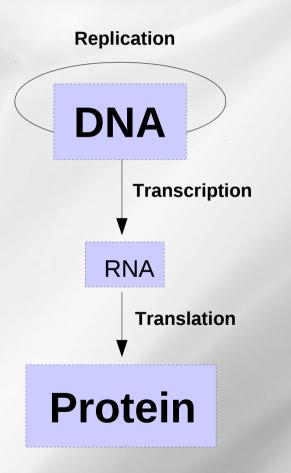


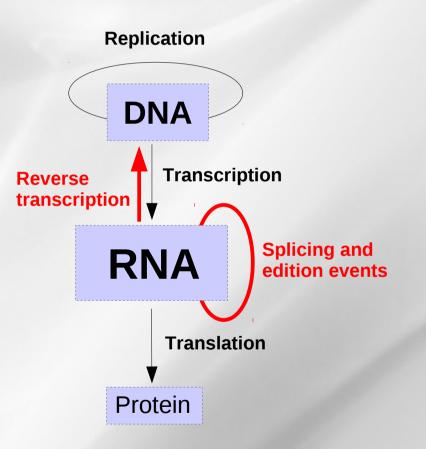
small RNAseq data analysis

Philippe Bardou, Christine Gaspin, Jérôme Mariette & Olivier Rué



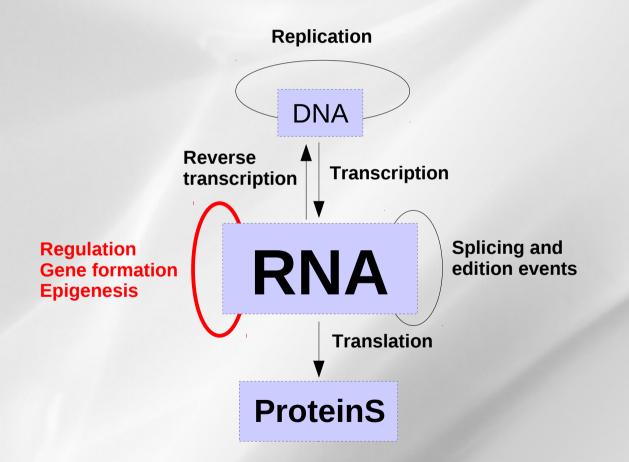
Introduction to miRNA world and sRNAseq

• Evolution of the dogma : **1950-1970**


DNA structure descovery.

One gene = one function

- Evolution of the dogma : **1970-1980**
 - Genome analysis

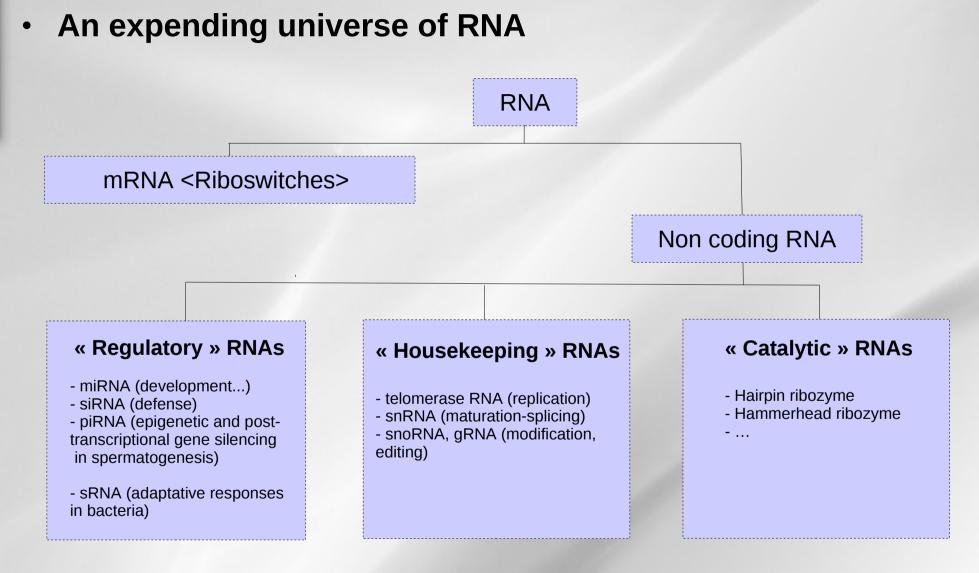


Evolution of the dogma : aujourd'hui

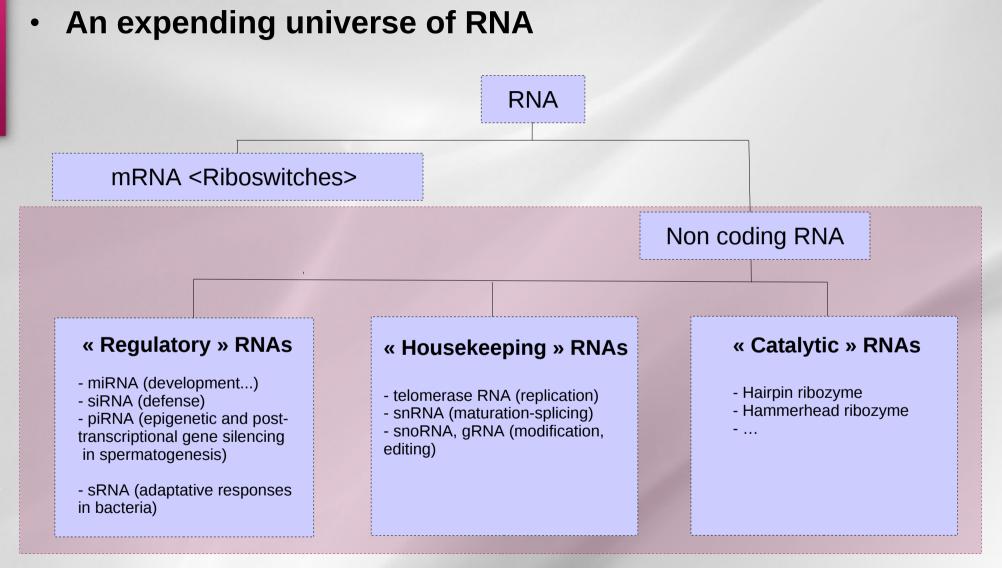
Genome analysis + Sequencing

Many genes = one functionnel complex

Evolution of the dogma : aujourd'hui

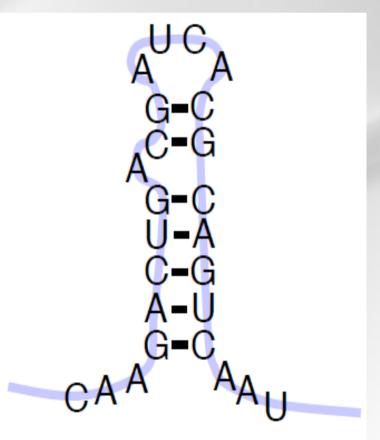

Genome analysis + Sequencing

Many genes = one functionnel complex

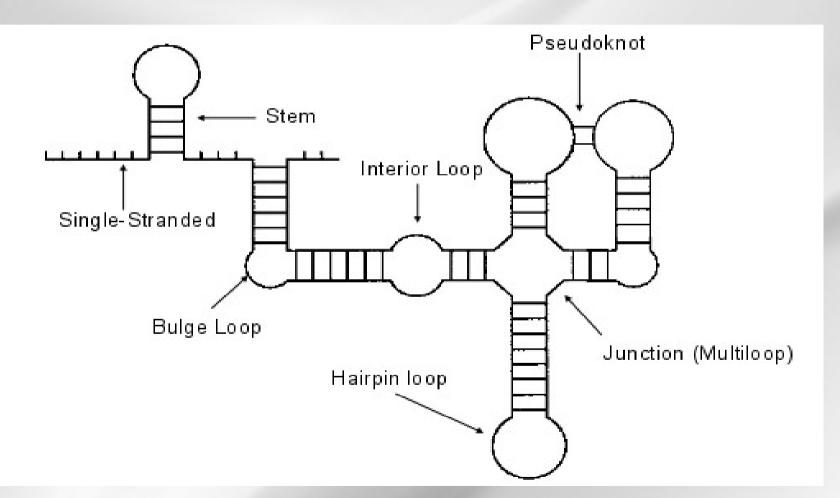

The RNA world

→ Multiple roles of RNA in genes regulation

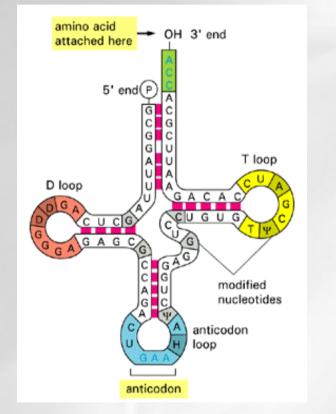
The RNA world

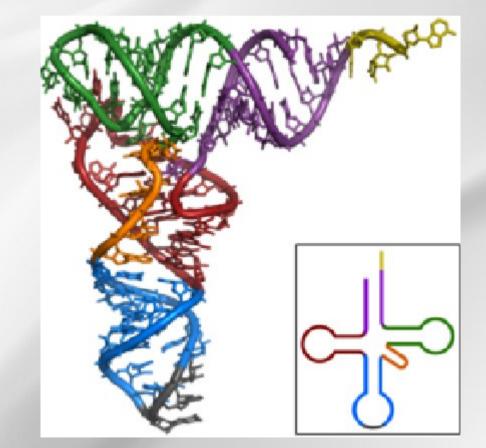


→ Multiple roles of RNA in genes regulation


RNA background

- RNA folds on itself by base pairing :
 - A with U : A-U, U-A
 - C with G : G-C, C-G
 - Sometimes G with U : U-G, G-U
- Folding = Secondary structure
- Structure related to function : ncRNA of the same family have a conserved structure
- Sequence less conserved




RNA background Different elementary motifs

RNA background Example: tRNA structure

The non coding protein RNA world

Not predicted by gene prediction

- No specific signal (start, stop, splicing sites...)
- Multiple location (intergenic, intronic, coding, antisens)
- Variable size
- No strong sequence conservation in general
- A variety of existing approaches not always easy to integrate
 - Known family: Homology prediction
 - New family: *De novo* prediction

The non coding protein RNA world

Large non coding protein RNA

- >300 nt
- rRNA, tRNA, Xist, H19, ...
- Genome structure & expression

Small non coding protein RNA

- >30 nt
- snoRNA, snRNA...
- mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- PTGS, TGS, Genome stability, defense...

The non coding protein RNA world

Large non coding protein RNA

- >300 nt
- rRNA, tRNA, Xist, H19, ...
- Genome structure & expression
- Small non coding protein RNA
 - >30 nt
 - snoRNA, snRNA...
 - mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- PTGS, TGS, Genome stability, defense...

The miRNA world

Discovery of lin-4 in C. elegans in 1993

Cell, Vol. 75, 843-854, December 3, 1993, Copyright © 1993 by Cell Press

The C. elegans Heterochronic Gene lin-4 **Encodes Small RNAs** with Antisense Complementarity to lin-14

Rosalind C. Lee.*† Rhonda L. Feinbaum.*‡ and Victor Ambrost Hanvard I Iniversity Department of Cellular and Developmental Biology Cambridge, Massachusetts 02138

Summary

lin-4 is essential for the normal temporal control of diverse postembryonic developmental events in C. elegans. lin-4 acts by negatively regulating the level of IN 14 protein creating a temporal decrease in I IN-14

Cell, Vol. 75, 855-862, December 3, 1993, Copyright © 1993 by Cell Press

Posttranscriptional Regulation of the Heterochronic Gene lin-14 by lin-4 Mediates Temporal Pattern Formation in C. elegans

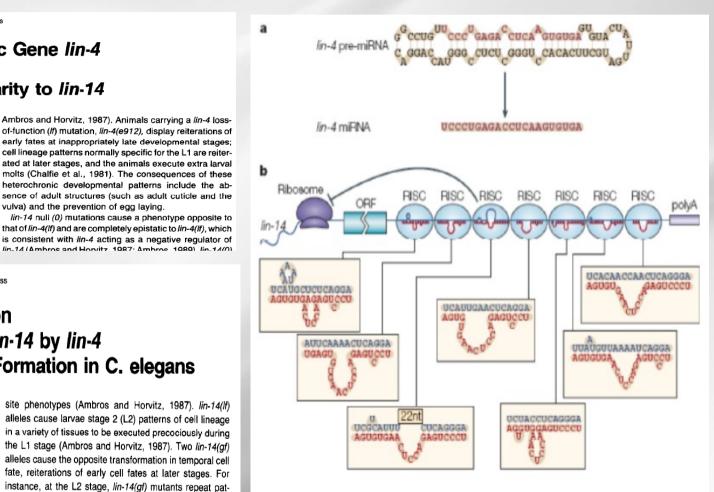
Bruce Wightman, *† Ilho Ha, * and Gary Ruykun Department of Molecular Biology Massachusetts General Hospital Boston, Massachusetts 02114

Summary

During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene Lin-14. Here we demonstrate

site phenotypes (Ambros and Horvitz, 1987), lin-14(lf) alleles cause larvae stage 2 (L2) patterns of cell lineage in a variety of tissues to be executed precociously during the L1 stage (Ambros and Horvitz, 1987). Two lin-14(gf) alleles cause the opposite transformation in temporal cell fate, reiterations of early cell fates at later stages. For instance, at the L2 stage, lin-14(gf) mutants repeat patterns of cell lineage appropriate for the L1 stage (Ambros and Horvitz, 1984).

Ambros and Horvitz, 1987). Animals carrying a lin-4 loss-


early fates at inappropriately late developmental stages:

heterochronic developmental patterns include the ab-

is consistent with lin-4 acting as a negative regulator of

vulva) and the prevention of egg laving.

lin-14 controls these stage-specific cell lineages by generating a temporal gradient of Lin-14 pucker protoin /Lin

(He & Hannon, Nature reviews, 2004)

The miRNA world

A key regulation function

Nature. 2011 January 20; 469(7330): 336-342. doi:10.1038/nature09783.

