
nature | methods 

QIIME allows analysis of high-throughput community 
sequencing data 
J Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D Bushman, Elizabeth K 

Costello, Noah Fierer, Antonio Gonzalez Peña, Julia K Goodrich, Jeffrey I Gordon, Gavin A Huttley, Scott T 

Kelley, Dan Knights, Jeremy E Koenig, Ruth E Ley, Catherine A Lozupone, Daniel McDonald, Brian D 

Muegge, Meg Pirrung, Jens Reeder, Joel R Sevinsky, Peter J Turnbaugh, William A Walters, Jeremy Widmann, 

Tanya Yatsunenko, Jesse Zaneveld & Rob Knight 

 

 

Supplementary figures and text:  

Supplementary Figure 1   Overview of the analysis pipeline. 

Supplementary Table 1   Details of conventionally raised and conventionalized 
mouse samples. 

Supplementary Discussion Expanded discussion of QIIME analyses presented in 
the main text; Sequencing of 16S rRNA gene 
amplicons; QIIME analysis notes; Expanded Figure 1 
legend; Links to raw data and processed output from 
the runs with and without denoising. 

 

Nature Methods: doi:10.1038/nmeth.f.303



Supplementary Figure 1. Overview of the analysis pipeline. 
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Supplementary Figure 1. Overview of the analysis pipeline. The QIIME workflow begins with 

raw sequencing data plus metadata describing the samples, and can provide tabular output 

including many alpha and beta diversity measures in addition to publication-quality graphics. This 

figure illustrates only a subset of QIIME's core capabilities. Notable features include flexibility in 

terms of algorithmic choices at different steps, ease of deployment in cluster and other multi-

processor environments, and modularity. QIIME is not limited to analyses based on the 16S rRNA 

gene: it can be used for any collection of sequences, although taxonomy assignment can only be 

used in cases where a reference database of sequences with assigned taxonomies is available. 

The components of the displayed workflow are as follows: first, data from the sequencing 

instrument and the metadata supplied by the user are combined to de-multiplex the barcoded 

reads from the various samples, and to perform quality filtering. Second, for 454 data, denoising 

can be performed using PyroNoise. Third, the sequences are grouped onto OTUs (Operational 

Taxonomic Units) at a user-defined level of sequence similarity (e.g. 97% to approximate 

species-level phylotypes). This step can be performed either using a reference database of OTU 

representatives (e.g. with BLAST), or purely based on sequence similarity (e.g. using uclust, cd-

hit, or MOTHUR). Fourth, once the OTUs are picked and the representative sequences chosen, 

taxonomy is assigned, the sequences are aligned, and phylogenetic trees are built (again, 

multiple choices are possible at each of these steps: for example, the trees can be built de novo 

from the reference sequences using software such as FastTree or RAxML, or they can be built by 

mapping reads to their relatives in a predefined reference tree using BLAST. At this stage, a table 

showing the counts of each OTU in each sample is also produced. Sixth, the OTU tables are 

used to perform alpha and beta diversity calculations (alpha diversity refers to the diversity within 

each sample, and beta diversity refers to patterns of similarity and difference among samples). 

Finally, the alpha and beta diversity measurements are combined with metadata about each 

sample, potentially including new metadata supplied by the user at this step, to produce 

visualizations that allow the information to be readily interpreted.  

!
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Supplementary Table 1: Details of conventionally-raised (CONV-R) and conventionalized 
(CONV-D) C57BL/6J male mice samples. 
!

Sample Barcode Sequence Diet Colonization state Sequences 
MD2 ATGAGACTCCAC Western CONV-R 1067 
MD4 ATGTGCACGACT Low-carb CONV-R 853 
MD6 CACATCTAACAC Western CONV-R 1220 
MD7 CAGACTCGCAGA Western CONV-R 896 
MD8 CAGTGATCCTAG Low-carb CONV-R 930 
MD9 CATGAGTGCTAC Low-carb CONV-R 772 

