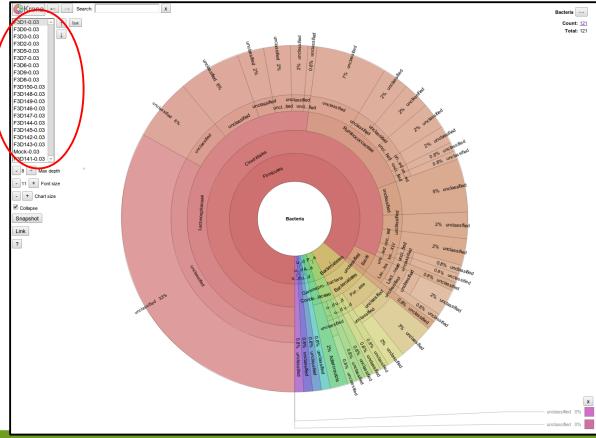
ОТИ	Size	Taxonomy
OTU0001	1466	Bacteria(100);Firmicutes(100);Clostridia(100);Clostridiales(100);Lachnospiraceae(100);Syntrophococcus(100);unclass ified(100);unclassified(100);

Tableaux de comptages en OTUs

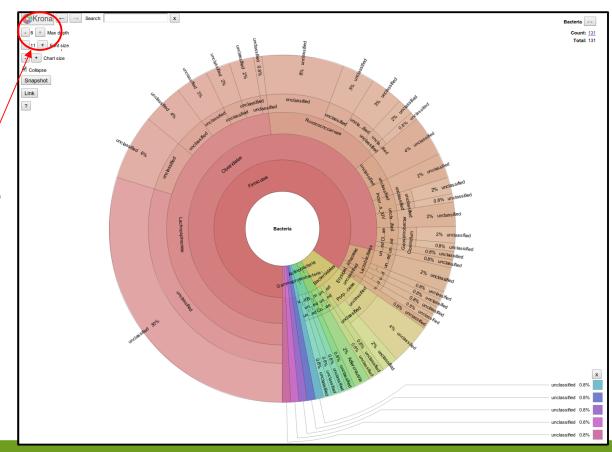

(un tableau par contrainte de distance)

taxlevel	rankID	taxon	daughterlevels	total	F3D0	F3D1	F3D141	
0	0	Root	1	269	131	121	119	
1	0.1	Bacteria	10	269	131	121	119	
2	0.1.1	Acidobacteria	1	1	1	1	1	

- krona classify.otu

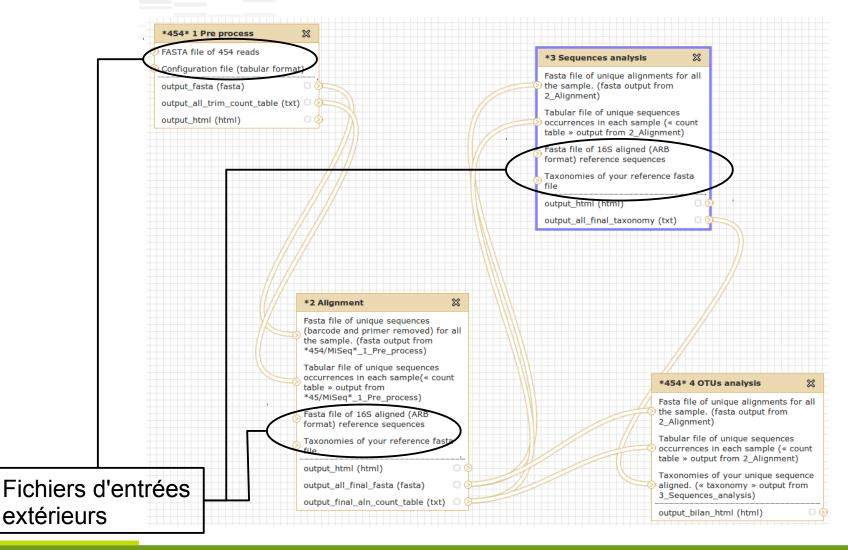

 4 OTUs analysis get.otulist
 summary.single make.shared
 tree.shared rarefaction.single
- Résultats sur fichier HTML
- Les visualisations« Krona »
 - Tous échantillons confondus
 - En fonction des échantillons, sur une contrainte donnée
 - En fonction de la contrainte sur un échantillon donné

- krona classify.otu


 4 OTUs analysis get.otulist
 summary.single make.shared
 tree.shared rarefaction.single
- Résultats sur fichier HTML
- Les visualisations
 - « Krona »
 - Tout échantillon confondu
 - En fonction des échantillons, sur une contrainte donnée
 - En fonction de la contrainte sur un échantillon donné