Pervasive roles of microRNAs in cardiovascular biology

Eric M. Small¹ and Eric N. Olson¹ ¹Department of Molecular Biology, University of Texas Southwestern Medical Center, Hines Boulevard, Dallas, Texas 75390-9148, USA

Development 138, 1081-1086 (2011) doi:10.1242/dev.056317

Small RNAs Guide Hematopoi @ 2011. Published by The Company of Biologists Ltd **Differentiation and Function**

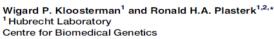
Since then, several g

RNA-cloning strategies to

vertebrates and invertebra

Regulation of mouse stomach development and Barx1 Francisco Navarro and Judy Lieberma

This information is current as of December 28, 2011


J Immunol 2010:184:5939-5947 doi:10.4049/jimmunol.0902567

expression by specific microRNAs

http://www.jimmunol.org/content/184 Byeong-Moo Kim^{1,2,*,†} Janghee Woo^{1,3,†}, Chryssa Kanellopoulou⁴ and Ramesh A. Shivdasani^{1,2,‡}

Developmental Cell 11, 441-450, October, 2006 ©2006 Elsevier Inc. DOI 10.1016/j.devcel.2006.09.009

The Diverse Functions of MicroRNAs in Animal Development and Disease

Leading Edge Review

Origin, Biogenesis, and Activity of Plant MicroRNAs

Olivier Voinnet^{1,*}

¹Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, 67084 Strasbour *Correspondence: olivier.voinnet@ibmp-ulp.u-strasbg.fr DOI 10.1016/j.cell.2009.01.046

MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic g use highly conserved as well as more recently evolved, species-specific m array of biological processes. This Review discusses current advances in o origin, biogenesis, and mode of action of plant miRNAs and draws compa zoan counterparts.

miSSING LINKS: miRNAs and plant development Christine Hunter and R Scott Poethig

The discovery of hundreds of plant micro RNAs (miRNAs) has triggered much speculation about their potential roles in plant development. The search for plant genes involved in miRNA processing has revealed common factors such as DICER, and new molecules, including HEN1. Progress is also being made toward identifying miRNA target genes and understanding the mechanisms of miRNA-mediated gene regulation in plants. This work has lead to a reexamination of m

PTGS and co-suppression, whereas siRNAs of 24-26 nt (long siRNAs) are associated with long-range transmission of silencing signals and methylation of corresponding genomic regions (Figure 1) [4]. The role of siRNAs in plant PTGS has been reviewed recently [5,6] and so is not discussed in detail here.

372

characterized mutations that are now International Journal of Alzheimer's Disease components or targets of miRNA-med Volume 2011 (2011), Article ID 894938, 6 pages

doi:10.4061/2011/894938

Addresses Plant Science Institute, Department of Biological Pennsylvania, Philadelphia, Pennsylvania 1

Current Opinion in Genetics & Develo

This review comes from a themed issue

0959-437X/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved

DOI 10.1016/S0959-437X(03)00081-9

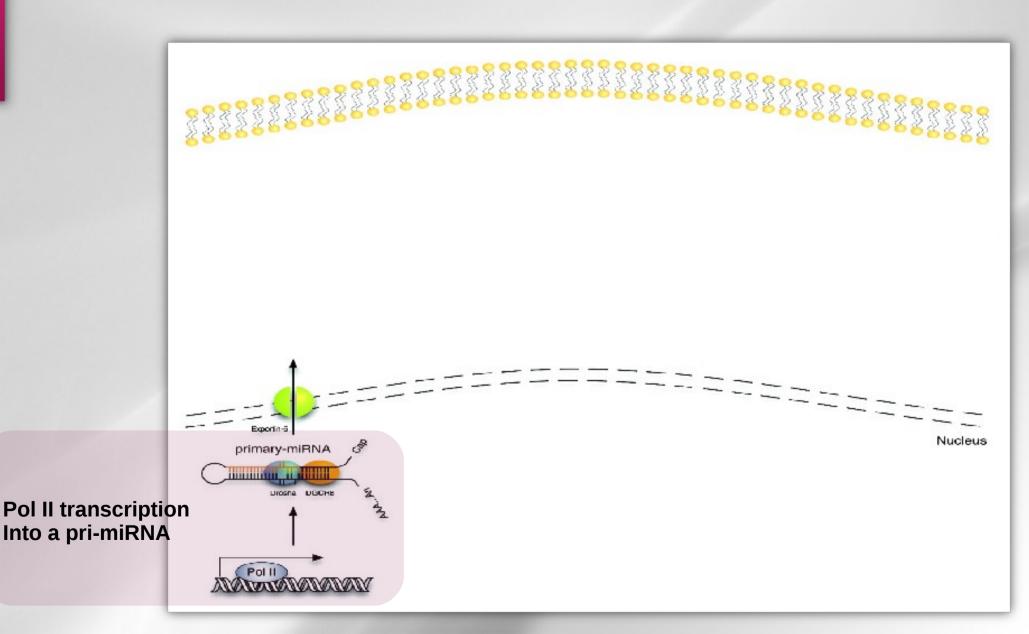
Review Article

MicroRNAs and Alzheimer's Disease Mouse Pattern formation and developmental m Models: Current Insights and Future Research Avenues

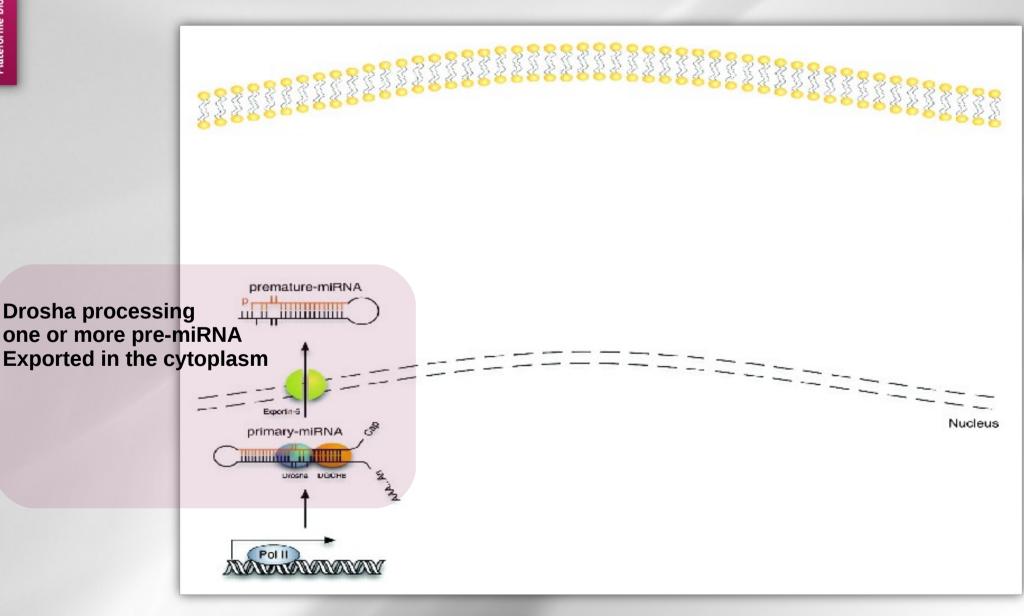
Charlotte Delav^{1,2} and Sébastien S. Hébert^{1,2}

geno toulΣ bioinfo

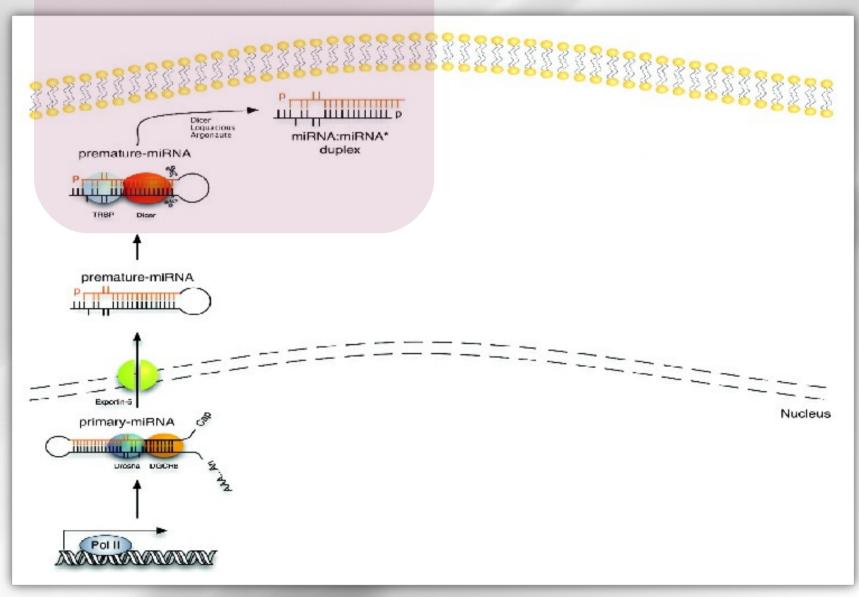
The miRNA world

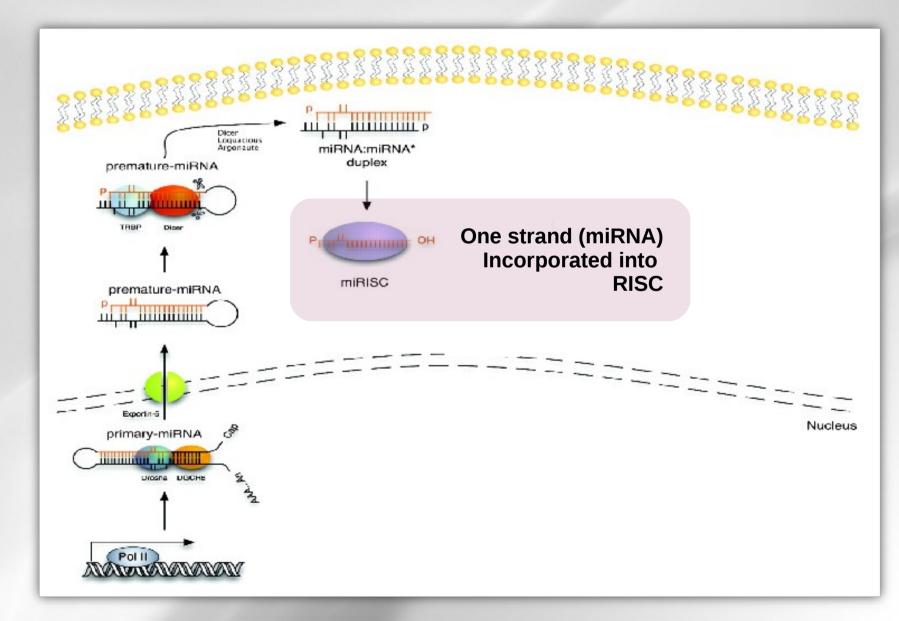

Animals

- Developmental timing (C. elegans): lin-4, let-7
- Neuronal left/right asymetry (C. elegans): Lys-6, mir-273
- Programmed cell death/fat metabolism (D. melanogaster): mir-14
- Notch signaling (D. malanogaster): mir-7
- Brain morphogenesis (Zebrafish): mir-430
- Myogeneses and cardiogenesis: mir-1, miR-181, miR-133
- Insulin secretion: miR-375

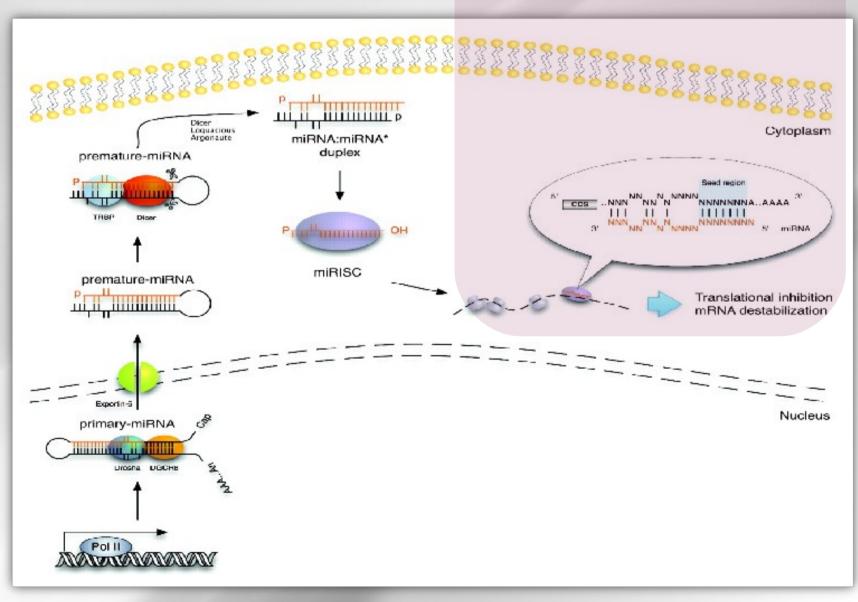

Plants

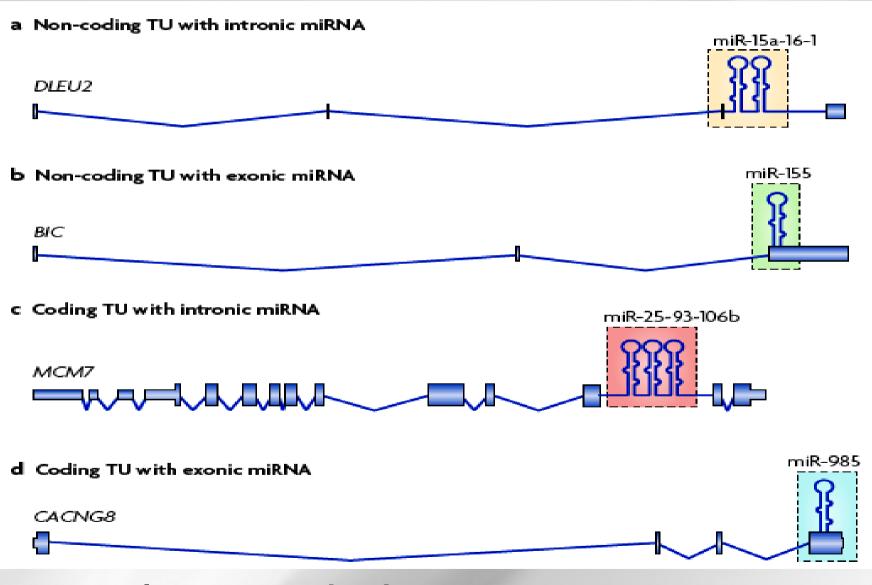
- Floral timing and leaf development: miR-156
- Organ polarity, vascular and meristen development: mir-165, miR-166
- Expression of auxin response genes: miR-160





Dicer processing Into a duplex miRNA Structure





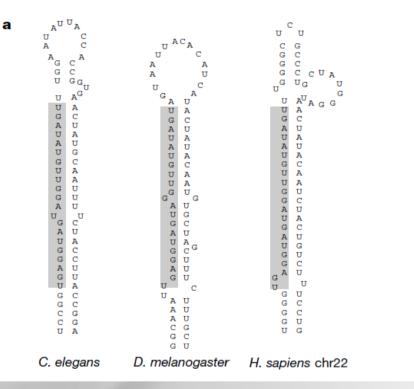
target mRNA translationally repressed

The miRNA location

The miRNA conservation

Conservation of the sequence and temporal expression of *let-7* heterochronic regulatory RNA

Amy E. Pasquinelli*†, Brenda J. Reinhart*†, Frank Slack‡, Mark Q. Martindale§, Mitzi I. Kurodall, Betsy Maller‡, David C. Hayward¶, Eldon E. Ball¶, Bernard Degnan#, Peter Müller*, Jürg Spring*, Ashok Srinivasan**, Mark Fishman**, John Finnerty††, Joseph Corbo‡‡, Michael Levine‡‡, Patrick Leahy§§, Eric Davidson§§ & Gary Ruvkun*

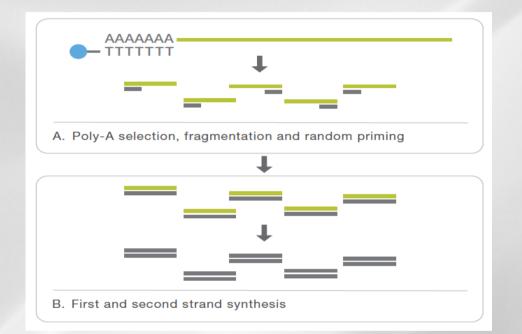

* Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA

‡ Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA

§ Kewalo Marine Lab, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA

Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA

an tel tenititei non 475

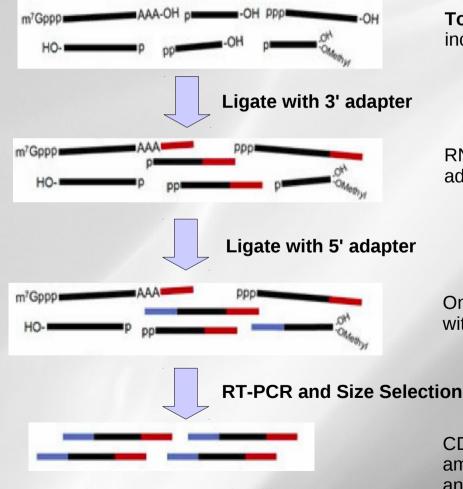


A. E. Pasquinelli et al., Nature 408, 86-9 (2000)

How can we study miRNA ?