MD18 ATACGTCTTCGA Low-fat CONV-R 901 
MD19 ATCGATCTGTGG Low-fat CONV-R 850 
MD20 ATGATCGAGAGA Western CONV-R 940 
MD21 ATGTGTCGACTT Low-carb CONV-R 720 
MD22 CACATTGTGAGC Western CONV-R 0 
MD23 CAGAGGAGCTCT Low-carb CONV-R 1131 
MD24 CAGTGCATATGC Low-fat CONV-R 776 
MD25 CATGCAGACTGT Low-fat CONV-R 1025 
Myd1 CAGTCACTAACG LF/PP CONV-R 1199 
Myd2 CATCGTATCAAC LF/PP CONV-R 1415 
Myd3 ATACACGTGGCG LF/PP CONV-R 1301 
Myd4 ATCCGATCACAG Western CONV-R 951 
Myd5 ATGACTCATTCG Western CONV-R 937 
Myd6 ATGTCACCGTGA Western CONV-R 1216 
Rag1 CACAGTGGACGT LF/PP CONV-R 20 
Rag2 CAGACATTGCGT LF/PP CONV-R 1119 
Rag3 CAGTCGAAGCTG LF/PP CONV-R 1083 
Rag4 CATCTGTAGCGA Western CONV-R 1061 
Rag5 ATACAGAGCTCC Western CONV-R 1209 
Rag6 ATCCTCAGTAGT Western CONV-R 1051 
WD2 CACACGTGAGCA LF/PP CONV-D 453 
WD3 CACTGGTATATC LF/PP CONV-D 1997 
WD4 CAGTACGATCTT LF/PP CONV-D 501 
WD5 CATCATGAGGCT LF/PP CONV-D 767 
WD6 ATAATCTCGTCG Western CONV-D 1378 
WD7 ATCAGGCGTGTG Western CONV-D 970 
WD8 ATGACCATCGTG Western CONV-D 458 
WD9 ATGTACGGCGAC Western CONV-D 1273 

WD10 CACAGCTCGAAT Western CONV-D 684 
WD11 CACTGTAGGACG LF/PP CONV-D 113 

!
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Supplementary Discussion 

Expanded discussion of QIIME Analyses presented in the main text: 

Here we illustrate how the QIIME workflow can be applied to a meta-analysis of three 

independent studies of distal gut bacterial communities. The first study1 evaluated gut 

communities from adult human monozygotic and dizygotic twins and their mothers. The second 

study2 evaluated gut communities from germ-free mice and germ-free conventionalized mice 

(GF and CONV-D mice), where CONV-D mice are germ-free mice colonized with a mouse gut 

microbiota from conventionally-raised mouse donors. The third study3 evaluated gut 

communities from a time-series of adult gnotobiotic mice after they received a human fecal 

microbiota that had been transplanted by oral gavage; the human donors; and conventionally-

raised control mice (CONV-R, or animals exposed to a gut microbiota from their mothers and 

environment starting at birth) and CONV-D control mice (Supplementary Table 1). This 

analysis combines ten full 454 FLX runs and one partial run, totalling 3.8 million bacterial 16S 

rRNA sequences from previously published studies: it also includes reads from different regions 

of the 16S rRNA gene (variable region 2 (V2) versus variable region 6 (V6)).1 A step-by-step 

guide to the QIIME analysis can be found in the ‘QIIME commands’ section of this document. A 

smaller analysis, suitable for running on a laptop, can be found with the QIIME tutorial at 

http://qiime.sourceforge.net.  

Several results are immediately apparent from the principal coordinates (PCoA) plots based on 

UniFrac distances (Fig. 1a), in which samples that cluster together have similar bacterial 

community membership. First, the distal gut (cecal) microbiota of CONV-R mice from one study 

cluster together with the cecal microbiota from CONV-R mice with the same genetic background 

and diet from another study, and from conventionalized (CONV-D) animals. Second, QIIME 

illustrates findings, described previously3, from a time series study of fecal samples obtained 

from gnotobiotic mice 8 hours through 56 days after they received a human fecal microbiota 

transplanted with a single oral gavage.  During the first week after transplantation, fecal 
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microbiota structure rapidly evolves towards that of the human fecal donor sample, whether the 

transplanted sample was fresh, or had been frozen for a year prior to transplantation. Fecal 

community configuration is sustained from Day 7 through Day 56. The transplanted gut 

community is highly sensitive to host diet, as judged from a comparison of mice on a standard 

low-fat and high plant polysaccharide (LF and PP) chow or those switched to a high fat/high 

sugar western diet.  QIIME allows this data to be placed in the broader context of data obtained 

from the fecal microbiota of members of >50 families of adult twins and their mothers, described 

in a previous study1, and data from CONV-R mice generated by another research group. Third, 

analysis of histograms representing all pairwise UniFrac measurements of phylogenetic 

distances between samples (Fig. 1b), indicates that distances between the fecal microbiota of 

humanized gnotobiotic mice and the fecal microbiota of human twins decrease as a function of 

the number of days following transplant of the human donor's microbiota. Only a subset of the 

humanized mice time-points are included in Fig. 1b to facilitate visualization of this point. 