- krona classify.otu

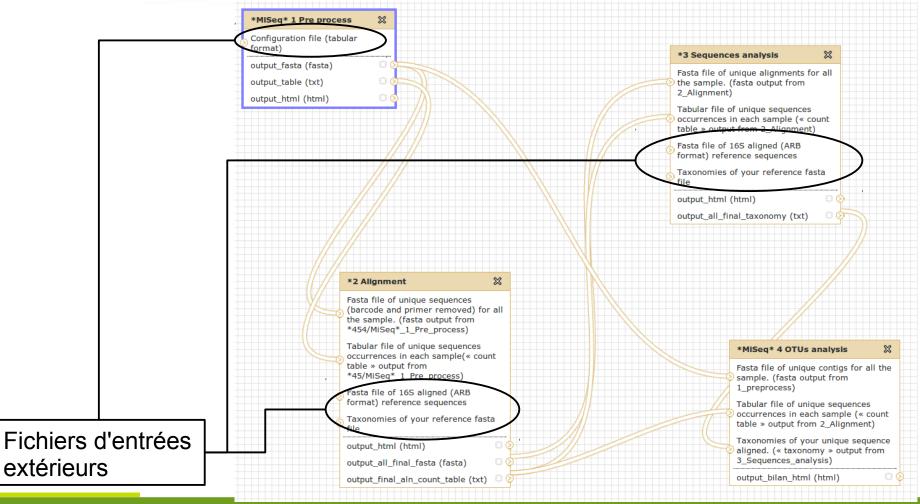
 4_OTUs_analysis get.otulist
 summary.single make.shared
 tree.shared rarefaction.single
- Résultats sur fichier HTML
- Les visualisations« Krona »
 - Tout échantillon confondu
 - En fonction des échantillons, sur une contrainte donnée
 - En fonction de la contrainte sur un échantillon donné (en 454 plusieurs contraintes peuvent être listées)



07

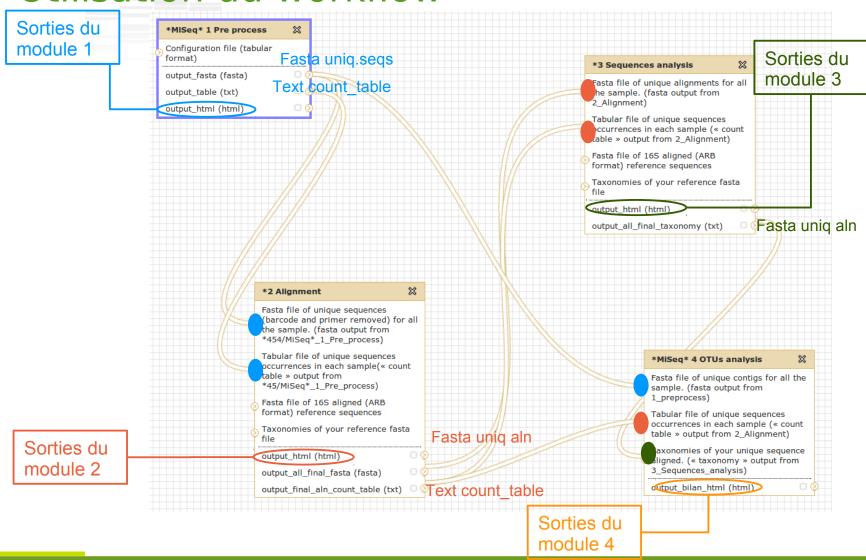
Pipeline d'analyse mothur : Galaxy / Utilisation du workflow

Pipeline mothur: 454 Utilisation du workflow



Pipeline mothur : MiSeq Utilisation du workflow

Sorties du *454* 1 Pre process × module 1 Sorties du FASTA file of 454 reads *3 Sequences analysis module 3 Configuration file (tabular format) Fasta file of unique alignments for all Fasta uniq.seqs output_fasta (fasta) he sample. (fasta output from 2 Alignment) output_all_trim_count_table (txt) Text count_table Tabular file of unique sequences output html (html) ccurrences in each sample (« count table » output from 2_Alignment) Fasta file of 16S aligned (ARB format) reference sequences Taxonomies of your reference fasta output html (html) output_all_final_taxonomy (txt) Fasta uniq aln *2 Alignment × Fasta file of unique sequences (barcode and primer removed) for all the sample. (fasta output from *454/MiSeq*_1_Pre_process) Tabular file of unique sequences occurrences in each sample(« count *454* 4 OTUs analysis table » output from *45/MiSeq*_1_Pre_process) Fasta file of unique alignments for all the sample. (fasta output from Fasta file of 16S aligned (ARB 2_Alignment) format) reference sequences Tabular file of unique sequences Taxonomies of your reference fasta Sorties du occurrences in each sample (« count Sorties du Fasta unig aln table » output from 2_Alignment) module 4 output html (html) module 2 Taxonomies of your unique sequence output_all_final_fasta (fasta) aligned. (« taxonomy » output from 3_Sequences_analysis) output_final_aln_count_table (txt) count_table output bilan html (html



Pipeline mothur : MiSeq Utilisation du workflow

Pipeline mothur : MiSeq Utilisation du workflow

END

Pipeline d'analyse mothur : Galaxy / À vous de jouer !!