RNAseq not suited for miRNA (protocol and size)

- small RNAseq: ability of high throughput sequencing to
 - Interrogate known and new small RNAs
 - Quantify them
 - Profile them on a large number of samples
 - Cost-effective


small RNAseq platforms comparisons

Platform	454 Roche Titanium	HiSeq2000 Illumina	Solid 3+ Life Technologies
Caracteristics	-Titanium chemistry -Pyrosequencing -PCR amplification	 Polymerase-based sequence-by-synthesis PCR amplification Multiplexing 	-ligation-base-sequen cing -PCR amplification
Applications	-De novo sequencing -Small genomes -Transcriptome	-Resequencing -Transcriptome -Epigenomic -Small RNA -Allele specific sequencing	-De novo sequencing -Resequencing -Transcriptome -Epigenomic -Small RNA
Paired end separation	Not used	200bp	200bp
Mb / run	800Mb	600Gb	60Gb
Read length	800 bp	100bp	50bp
Known Biases	- Long homopolymer - makes signal saturation - read duplication	 Rich GC or AT regions: under-representation during amplification Most error in end of cycle 	- read duplication ?

small RNA-Seq library preparation

 Monophosphate presence in 5' extremity and OH presence in 3' extremity

Total RNA: contain all kinds of RNA species including miRNA, mRNA, tRNA, rRNA...

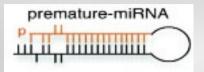
RNA with modified 3'-end will not ligate with 3' adapters. Only RNA with OH in 3'-end will ligate.

Only RNA with monophosphate in 5'-end will ligate with 5' adapters.

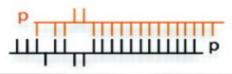
CDNA containing both adapter sequences will be amplified. MicroRNA will be enriched from PCR and gel size selection.

What are we looking for ?

- List of known miRNA
- List of new miRNA
- miRNA target(s)
- miRNA quantification
- Differential expression



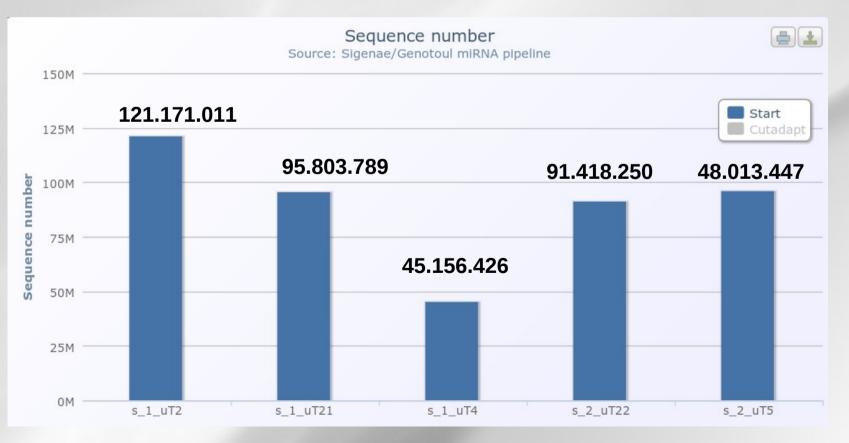
small RNAseq data analysis



What should we retain for data analysis ?

Pre-miRNA information:

- Hairpin structure of the pre-miRNA
- Pre-miRNA localisation (coding/non coding TU intronic/exonic)
- Presence of cluster
- Size of the pre-miRNA
- miRNA and miRNA* information:



- Existence of both miRNA and miRNA*
- Sequence conservation
- Overhang (around 2 nt) related to drosha and Dicer cuts
- Size of miRNA and miRNA*
- Overexpression of the miRNA compared to the miRNA*
- Existence of other products in sRNAseq data

Description of the dataset

- 5 experiments (5 lanes, no multiplexing)
 - Different tissues, different stages
- No reference genome
 - Only scaffolds

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 +D61655Ml 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655Ml 171:2:1:13360:1961#0/1 NTCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAA +D61655Ml 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTGAAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 +D61655M1 171:2:1:13770:1993#0/1 @D61655Ml 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTG GTG TTG GC ATCT CGT ATG CCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

1 1 1

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655Ml 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655Ml 171:2:1:13360:1961#0/1 NTCT CGT AT GCC GT CT TC T GCT T G A A A A A A A A A A A +D61655M1 171:2:1:13360:1961#0/1 B[[[[Y[YXXcccccccc\cccc_aacccYUUVV0Q @D61655Ml 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTGAAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGC TTT TGC TTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTG GTG TTG GC ATCT CGT ATG CCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 TAGTTT GTC AGA CTTTTG TTT GGA GGT CGT ATG GCA +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

toul **S**

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1192:1017#0/1 @D61655Ml 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655Ml 171:2:1:13360:1961#0/1 NTCT CGT AT GCC GT CT TC T GCT T G A A A A A A A A A A A +D61655M1 171:2:1:13360:1961#0/1 B[[[[Y[YXXcccccccc\cccc aacccYUUVV0Q @D61655Ml 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT AT GC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTGGTGTTGGCATCT CGT ATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1 1 1 1

Line 1 starts with @

Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

@D61655M1 171:2:1:1192:1017#0/1 +D61655M1 171:2:1:1192:1017#0/1 @D61655Ml 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655Ml 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTGAAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

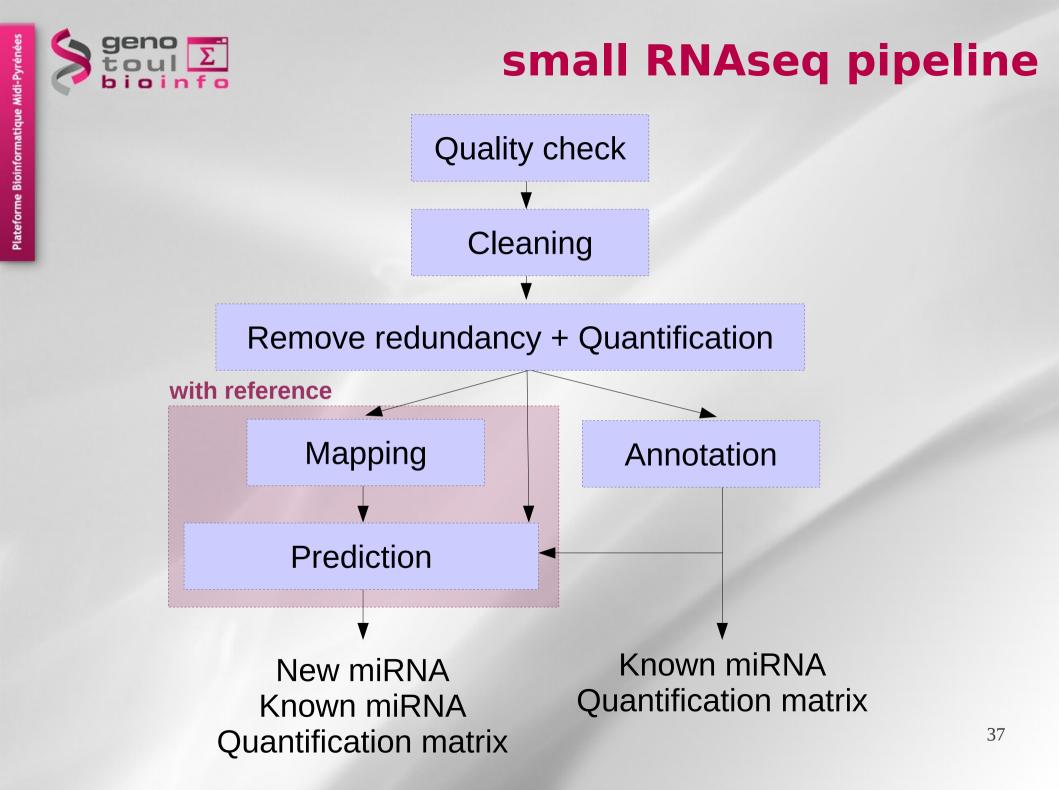
Line 1 starts with @

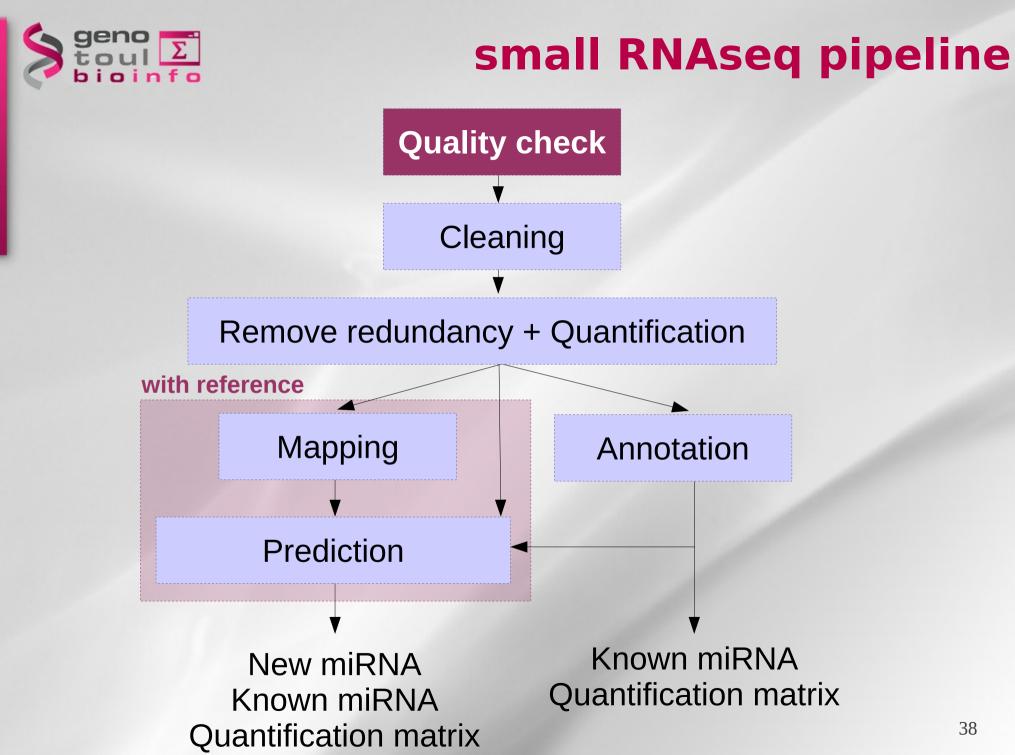
Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

Line 3 starts with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT AT GC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655Ml 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTG GTG TTG GC ATCT CGT ATG CCG +D61655M1 171:2:1:13819:1998#0/1 @D61655Ml 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1


Line 1 starts with @


Information	Meaning	
D61655M1_171	The unique instrument name	
2	Flowcell lane45.156.426	
1	Tile number within the flox cell lane	
1192	'x'-coordinate of the cluster within the tile	
1017	'y'-coordinate of the cluster within the tile	
#0	index number for a multiplexed sample (0 for no indexing)	
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)	

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

Line 3 starts with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

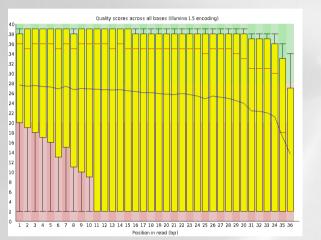
Line 4 Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

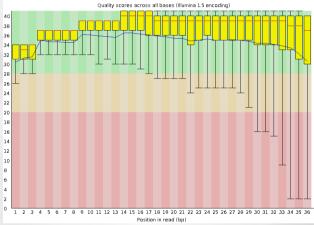
38

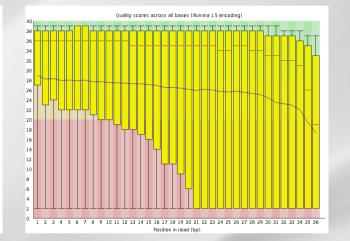
FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)

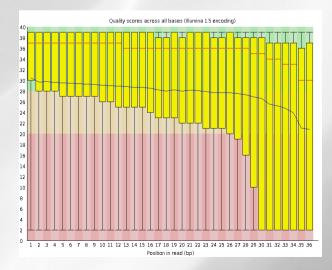
Function	A quality control tool for high throughput sequence data.
Language	Java
Doguiromonto	A <u>suitable Java Runtime Environment</u>
Requirements	The Picard BAM/SAM Libraries (included in download)
Code Maturity	Stable. Mature code, but feedback is appreciated.
Code Released	Yes, under <u>GPL v3 or later</u> .
Initial Contact	Simon Andrews

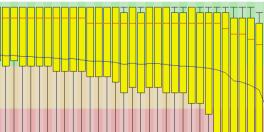
A simple way to do quality control. It provides a modular set of analyses to give a quick impression of whether data has any problems of which you should be aware before doing any further analysis. The main functions of FastQC are:


- Import of data from BAM, SAM or FastQ files (any variant)
- Provide a quick overview to tell you in which areas there may be problems
- Summary graphs and tables to quickly assess your data
- Export of results to an HTML based permanent report
- Offline operation to allow automated generation of reports without running the interactive application