Taxon-based measures, which can also be computed by QIIME, give qualitatively similar results 

(data not shown). The taxonomy pie charts shown (Fig. 1b) indicate that the humanized 

gnotobiotic mice sampled at 8h on the first day (Day 0)  are primarily dominated by 

Erysipelotrichi (a class within the Firmicutes), while adult human twins are primarily dominated 

by Clostridia (another Firmicutes class) and the Bacteroidetes. As the transplanted human 

microbiota stabilizes in the mouse gut, we see a shift toward the taxonomic representation 

encountered in human communities. Thus, QIIME documents a shift towards a human-like 

community using several types of analyses: the location of each sample on the PCoA plot (Fig. 

1a), distance histograms (Fig. 1b), inspection of the taxonomy pie charts (Fig. 1b), as well as 

convergence in overall diversity (Fig. 1c).  

The vast majority of the data described above were generated with reads from the V2 region of 

the 16S rRNA genes. The human twin fecal microbiota data show that the difference between 

V2 and V6 reads obtained from the same samples are comparable to the distances between 
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mouse and human gut microbiota, suggesting that the effects of primers used for PCR of 16S 

rRNA genes can be large (Fig. 1a). 

One emerging concern in the analysis of pyrosequencing and other high-throughput data is the 

effect of sequencing noise4, and QIIME therefore supports denoising of pyrosequencing data. 

Phylogenetic Diversity (PD) rarefaction curves for raw and denoised humanized mice data were 

used to evaluate the affect of denoising (Fig. 1c). Denoising was performed using a custom 

implementation of the PyroNoise4 algorithm (manuscript in preparation). Transplantation of a 

human gut microbiota into germ-free mice results in a rapid increase in PD as human gut 

microbes colonize the mouse intestine. At Day 7, the communities have largely stabilized. In 

both the raw and the denoised data, the relative PD follow the same trend but denoising 

reduces this measure of alpha diversity by a factor of two (for rarefaction curves see Fig. 1c). 

Alpha diversity measures are affected more severely than are the beta diversity measures by 

noise, and phylogenetic beta diversity measures such as UniFrac are especially robust. The 

improved performance of phylogenetic methods over taxon-based methods in general is 

expected because the new OTUs introduced by noise are not so different from existing 

sequences that they cannot be related to existing parts of the tree. This is related to, but 

separate from, the way that phylogenetic beta diversity measures (unweighted unifrac in this 

case) eliminate the “spike” artifacts at 90 degree angles (Fig. 1a): these stem from the high 

levels of dissimilarity between samples at the species level, and obscure the clustering patterns 

that the phylogenetic measures reveal.  

The meta-analysis described above took ~12h on a 100 processor Linux cluster without 

denoising. The majority of time (approximately 11 of the 12h) on this data was spent picking 

OTUs, which was done via BLAST to facilitate integration of 454 pyrosequencing data from non-

overlapping regions of the 16S rRNA gene (V2 and V6). Denoising required approximately 

~120h on a 100 processor Linux cluster, and downstream analyses of the resulting denoised 

data required ~1h on the same Linux cluster. Most of the steps related to visualization are rapid: 
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for example, principal coordinates reduction of the UniFrac matrix and generation of the 3-

dimensional plots and histograms each take about a minute on a laptop. Complete analyses of 

smaller datasets, such as a partial 454 run, can be done on a laptop in a few hours.  

Availability: 

QIIME is open source, and available from sourceforge at http://qiime.sourceforge.net. An 

extensive tutorial, and the raw input data and the processed data from the analyses presented 

below, are available via http://qiime.sourceforge.net.  

Sequencing methods: 

Sequencing of 16S rRNA gene amplicons – Mouse cecal samples from a set of diet switch 

experiments were stored at -80˚C before processing5. DNA was extracted by bead beating 

followed by phenol-chloroform extraction as described previously1. The V2 region was targeted 

for amplification by PCR (with primers 8F-338R) and multiplex FLX pyrosequencing. See 

Supplementary Table 1 for a list of the sequenced samples.  

Sequencing of amplicons for previously published studies is described in the corresponding 

publications. 