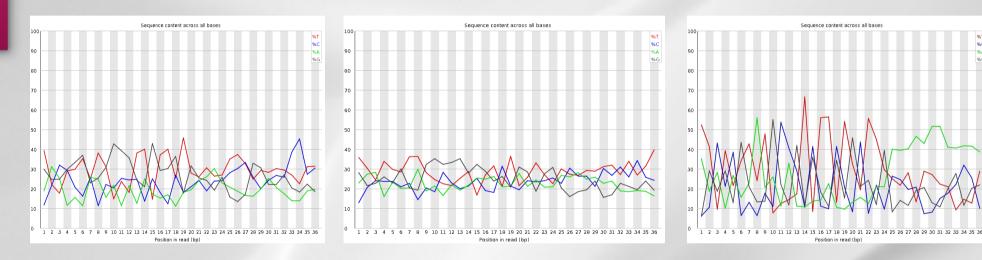

Fastqc -o nf.out nf_in.fastq

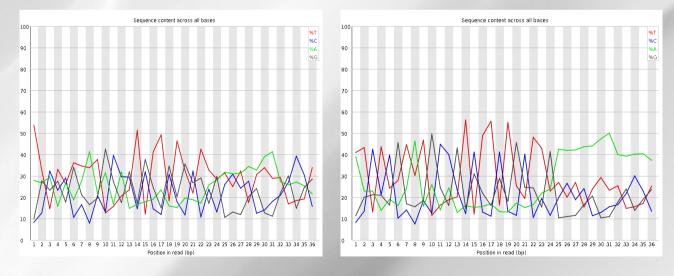



1. Quality control


Per base quality

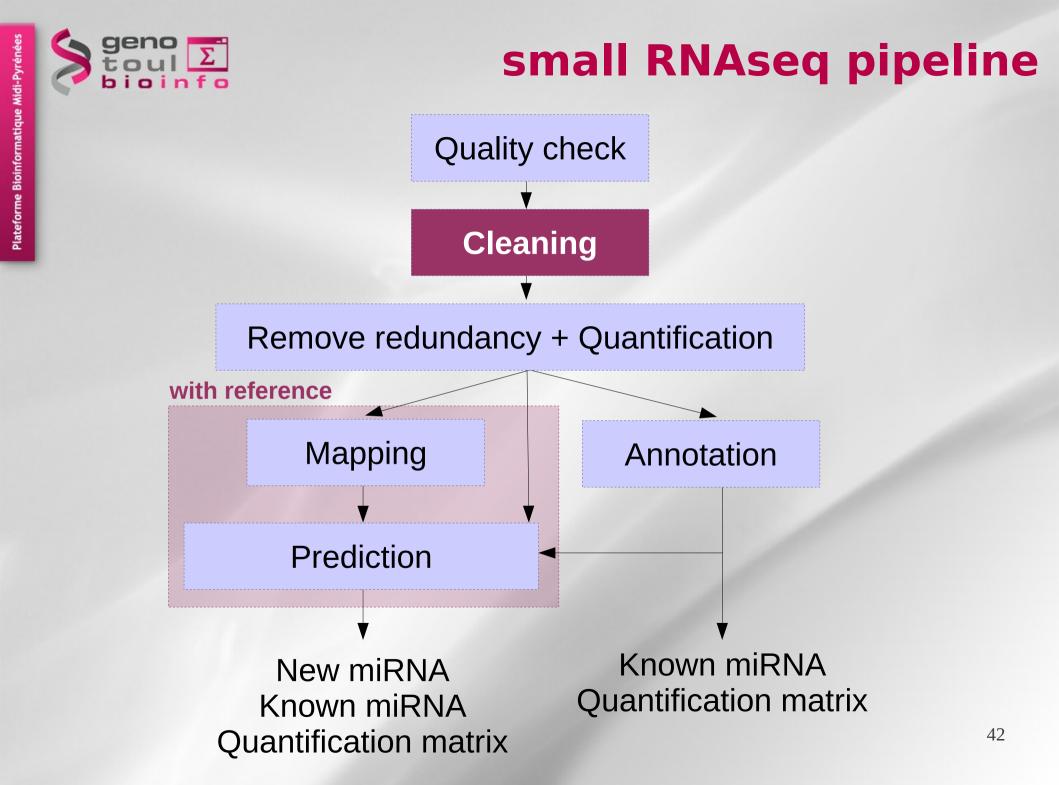
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36


Position in read (bp)


Ouality scores across all bases (Illumina 1.5 encoding)

1. Quality control

Sequences content in nucleotides •



%T %C

%A

%G

Outputed reads

Outputed reads

- Some sequences contain only adapters

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTC TCTCGTATGCCGTCT

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

- Some of them are other type of RNAs (green).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTG AAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCC <mark>ATCTC</mark>
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTCTCTCGTATGCCGTCT

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).
- Some of them are other type of RNAs (green).
 - Some adapters contain errors (blue).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTG AAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTCTCGTATGCCGTCT

Outputed reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).
- Some of them are other type of RNAs (green).
 - Some adapters contain errors (blue).
- Some sequences contain polyN (red)

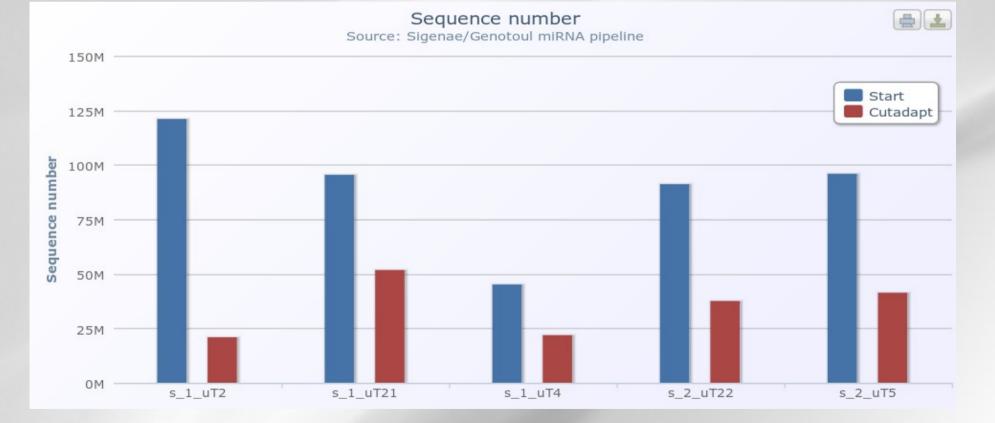
>Adapteur
ΑΤCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTC <mark>TCTCGTATGCCGTCT</mark>

2. Cleaning

Adapters removing and length filtering

Cutadapt http://code.google.com/p/cutadapt/.

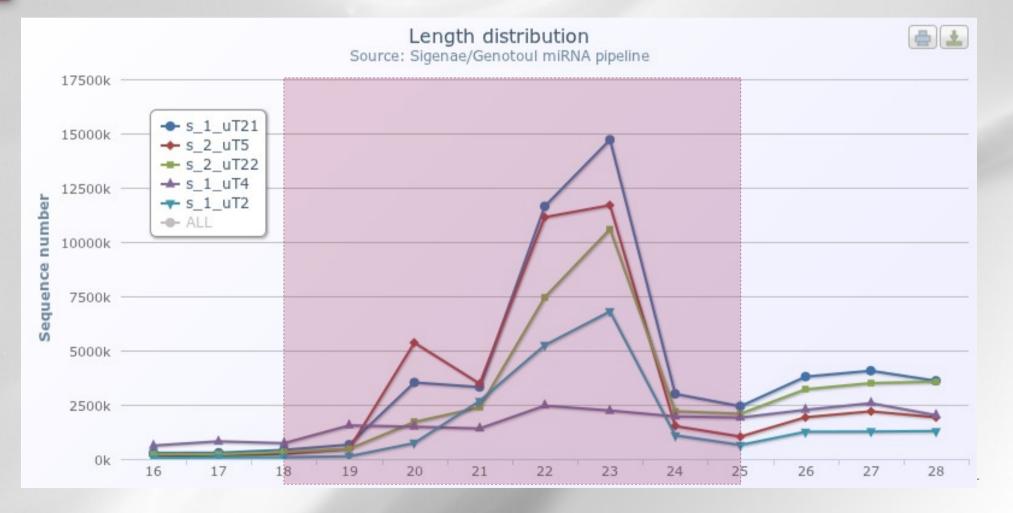
Cutadapt removes adapter sequences from high-throughput sequencing data. Indeed, reads are usually longer than the RNA, and therefore contain parts of the 3' adapter. It also allows to keep only sequences of desired length (15<length<29).

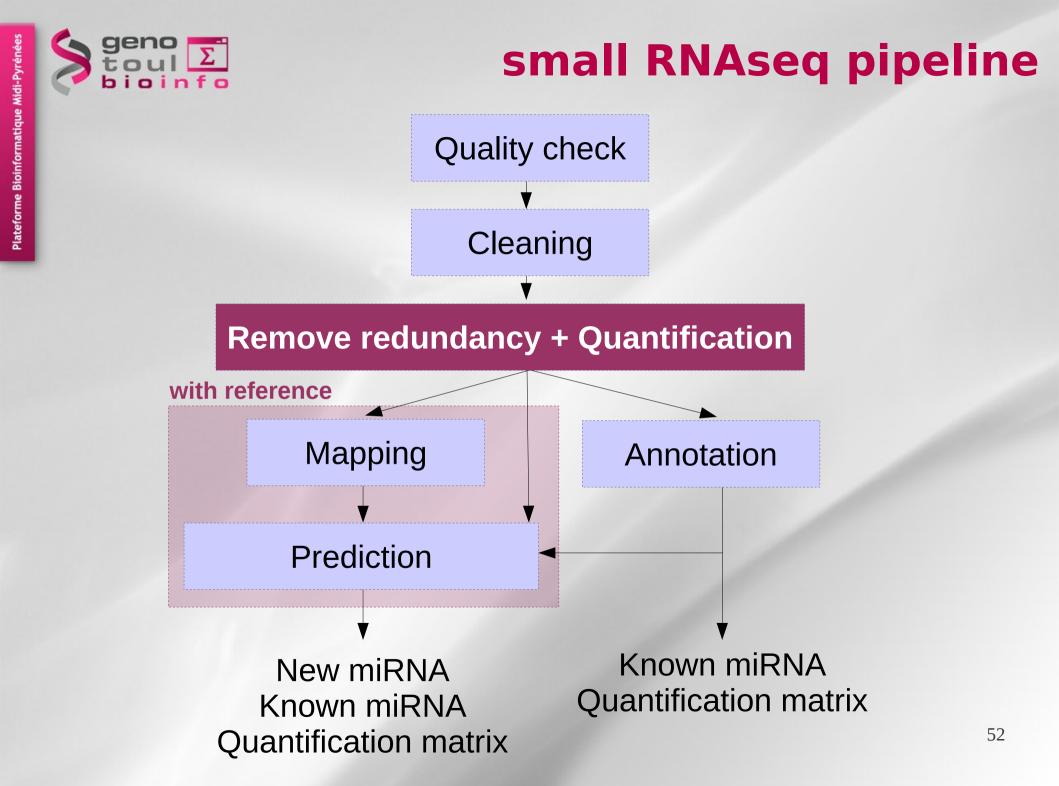

	Options -a and -b	Option -a	Option -b			
Read	Read runs into adapter	Full adapter in the beginning	Full adapter in the beginning			
Adapter Removed sequence	Adapter within read		Partial adapter in the beginning			

cutadapt -a ATCTCGTATGCCGTCTTCTGCTTG -m 15 -M 29 -o nf_out.fg nf_in.fq

2. Cleaning

56 % of reads discarded



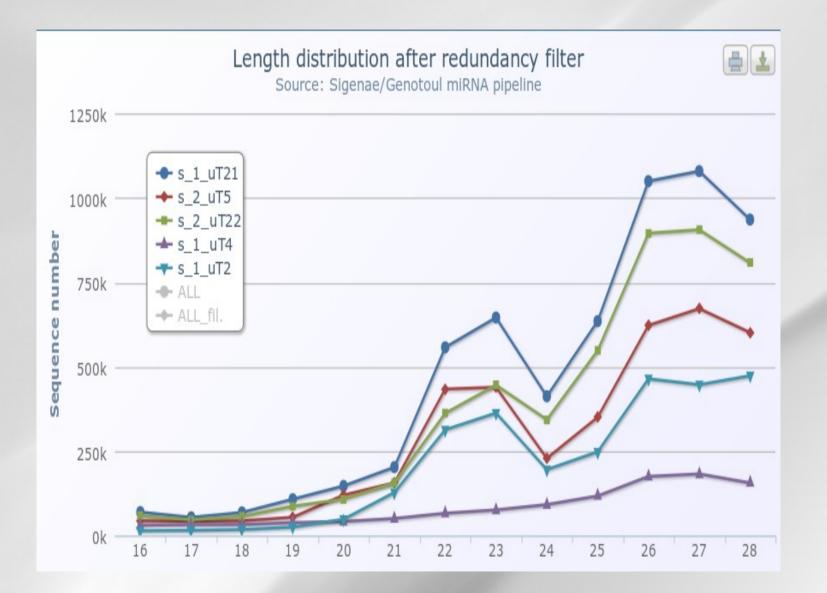

50

2. Cleaning

Size in between 18bp:24bp → miRNA ?

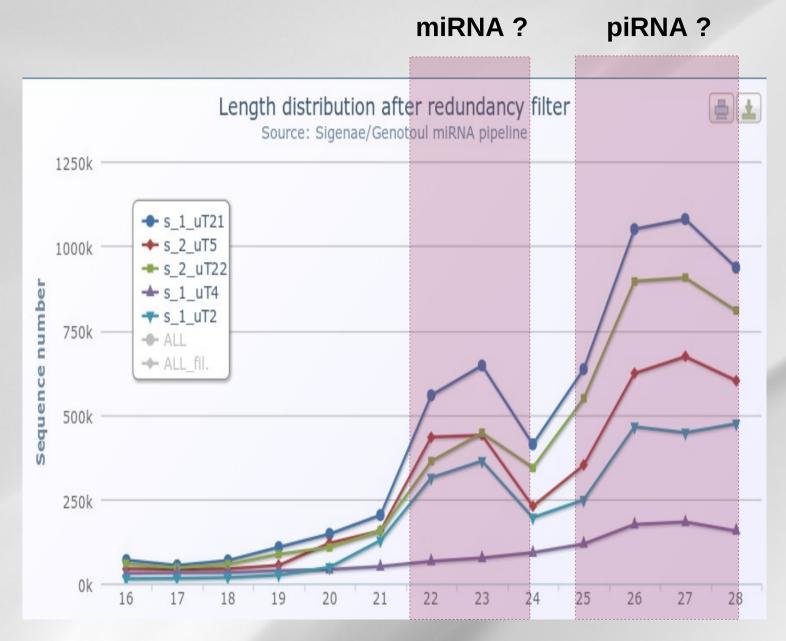
3. Remove redundancy

Removing identical reads


- save computational time
- useless to keep all the read
- Keep the number of occurrence for each reads

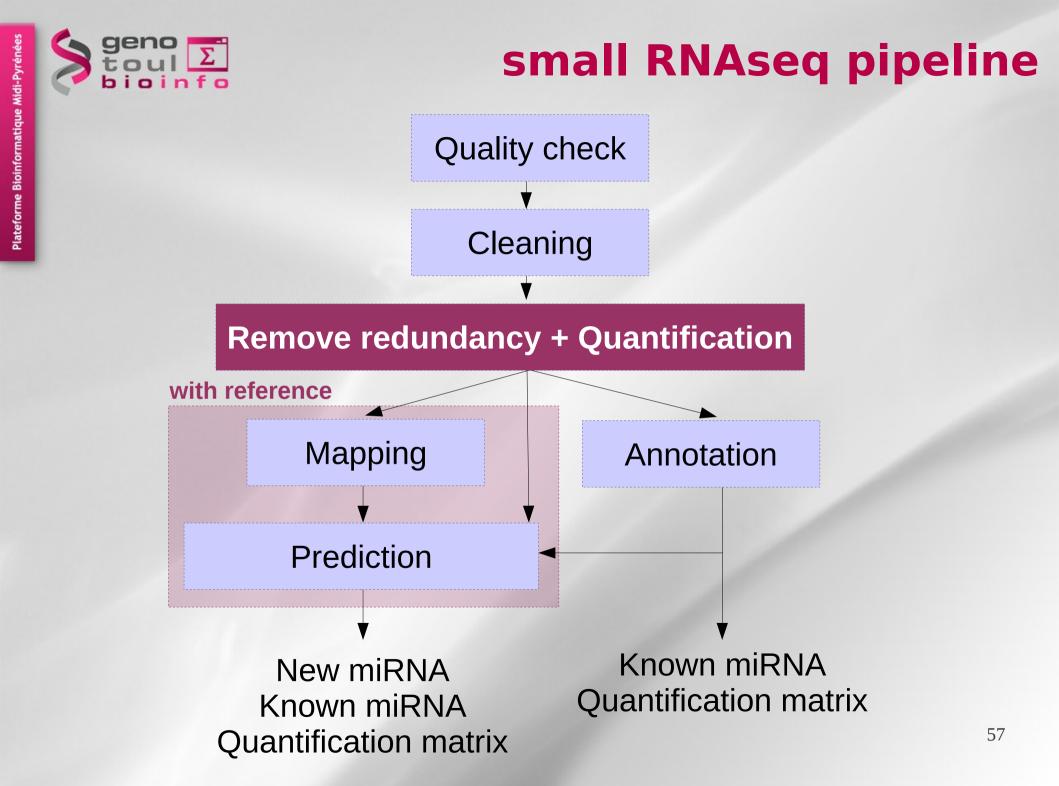
AAATGAATGATCTATGGACAGCA 2 AAATGAATGATCTATGGACAGCAG 38 AAATGAATGATCTATGGACAGCAGA AAATGAATGATCTATGGACAGCAGAAAG AAATGAATGATCTATGGACAGCAGC 51 AAATGAATGATCTATGGACAGCAGCA 82 AAATGAATGATCTATGGACAGCAGCAA 5 AAATGAATGATCTATGGACAGCAGCAAA 2 AAATGAATGATCTATGGACAGCAGCAAC 3 AAATGAATGATCTATGGACAGCAGCAAG 57 AAATGAATGATCTATGGACAGCAGCAG 2 AAATGAATGATCTATGGACAGCCGC 1 AAATGAATGATCTATGGACGGCAGCA 1

fastqnr.pl sample.fq | sort -k1,1 > sample.matrix



3. Remove redundancy

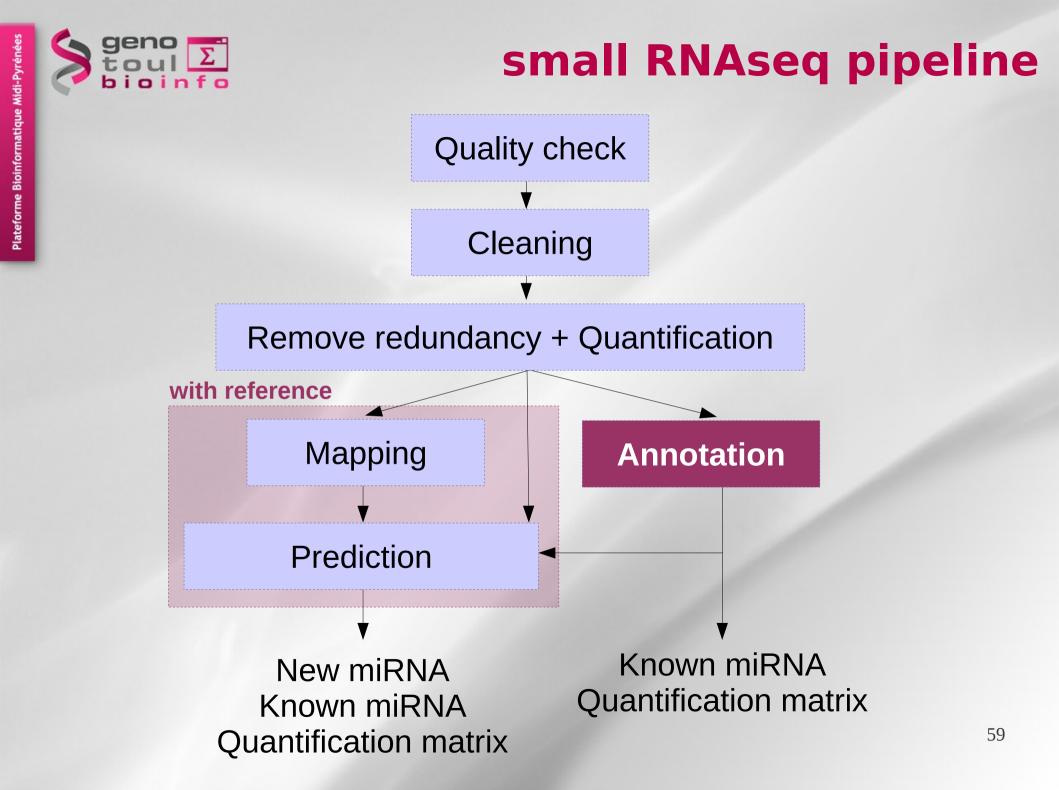
3. Remove redundancy



More differencies between piRNAs than with miRNAs ?

Exercice 1:

- Quality control
- Cleaning
- Remove redundancy


3. Quantification

Computes an expression matrix

 Read must be at least in 2 samples if present less than 5 times

#seq	s_1_uT21	s_1_uT2	s_1_uT4	s_2_uT22	s_2_uT5
AAAAGGGCTGTTTGTGCAGGCAG	87	14	0	85	5
AAAAGGGCTGTTTGTGCAGGCAGA	1	0	0	1	0
AAAAGGGCTGTTTGTGCAGGCAGG	1	0	0	2	0
AAAAGGGCTGTTTGTGCAGGCAGT	1	0	0	3	0
AAAAGGGCTGTTTGTGCAGGCAGTTT	0	0	0	0	1
AAAAGGGCTGTTTGTGCAGGCAT	1	2	0	3	0
AAAAGGGCTGTTTGTGCAGGCTA	0	0	0	1	0
AAAAGGGCTGTTTGTGCAGGCTG	1	0	0	1	0
AAAAGGGCTGTTTGTGCAGGCTT	1	0	0	0	0
AAAAGGGCTGTTTGTGCAGGG	6	1	0	4	2
AAAAGGGCTGTTTGTGCAGGGA	11	1	0	3	4
AAAAGGGCTGTTTGTGCAGGGAG	88	9	0	62	11
AAAAGGGCTGTTTGTGCAGGGAGC	1	0	0	0	0
AAAAGGGCTGTTTGTGCAGGGAGCTGA	0	0	0	1	0
AAAAGGGCTGTTTGTGCAGGGAGT	0	1	0	0	0
AAAAGGGCTGTTTGTGCAGGGAGTT	0	0	0	1	0
AAAAGGGCTGTTTGTGCAGGGAT	2	0	0	0	1
AAAAGGGCTGTTTGTGCAGGGATT	1	0	0	0	0

quatification.pl -i 2 -a 5 sample1.matrix sample2.matrix ... > quantification.matrix

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- miRBase::Registry provides names to novel miRNA genes prior to their publication.
- miRBase::Sequences provides miRNA sequence data, annotation, references and links to other resources for all published miRNAs.
- miRBase::Targets provides an automated pipeline for the
 prediction of targets for all published animal miRNAs.

D152–D157 Nucleic Acids Research, 2011, Vol. 39, Database issue doi:10.1093/nar/gkq1027

Published online 30 October 2010

miRBase: integrating microRNA annotation and deep-sequencing data

Ana Kozomara and Sam Griffiths-Jones*

Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
 - A collection of RNA families
 - Rfam 10.1, June 2011, 1973 families
 - A track now included in the UCSC genome browser
 - Be careful: also contains (not all) miRNA families

D136–D140 Nucleic Acids Research, 2009, Vol. 37, Database issue doi: 10.1093/nar/gkn766

Published online 25 October 2008

Rfam: updates to the RNA families database

Paul P. Gardner^{1,*}, Jennifer Daub¹, John G. Tate¹, Eric P. Nawrocki², Diana L. Kolbe², Stinus Lindgreen³, Adam C. Wilkinson¹, Robert D. Finn¹, Sam Griffiths-Jones⁴, Sean R. Eddy² and Alex Bateman¹

¹Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK, ²Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA, ³Center for Bioinformatics, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark and ⁴Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
- Silva (http://www.arb-silva.de/) silva*
 - A comprehensive on-line resource for quality checked and aligned ribosomal RNA sequence data.
 - SSU (16S rRNA, 18S rRNA)
 - LSU (23S rRNA, 28S rRNA)

7188–7196 Nucleic Acids Research, 2007, Vol. 35, No. 21 doi:10.1093/nar/gkm864

Published online 18 October 2007

SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB

Elmar Pruesse^{1,2}, Christian Quast^{1,3}, Katrin Knittel⁴, Bernhard M. Fuchs⁴, Wolfgang Ludwig⁵, Jörg Peplies⁶ and Frank Oliver Glöckner^{1,3,*}

¹Microbial Genomics Group, Max Planck Institute for Marine Microbiology, ²University Bremen, Center for Computing Technologies, D-28359, ³Jacobs University Bremen gGmbH, D-28759, ⁴Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, ⁵Department for Microbiology, Technical University Munich, D-85354 Freising and ⁶Ribocon GmbH, D-28359 Bremen

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

Genomic tRNA Database

- Rfam (http://rfam.sanger.ac.uk/)
- Silva (http://www.arb-silva.de/)
- GtRNAdb(http://gtrnadb.ucsc.edu/)
 - Contains tRNA gene predictions made by the program tRNAscan-SE (Lowe & Eddy, Nucl Acids Res 25: 955-964, 1997) on complete or nearly complete genomes.
 - All annotation is automated and has not been inspected for agreement with published literature.

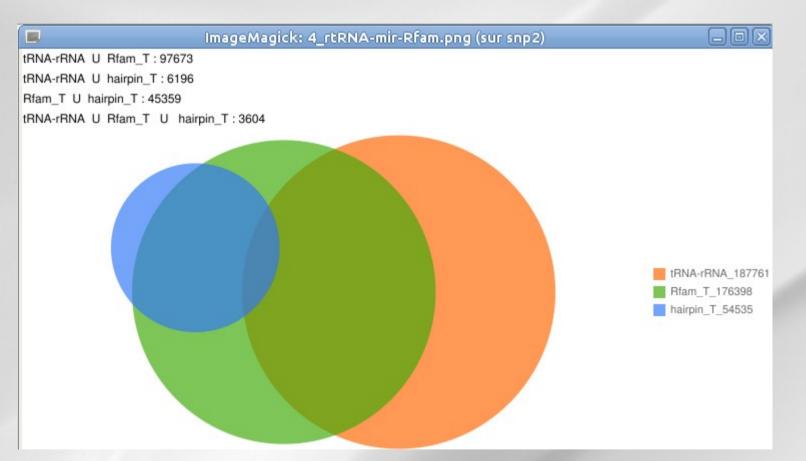
Published online 4 November 2008

Nucleic Acids Research, 2009, Vol. 37, Database issue D93–D97 doi:10.1093/nar/gkn787

GtRNAdb: a database of transfer RNA genes detected in genomic sequence

Patricia P. Chan and Todd M. Lowe*

Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High Street, SOE-2, Santa Cruz, CA 95064, USA


Reads with multiple annotation

eukaryotic-tRNAs U LSURef_108_tax_silva_trunc : 707 eukaryotic-tRNAs U SSURef_108_tax_silva_trunc : 1230 LSURef_108_tax_silva_trunc U SSURef_108_tax_silva_trunc : 11385 eukaryotic-tRNAs U LSURef_108_tax_silva_trunc U SSURef_108_tax_silva_trunc : 293

Reads with multiple annotation

 \rightarrow A lot of reads annotated with mirBase but also with tRNA and rRNA database

rRNA present in miRBase

Mir-739 or 28S rRNA ?

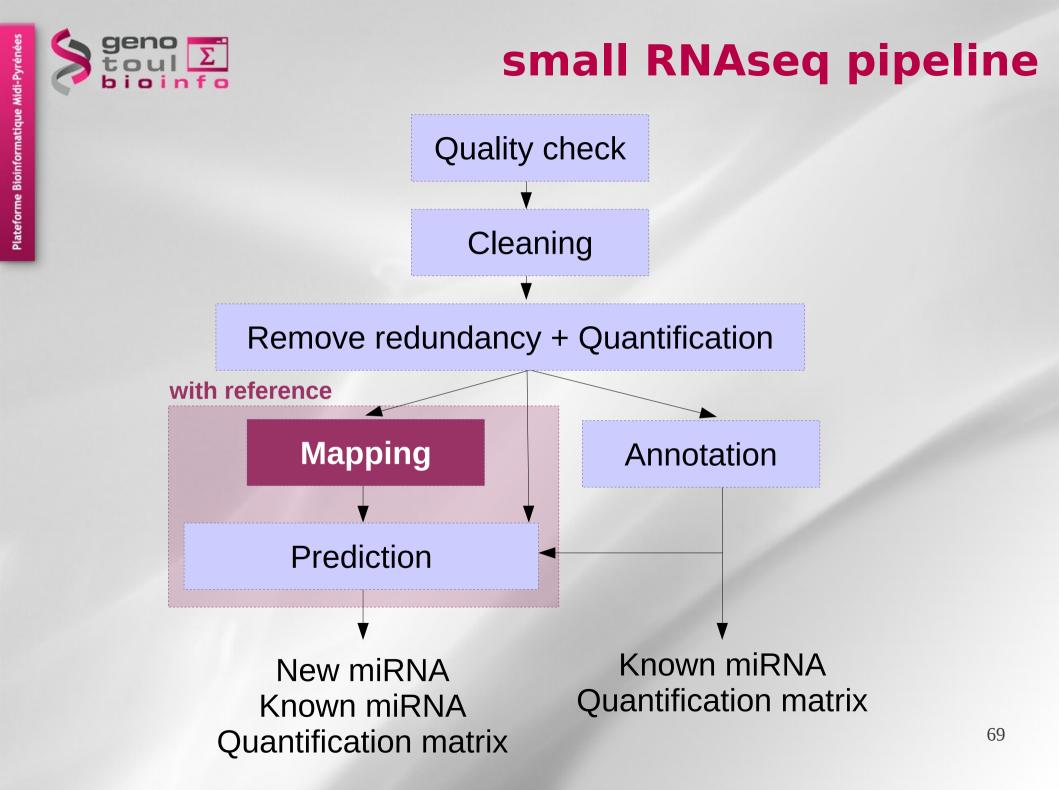
	GOCTAGGTGAAGATCTTGGTGGTAGTAGCAAATATTCAAACGAGAACTTTGAAGGCCGAAGTGGAGA
	<pre>((((****((((****(*(((*******)))))****))))***)))**)))***)))***)))****</pre>
~	
2	GCCTAGGTGAAGATCTTGGTGGTAGTAG************
2	******TGAAGATCTTGGTGGTAGTAGCAAA**********
2	**************************************
7	**************************************
é	
5	* *** *** ** *AGATCTT GGTGGT AGTAGCAAA* ** ** ** ** ** *** *** *** *** ***
5 5	********AGATCTTGGTGGTAGTAGCAAAT**********
5	**************************************
2	**************************************
9	**************************************
2	
7	**************************************
3	* ** ** ** ** ** ** ** ** ** ** ** ** *
10	*********************TGGTAGTAGCAAATATTCAAACGAGA**********
4	**************************************
6	**************************************
9	**************************************
11	**************************************
5	**************************************
18	**************************************
21	* *** *** *** *** *** *** *** *** ***GT AGTAGCAA AT ATTCAA ACGAGA ACTT ** ** *** *** *** *** *** ***
5	* ** ** ** ** ** ** ** ** ** ** ** ** *
10	**************************************
5	**************************************
2	* ** ** ** ** ** ** ** ** ** ** ** *TAGTAGCAAATATTCAAACGAG* ** ** ** ** ** ** ** ** ** ** ** **
11	**************************************
8	**************************************
6	**************************************
5	**************************************

9	
11	**************************************
4	**************************************
3	**************************************
2	**************************************
18	**************************************
13	*************************GTAGCAAATATTCAAACGAGAAC**********
14	**************************************
80	**************************************
12	**************************************
124	* ** ** ** ** ** ** ** ** ** ** ** ** *
3	**************************************
49	**************************************
23	**************************************
7	**************************************
3	* *** *** *** *** *** *** *** *** ***
534	**************************************
497	**************************************
28	**************************************
51	**************************************
51	
1140	**************************************
153	**************************************
280	** ** ** ** ** ** ** ** ** ** ** ** **
000	

ier Éditio <u>n A</u> ffichage	<u>H</u> istori	que <u>M</u> arque	-pages <u>O</u> uti	ls Aid <u>e</u>						
>> • G 🔍 🏠	ht 🔁	tp://www.mir	base.org/cgi	-bin/blast.pl	☆ ~	⊘! ~ mir	base			
1ost Visited 🗸 📄 RNAs	im¥ 🕶	WebMail k	Koders Code	Search: 🛞	sRNAMap: Sn	nall Non	. 🚦 Bio	oInformat	tique des	
gle		 3 	Rechercher		a ~ 🔶 🖌 💈	Partage	r¥ »		🖴 🛩 🥚 Conr	nexio
niRNA Search Results		+								
Cette page est en	anglais 👻	′. La traduir	e à l'aide de l	a barre d'outils	Google ?				0.11	
Traduire	No	n merci N <u>e</u>	jamais tradu	iire les pages en	anglais				Options	Ť
miRBase				niRBase	ļ				MANCHES 182	/4
ne Search Browse	Help D	ownload Blo	g Submit							Searc
			Sequenc	e search	results					
			•						\$	
		Mat	ches for y	our nucleotic	de sequeno	ce				
Accession	ID	Query start	Query end	Subject start	Subject en	d Strand	Score	Evalue	Alignment	
MI0012527 mdo-	<u>mir-739</u>	6	73	18	85	+	331	1e-21	Align	
	<u>iir-4057</u>	12	36	29	53	-	89	0.18	Align	
	<u>nir-240</u>	25	57	76	108	-	84	0.47	Align	
MI0010704 pvu-M MI0011580 dme-r	1IR166a	13 16	51 64	184 17	222 65	-	78 74	1.5 3.2	Align Align	
	nir-2491	38	73	29	64	+	72	4.7	Align	
		-		Query to hair	-					
Query: 6-73 UserSeg	mdo-n	<u>nir-739</u> : 18-8		score: 331		alue: 1e-		70		
mdo-mir-739	18			aauauucaaacgaga 				85		
md0-m11-755	10	ggugeaganeuni	Juuguaguagea	laauauucaaacyaya	acuuugaaggeei	Jaayuyyaya	aggguu	05		
Query: 12-36		<u>r-4057</u> : 29-53		score: 89	ev	alue: 0.1	8			
UserSeq	36	gaucuugguggua								
cin-≋ir-4057	29	gaucuuggugaaa	aguagcaaacacu	53						
Query: 25-57	<u>cbr-mi</u>	<u>r-240</u> : 76-10	8	score: 84	ev	alue: 0.4	7			
UserSeq	57	guagcaaauauuo	caaacgagaacuu	lugaaggcc 25						
cbr-mir-240	76			uggaggcc 108						
Query: 13-51	pvu-M	IR166a : 184	-222	score: 78	ev	alue: 1.5				
UserSeq	51			aaacgagaacuuug	13					
11703.00	184			cauuggaaacuuug	222					
pvu-MIR166a										
miné										

>□ref|NR 003287.2| ICM Homo sapiens RNA, 28S ribosomal 1 (RN28S1), ribosomal RNA Length=5070 GENE ID: 100008589 RN28S1 | RNA, 28S ribosomal 1 [Homo sapiens] (10 or fewer PubMed Links) Score = 122 bits (66), Expect = 6e-28 Identities = 68/69 (99%), Gaps = 0/69 (0%)

Strand=Plus/Plus									
Query	5	AGGTGAAGAT	CTTGGTGGTAGTAGCAAATATTCAAACGAGAACTTTGAAGGCCGAAGTGG	64					
Sbjct	2341	Aggtgcygy		2400					
Query	65	AGAAGGGTT	73						
Sbjct	2401	YGYYGG	2409						


Annotation

occurences

Show 100 C entries									Search all colu	mns:
#seq ≎	eukaryotic-tRNAs	<pre>hairpin_T ↓</pre>	LSURef_108_tax_silva_trunc *	Rfam_T	SSURef_108_tax_silva_trunc	SupportedBy \$	Total 🗘	s_1_uT21 ≎	s_1_uT2 ≎	s_1_uT4
seq681297#1#189	0	oan-mir-20a-1	X54512.4749.8508	RF00051;mir-17;AAPN01282049.1/1987-2067	0	1	189	0	0	189
seq299078#2#304	0	mmu-mir-5105	V01270.3862.8647	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	2	304	165	0	0
seq610618#2#267	0	sha-mir-5105	V01270.3862.8647	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	2	267	102	0	0
seq1353575#4#218	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	218	95	0	17
seq1353596#4#550	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	550	161	0	183
seq2060361#3#113	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	3	113	55	0	15
seq2060376#4#266	0	mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	266	97	3	56
seq1163251#5#342	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	342	96	2	116
seq1353595#5#239	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	239	57	4	111
seq1353600#5#759	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	759	170	29	247
seq2060374#4#113	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	113	25	0	62
seq401616#3#139	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	3	139	54	0	0
seq577112#4#524	0	mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	524	146	0	203
seq1748431#4#548	0	cfa-mir-195	U34340.1.3432	RF00177;SSU_rRNA_bacteria;EU328070.1/1-1479	EU328070.1.1479	4	548	232	0	92
seq345104#4#102	0	gga-mir-1617	HQ856851.1.2611	RF00090;SNORA74;CAAE01008763.1/14090-14288	0	4	102	25	0	20
seq41650#5#523	0	sha-mir-716a	HQ856851.1.2611	RF00001;5S_rRNA;ABIM01036847.1/2163-2281	0	5	523	258	2	34
seq709529#5#160	0	hsa-mir-4792	GU372691.11134.15878	RF00100;7SK;AANN01516090.1/17881-17571	0	5	160	23	1	80
seq257457#2#119	0	sha-mir-716b	GQ424316.1.1993	RF00001;5S_rRNA;AARH01008767.1/1334-1421	0	2	119	0	0	106
seq718037#4#193	0	mmu-mir-5102	FP929060.89.2972	RF00028;Intron_gpI;EU352794.1/2419-2809	0	4	193	39	0	86
seq53378#5#144	0	mmu-mir-677	FP565809.564563.566970	RF01960;SSU_rRNA_eukarya;AAQR01407656.1/1-1561	AF198113.1.1740	5	144	43	3	56
seq1328312#4#393	0	ata-MIR172	FJ966040.1.2409	RF00100;7SK;AAQQ01276673.1/1502-1765	CABZ01109011.107.1605	4	393	155	24	0
seq1328326#4#142	0	ata-MIR172	FJ966040.1.2409	RF00306;snoZ178;AAZX01013617.1/1306-1470	CABZ01109011.107.1605	4	142	52	8	0
seq487403#4#645	0	ata-MIR172	FJ966040.1.2409	RF00306;snoZ178;AAZX01015218.1/4829-4668	U94741.1.2950	4	645	226	4	0
seq487443#4#169	0	sbi-MIR396c	FJ966040.1.2409	RF00100;7SK;AAKN02002849.1/102766-102498	CABZ01109011.107.1605	4	169	69	2	0
seq1328328#5#144	0	smo-MIR1082a	FJ966040.1.2409	RF00306;snoZ178;AC114644.10/51094-51230	CABZ01109011.107.1605	5	144	52	11	5
seq653494#4#168	0	mmu-mir-5102	FJ605292.1.3569	RF01960;SSU_rRNA_eukarya;CABB01000342.1/31007-29320	0	4	168	53	0	34
seq686909#5#164	0	rlcv-mir-rL1-8	FJ424422.1.2497	RF01960;SSU_rRNA_eukarya;Z83748.1/1-1822	GQ352554.1.1846	5	164	6	4	140
seq1328311#5#316	0	ata-MIR172	FJ360703.1.2869	RF00009;RNaseP_nuc;AC102108.12/162476-162168	CABZ01109011.107.1605	5	316	80	24	6
seq667010#4#118	0	mmu-mir-5102	FJ040535.1.4142	RF00028;Intron_gpI;EU352794.1/2419-2809	0	4	118	42	0	8
seq1328321#4#323	0	osa-MIR408	EU921138.1.2387	RF00306;snoZ178;AAZX01015218.1/4829-4668	CABZ01109011.107.1605	4	323	91	23	0
seq487405#4#315	0	smo-MIR1082a	EU921138.1.2387	RF00306;snoZ178;AASC02015737.1/1625-1475	CABZ01109011.107.1605	4	315	124	3	0
seq1461535#5#1418	0	hsa-mir-4700	EU875589.109747.113671	RF00002;5_85_rRNA;AJ270036.1/1-105	DM486508.4754.6504	5	1418	412	45	476
seq1861043#4#142	0	hsa-mir-4700	EU875589.109747.113671	RF00002;5_8S_rRNA;AF342795.1/144-297	AC211391.79568.81654	4	142	61	0	8
										6

Exercice 2: – Annotation

5. Mapping the reads

- Blat http://genome.ucsc.edu/cgi-bin/hgBlat
- Blast http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Gmap http://www.gene.com/share/gmap/
- Bowtie http://bowtie-bio.sourceforge.net/index.shtml
- BWA http://bio-bwa.sourceforge.net

5. Mapping the reads with bwa

Manual Reference Pages - bwa (1)

NAME

bwa - Burrows-Wheeler Alignment Tool

CONTENTS

Synopsis Description Commands And Options Sam Alignment Format Notes On Short-read Alignment Alignment Accuracy Estimating Insert Size Distribution Memory Requirement Speed Notes On Long-read Alignment See Also Author License And Citation History

SYNOPSIS

bwa index -a bwtsw database.fasta bwa aln database.fasta short_read.fastq > aln_sa.sai bwa samse database.fasta aln_sa.sai short_read.fastq > aln.sam bwa sampe database.fasta aln_sa1.sai aln_sa2.sai read1.fq read2.fq > aln.sam bwa bwasw database.fasta long_read.fastq > aln.sam

5. Mapping the reads with bwa

Reference sequence indexing:

bwa index -a bwtsw db.fasta

Read alignment:

bwa aln db.fasta short_read.fastq > short_read.sai

• Formatting reads:

bwa samse db.fasta short_read.sai short_read.fastq > short_read.sam

index bwa index [-p prefix] [-a algoType] [-c] <in.db.fasta>

Index database sequences in the FASTA format.

OPTIONS:

-c Build color-space index. The input fast should be in nucleotide space.

-p STR Prefix of the output database [same as db filename]

-a STR Algorithm for constructing BWT index. Available options are:

- 1S linear-time algorithm for constructing suffix array. It requires 5.37N memory where N is the size of the database. IS is moderately fast, but does not work with database larger than 2GB. IS is the default algorithm due to its simplicity. The current codes for IS algorithm are reimplemented by Yuta Mori.
- bwtsw Algorithm implemented in BWT-SW. This method works with the whole human genome, but it does not work with database smaller than 10MB and it is usually slower than IS.

aln bwa aln [-n maxDiff] [-o maxGap0] [-e maxGapE] [-d nDelTail] [-i nIndelEnd] [-k maxSeedDiff] [-l seedLen] [-t nThrds] [-CRN] [-M misMsc] [-0 gap0sc] [-E gapEsc] [-q trimQual] <in.db.fasta> <in.query.fq> > <out.sai>

Find the SA coordinates of the input reads. Maximum *maxSeedDiff* differences are allowed in the first *seedLen* subsequence and maximum *maxDiff* differences are allowed in the whole sequence.

OPTIONS:

- -n NUM Maximum edit distance if the value is INT, or the fraction of missing alignments given 2% uniform base error rate if FLOAT. In the latter case, the maximum edit distance is automatically chosen for different read lengths. [0.04]
- -o INT Maximum number of gap opens [1]
- -e INT Maximum number of gap extensions, -1 for k-difference mode (disallowing long gaps) [-1]
- -d INT Disallow a long deletion within INT bp towards the 3'-end [16]
- -i INT Disallow an indel within INT bp towards the ends [5]
- -1 INT Take the first INT subsequence as seed. If INT is larger than the query sequence, seeding will be disabled. For long reads, this option is typically ranged from 25 to 35 for '-k 2'. [inf]
- -k INT Maximum edit distance in the seed [2]
- t INT Number of threads (multi-threading mode) [1]
- M INT Mismatch penalty. BWA will not search for suboptimal hits with a score lower than (bestScore-misMsc). [3]

-0 INT Gap open penalty [11]

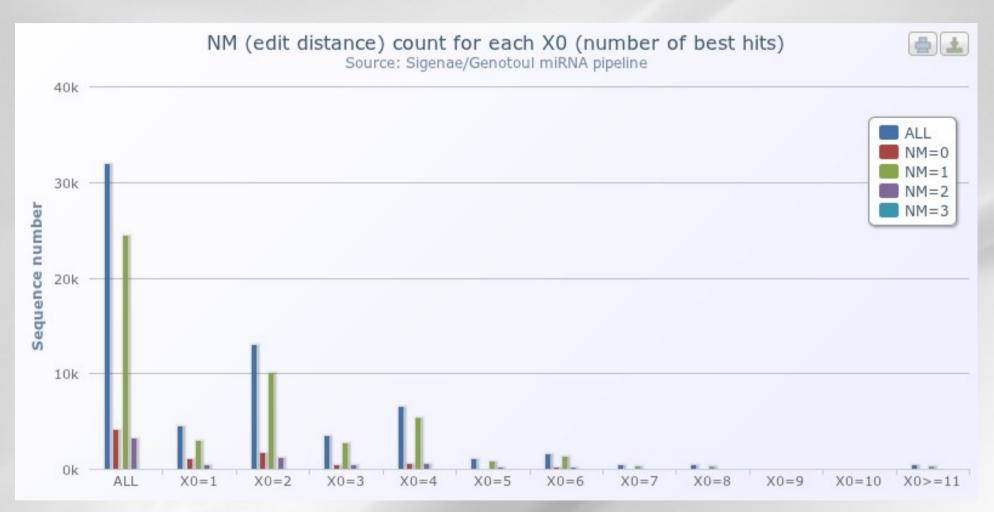
- E INT Gap extension penalty [4]
- -R INT Proceed with suboptimal alignments if there are no more than INT equally best hits. This option only affects paired-end mapping. Increasing this threshold helps to improve the pairing accuracy at the cost of speed, especially for short reads (~32bp).
- -c Reverse query but not complement it, which is required for alignment in the color space.
- N Disable iterative search. All hits with no more than maxDiff differences will be found. This mode is much slower than the default.
- -q INT Parameter for read trimming. BWA trims a read down to argmax_x{\sum_{i=x+1}^l(INT-q_i)} if q_l<INT where l is the original read length. [0]

samse bwa samse [-n maxOcc] <in.db.fasta> <in.sai> <in.fq> > <out.sam>

Generate alignments in the SAM format given single-end reads. Repetitive hits will be randomly chosen.

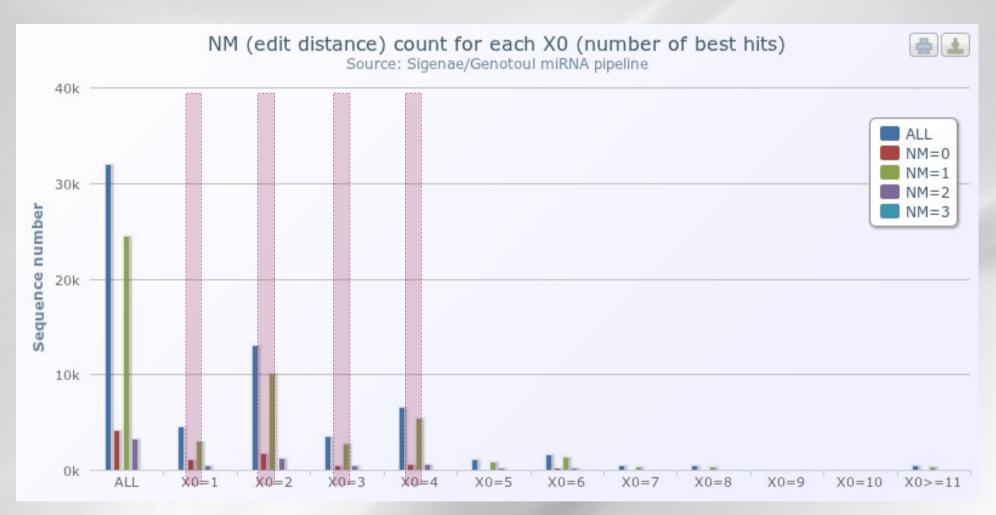
OPTIONS:

- -n INT Maximum number of alignments to output in the XA tag for reads paired properly. If a read has more than INT hits, the XA tag will not be written. [3]
- sampe bwa sampe [-a maxInsSize] [-o maxOcc] [-n maxHitPaired] [-N maxHitDis] [-P] <in.db.fasta> <in1.sai> <in2.sai> <in1.fq> <in2.fq> > <out.sam>

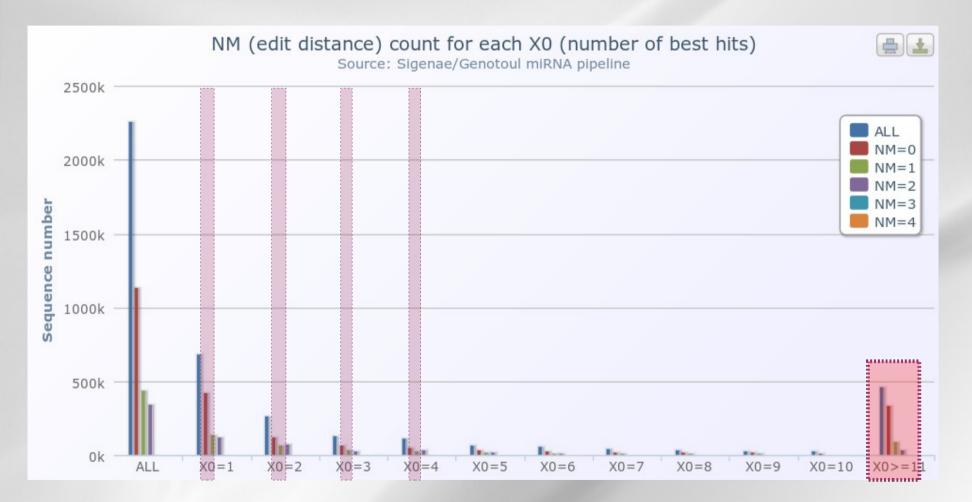

Generate alignments in the SAM format given paired-end reads. Repetitive read pairs will be placed randomly.

OPTIONS:

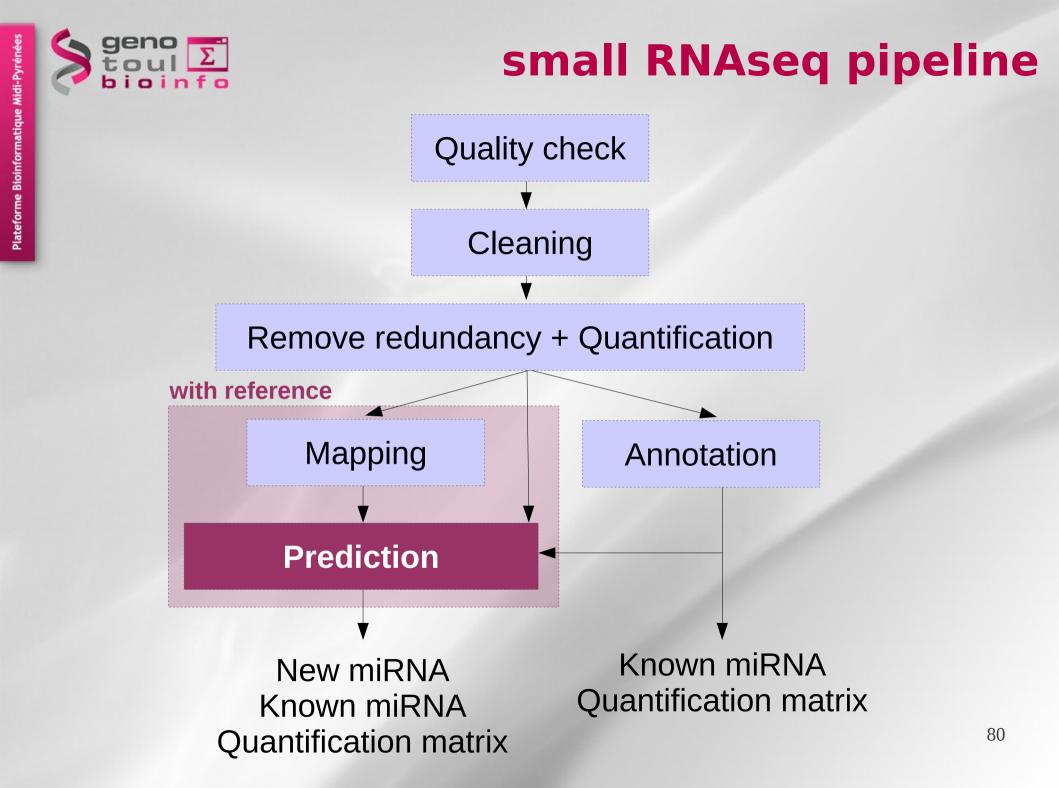
- -a INT Maximum insert size for a read pair to be considered being mapped properly. Since 0.4.5, this option is only used when there are not enough good alignment to infer the distribution of insert sizes. [500]
- o INT Maximum occurrences of a read for pairing. A read with more occurrences will be treated as a single-end read. Reducing this parameter helps faster pairing. [100000]
- -P Load the entire FM-index into memory to reduce disk operations (base-space reads only). With this option, at least 1.25N bytes of memory are required, where N is the length of the genome.
- -n INT Maximum number of alignments to output in the XA tag for reads paired properly. If a read has more than INT hits, the XA tag will not be written. [3]
- N INT Maximum number of alignments to output in the XA tag for disconcordant read pairs (excluding singletons). If a read has more than INT hits, the XA tag will not be written. [10]



Alignement of annotated reads


Alignement of annotated reads

→ keep reads aligned the most at 4 positions with 0 or 1 error


Alignement of all reads

→ keep reads aligned the most at 4 positions with 0 or 1 error

Exercice 3: – Mapping the reads

- Precise excision of a 21-22mer is typical of microRNA
 - less represented reads are products of Dicer errors and sequencing/sample preparation artifacts

GAGAGTGGAGTGCAGCCAAGGATGACTTGCCGGAATTCACA	FATAGAGTGGAATGA
CAGCCAAGGATGACTTGCCGG	675
CAGCCAAGGATGACTTGCCG	26
AGCCAAGGATGACTTGCCGG	8
CAGCCAAGGATGACTTGCCGGAA	8
CAGCCAAGGATGACTTG	2
CAGCCAAGGATGACTTGCCGGA	2
CAGCCAAGGATGACTTGC	1

Once the reads mapped

Identify all contiguous read regions

Identify all contiguous read regions

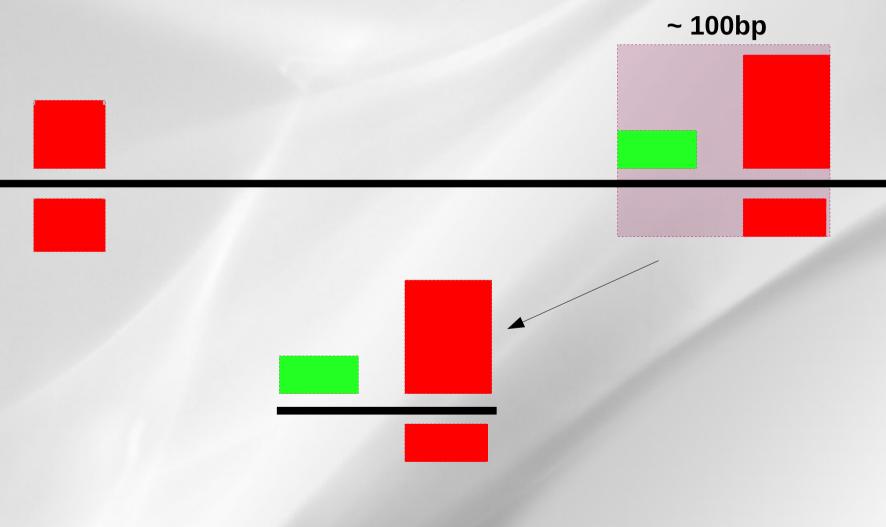
Plateforme Bioinformatique Midi-Pyrén

miRNA precursors have a characteristic secondary structure

 The detection of a microRNA* sequence, opposing the most frequent read in a stable hairpin (but shifted by 2 bases), is sufficient to diagnose a microRNA.

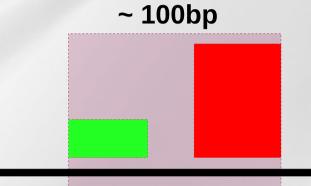
		N
Mir-30	CTGTAAACATCCTTGACTGGAAGCTGG*************	G
	((((((((((((((((((((((((((((((((((((((0
	00000000111111111222222223333333334444444444	i ic
	12345678901234567890123456789012345678901234567890123456789012345678	_
2	**************************************	
60	**************************************	
8	***TAAACATCCTTGACTGGAAGCTGG*************	
10	***TAAACATCCTTGACTGGAAGCTG***** ******************************	
89	***TAAACATCCTTGACTGGAAGCT***************	
297	**GTAAACATCCTTGACTGGAAGCT*****	
1677	**GTAAACATCCTTGACTGGAAGC****************	
2	**GTAAACATCCTTGACTGGAAGCTG**************	
459435	*TGTAAACATCCTTGACTGGAAGC****************	
30331	*TGTAAACATCCTTGACTGGAAG*****************	
40391	*TGTAAACATCCTTGACTGGAAGCT***************	
17	CTGTAAACATCCTTGACTGGAAGCT***************	
259	CTGTAAACATCCTTGACTGGAAGC****************	
21	CTGTAAACATCCTTGACTGGAAG*****************	
2	CTGTAAACATCCTTGACTGGAA******************	
	12345678901234567890123456789012345678901234567890123456789012345678	
	0000000011111111122222222233333333334444444444	

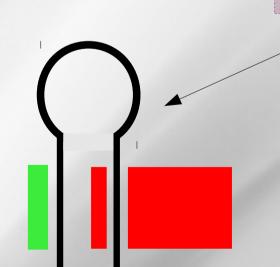
• Extend and fold read regions



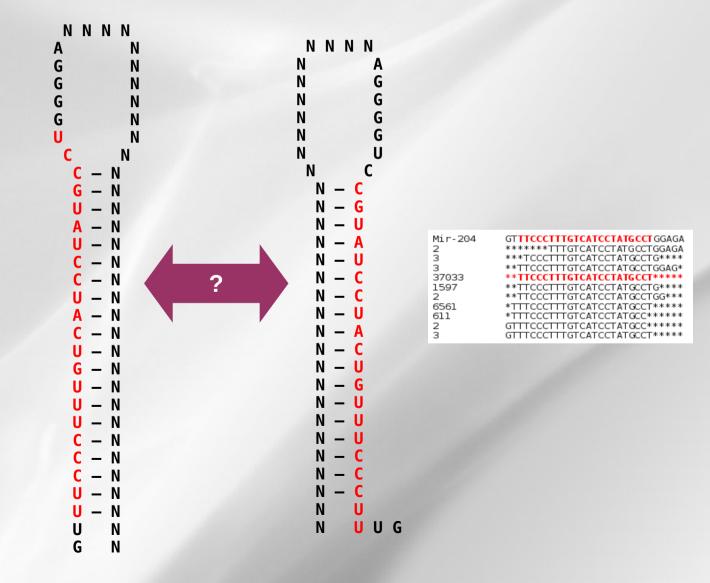
Extend and fold read regions




• Extend and fold read regions



- Stable hairpin structure shifted by 2 bases
- miRNA > miRNA*

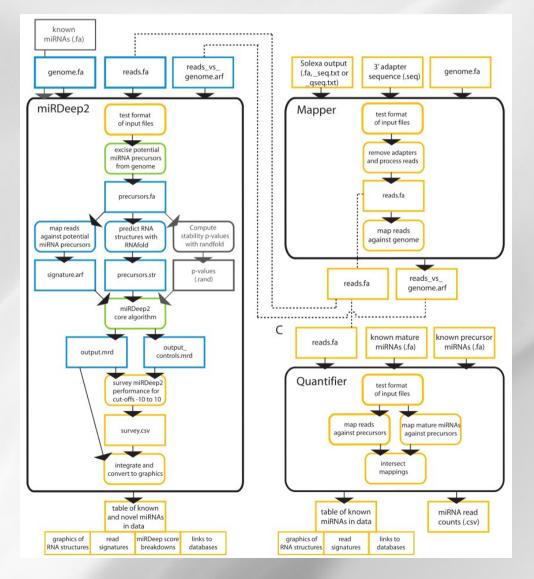

Extend and fold read regions

~ 100bp

- In the absence of reads corresponding to an expected miRNA*, additional checks on the structure are:
 - Degree of pairing in the miRNA region
 - Hairpin: around 70nt in length
 - The secondary structure is significantly more stable than randomly shuffled versions of the same sequence
 - miRNA cluster

• Which one should be used ?

Exercice 4: – Locus identification

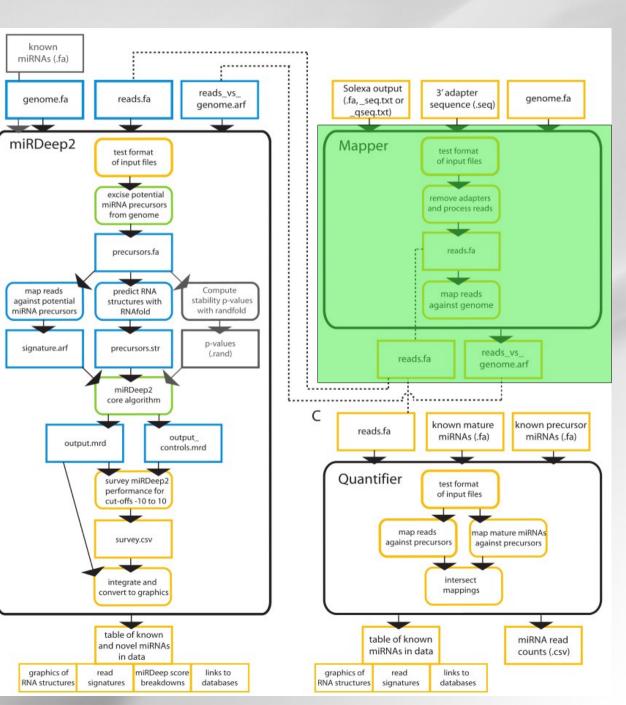


- Tool for identification of known and novel miRNA
- Animals
 - Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. (2008) Discovering microRNAs from deep sequencing data using *miRDeep*. Nat Biotechnol 26(4), 407-15.
 - Friedländer, M.R., Mackowiak, S.D., Li, N., Chen, W., and Rajewsky, N. 2011. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res.
- Tool for plants but nothing to do with miRDeep !
 - Plants : Xiaozeng Yang, Lei Li. 2011 *miRDeep-P*: a computational tool for analyzing the microRNA transcriptome in plant. Bioinformatics, doi: 10.1093

miRDeep2

• Complex pipeline (3 main steps)

geno toulΣ bioinfo


miRDeep2

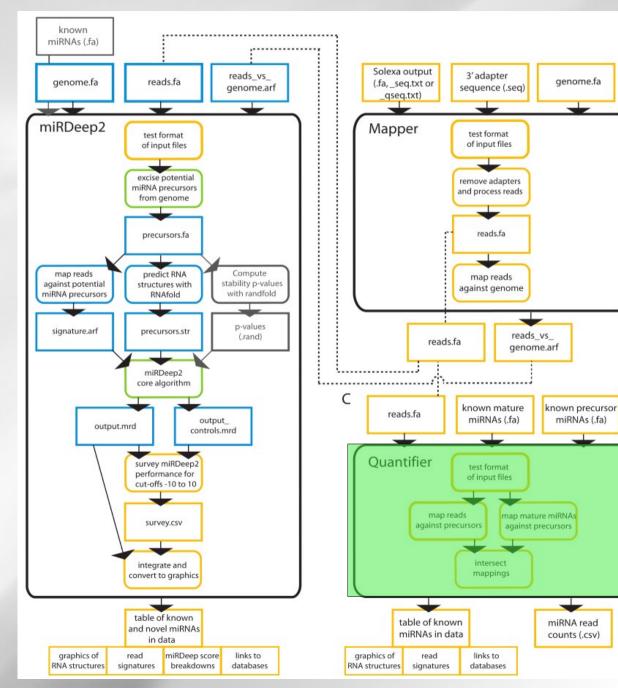
1 : Mapper

Mapping of the SGS data on the reference genome

Pipeline :

- * Filter reads (not [ACGTN])
- * Clip adapters
- * Filter reads on size (<18 nt)
- * Collapse reads
- * Align with bowtie
- * Transform bowtie output to specific miRDeep2 .arf format
- * Filter the .arf file (soft clip)

geno toulΣ bioinfo


miRDeep2

2 : Quantifier

Annotation of sequences on miRBase database

Pipeline :

- * Map mature miRNAs on precursors
- * Map reads on precursors
- * Intersect the 2 mappings
- * Output signature and structure of annotated miRNAs

bioinfo

miRDeep2

genome.fa

3'adapter

sequence (.seq)

test format of input files

remove adapters

and process reads

reads.fa

map reads

against genome

known mature

miRNAs (.fa)

test format

of input files

intersect

mappings

links to

databases

reads vs

genome.arf

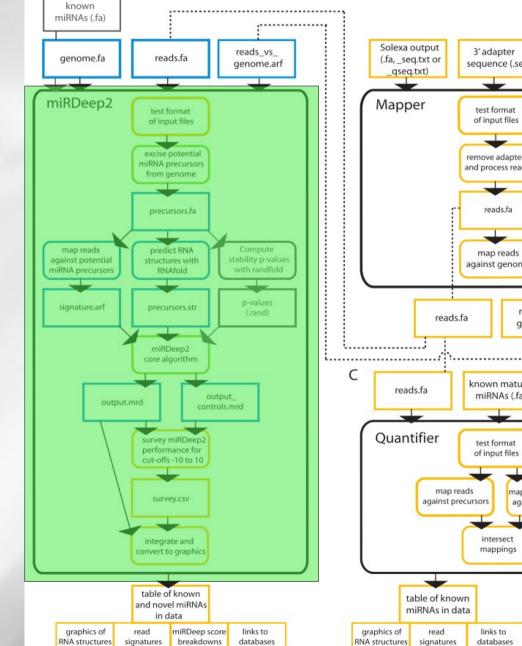
map mature miRNAs

against precursors

known precursor

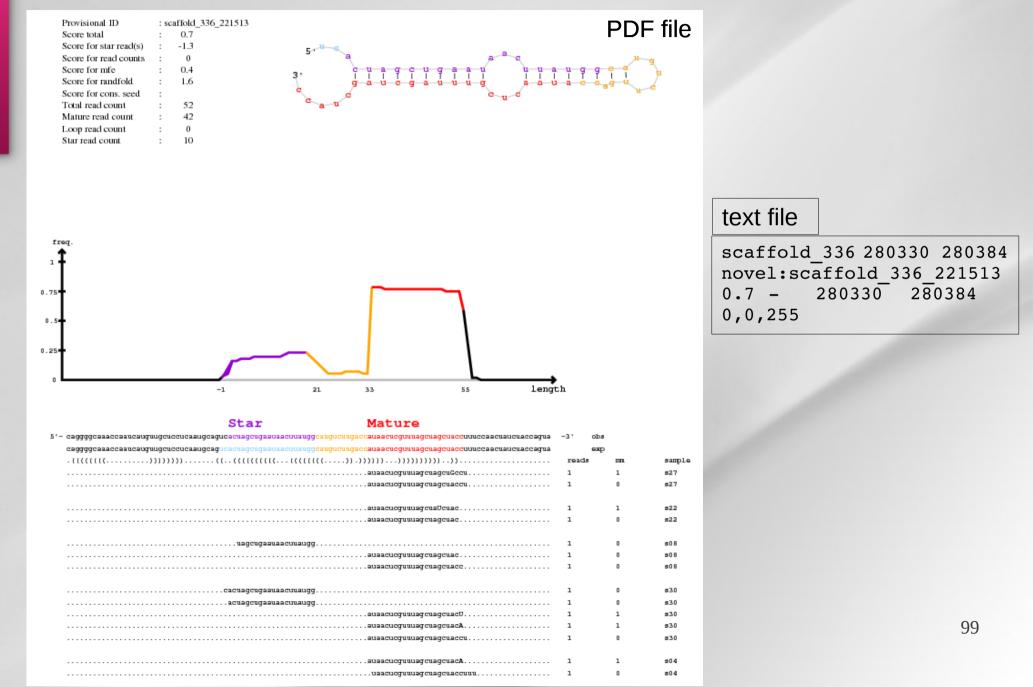
miRNAs (.fa)

miRNA read


counts (.csv)

3 : miRDeep2

Prediction of novel miRNAs


Pipeline :

- * Test input files
- * Keep only perfect mappings of at least 18 nt
- * Excise potential precursors within 20 & 70 nt up and down
- * Map reads and known miRNAs on potential precursors
- * Merge alignments
- * RNAfold + randfold
- * Run permuted controls
- * Filter potential precursors
- * Output novel miRNAs

miRDeep2 output

Why develop a new tool ?

- * MiRDeep2 pipeline is not optimized :
 - A lot of redundant steps (mapped reads filtering, inter-fastq redundant reads kept)
 - A lot of temporary files :
 - Input : 166 Go
 - Output : 1,5 To
 - A lot of time-processing :
 - Mapper : 37 h
 - MiRDeep2 : 390 h

* Bugs :

- Bad algorithm of 3' adapters clipping
- Quantification step not used for prediction
- Options not available
- * Not enough user-defined parameters (bowtie, RNAfold ...)

x 10 !

* Not adapted for discovering other small RNAs (tRNA...)

Why develop a new tool ?

- * MiRDeep2 pipeline is not optimized :
 - A lot of redundant steps (mapped reads filtering, inter-fastq redundant reads kept)
 - A lot of temporary files :
 - Input : 166 Go
 - Output : 1,5 To
 - A lot of time-processing :
 - Mapper : 37 h
 - MiRDeep2 : 390 h

* Bugs :

- Bad algorithm of 3' adapters clipping
- Quantification step not used for prediction
- Options not available
- * Not enough user-defined parameters (bowtie, RNAfold ...)

x 10 !

* Not adapted for discovering other small RNAs (tRNA...)

Keep only 6 first nuc of ADAPTER				
>1 ADAPTEBLABLA	\rightarrow	ADAPTE		
>2 MYSEQUENCE <mark>A</mark>	→	MYSEQUENCE		

natique Midi-Pyrénées

sRNAseq & GALAXY

http://sigenae-workbench.toulouse.inra.fr/

Sigenae-workbench.toulouse.inra.fr	없 🛪 😋 🔀 🛪 Google	Q 🕹 🎓 🛩 🗸
🗌 Congés 🚺 Lequipe 🌔 MulCyber 🔥 CMB 🔗 yaziba 🏠 FORGE-DGA 🛛 🗵 VVF 🎼 Site National de l'AD	0 □CESU are Genomic tools -	
Galaxy Sigenae Analyze Dat	a Workflow Shared Data Visualization Help User Welcome orue	Using 623.4 Mb
Tools Options v		History Options -
3 - SEQUENCES MANIPULATION		
FASTA manipulation		Unnamed history 0 bytes
FASTQ manipulation SAM/BAM manipulation : Picard (beta)		Your history is empty. Click 'Get Data' on the left pane to start
SAM/BAM manipulation : SAMtools		on the felt parte to start
Fetch Sequences		
4 - MAPPING		
BWA - Bowtie		
5 - SNP / INDEL		
GATK Tools (beta)		
SAMtools Indel Analysis		
SNP annotation		
6 - RNA-SEQ		
RNA-Seq	WELCOME ON SIGENAE GALAXY WORKBENCH	
7 - MIRNA ET SRNASEQ	Galaxy is a workbench available for biologists from Sigenae Platform. Galaxy objectives are:	
Qualite / Nettoyage / Mirdeep2 / Annotation	Make bioinfo Linux tools accessible to biogists.	
<u>Fastqc: Fastqc QC</u> using FastQC from Babraham	 Hide the complexity of the infrastructure. 	= •
<u>* Suppression des adaptateurs</u> avec la commande cutadapt	 Allow creation, execution and sharing of workflows. 	
<u>* Elimination de la redondance (fastqnr) intra fastq</u> a faire pour chaque tissu		
<u>* Construction de la matrice</u> au format matrix		
<u>* Filtrer la matrice</u> pour produire trois fichiers : fasta, texte et un fichier csv contenant la matrice d expression filtree		
<u>* Production du rapport</u> apres elimination des adaptateurs		
• <u>* nr to fasta</u> file		
<u>* Mapper : Process and map reads to the genome</u> , with mirdeep2, with FASTA files		
<u>* miRDeep2core - Prediction des miRNAs</u> appartenant a des familles d'ARN connus		
<u>* miRDeep2core - bed to fasta file</u> bed file from mirdeep2core * Alignement how triat filtre sur up fasta		
<u>* Alignement baw, tri et filtre</u> sur un fasta * Construction de la matrice d'appetations au formationu		
<u>* Construction de la matrice d annotations</u> au format csv <u>* Comparaison des annotations</u> avec des diagrammes de Venn		
<u>Comparatison des annotations</u> avec des diagrammes de venn <u>Operate on Genomic Intervals</u>		
Nebula		
8 - SGS		
SGS	This project is supported in part by <u>NSF</u> , <u>NHGR</u> , and <u>the Huck Institutes of the Life Sciences</u> .	
9 - YOUR WORKFLOWS	If you need more training about bioinformatic and Galaxy, please connect to Sigenae e-learning platform.	
Washflaun	If you have some question about Galaxy, please consult your FAQ.	
Workflows		102