Overview of technology used: 

QIIME is implemented using Python 2.6 and the PyCogent toolkit6. It relies on the Python 

libraries numpy (http://numpy.scipy.org), matplotlib (http://matplotlib.sourceforge.net) and 

(optionally) cython (http://www.cython.org). It wraps a number of third-party applications 

including BLAST7, MOTHUR8, DOTUR9, and cd-hit10 for OTU picking, MUSCLE11, Clustal12, 

MAFFT13 and DIALIGN14 for alignment, the RDP classifier15 for taxonomy assignment (BLAST 

can also be used for this task), PyroNoise4 for denoising, and Cytoscape16 and KiNG 

(http://kinemage.biochem.duke.edu) for visualization (we also recommend FigTree, 

http://tree.bio.ed.ac.uk/software/figtree/, TopiaryExplorer 
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(http://sourceforge.net/projects/topiarytool/), and PyCogent for visualizing phylogenetic trees 

and cluster diagrams). 

QIIME commands: 

This section presents the QIIME commands that were used in the data analyses presented 

herein. QIIME commands are presented in monospace font. 

Qiime paper analysis with V2/V6 data combined, raw (i.e., not denoised) data 

Set up environment 
$q=/home/qiime/Qiime/qiime $working_dir=/home/qiime/Hmice_Raw_w_V6/ 
$refdb=/home/qiime/greengenes_unaligned.fasta-OTUs_at_0.01.fasta 
$tree=/home/qiime/greengenes_lanemasked_filtered.ntree  
 
Pick OTUS 
python $q/parallel/pick_otus_blast.py -i $working_dir/seqs.fna -o 
$working_dir/blast_picked_otus/ -r $refdb -O 100 -e 1e-20   
 
Pick representative set 
python $q/pick_rep_set.py -i 
$working_dir/blast_picked_otus/seqs_otus.txt -f $working_dir/seqs.fna 
-o $working_dir/repr_set.fasta 
  
Assign taxonomy 
python $q/parallel/assign_taxonomy_rdp.py -i 
$HOME/Hmice_Raw_w_V6/repr_set.fasta -o $HOME/Hmice_Raw_w_V6 
  
Build OTU table 
python $q/make_otu_table.py -i 
$working_dir/blast_picked_otus/seqs_otus.txt -t 
$working_dir/repr_set_tax_assignments.txt -o 
$working_dir/otu_table.txt 
  
Perform Alpha Diversity on OTU Table 
python $q/alpha_diversity.py -t $tree -m osd,PD_whole_tree -i 
$working_dir/otu_table.txt -o $working_dir/alpha_osd_PD.txt 
  
Perform Beta Diversity on OTU Table 
python $q/beta_diversity.py -t $tree -m dist_unweighted_unifrac -i 
$working_dir/otu_table.txt -o $working_dir/beta_unweighted_unifrac.txt 
 
python $q/beta_diversity.py -t $tree -m dist_weighted_unifrac -i 
$working_dir/otu_table.txt -o $working_dir/beta_weighted_unifrac.txt 
 
python $q/beta_diversity.py -t $tree -m dist_euclidean -i 
$working_dir/otu_table.txt -o $working_dir/beta_dist_euclidean.txt 
  
Generate a Coords file for Beta Diversity 
python $q/principal_coordinates.py -i 
$working_dir/beta_unweighted_unifrac.txt -o 
$working_dir/beta_unweighted_unifrac_coords.txt 
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python $q/principal_coordinates.py -i 
$working_dir/beta_weighted_unifrac.txt -o 
$working_dir/beta_weighted_unifrac_coords.txt 
 
python $q/principal_coordinates.py -i 
$working_dir/beta_dist_euclidean.txt -o 
$working_dir/beta_dist_euclidean_coords.txt 
  
Generate 3D Plots using the beta-diversity coords file and mapping file 
python $q/make_3d_plots.py -i 
$working_dir/beta_unweighted_unifrac_coords.txt -o 
$working_dir/3d_plots/ -p $working_dir/Qiime_paper_prefs_filter.txt -m 
$working_dir/Mice_Hmice_Twins_Mapping_Plots.txt 
 
python $q/make_3d_plots.py -i 
$working_dir/beta_weighted_unifrac_coords.txt -o 
$working_dir/3d_plots/ -p $working_dir/Qiime_paper_prefs_filter.txt -m 
$working_dir/Mice_Hmice_Twins_Mapping_Plots.txt 
 
python $q/make_3d_plots.py -i 
$working_dir/beta_dist_euclidean_coords.txt -o $working_dir/3d_plots/ 
-p $working_dir/Qiime_paper_prefs_filter.txt -m 
$working_dir/Mice_Hmice_Twins_Mapping_Plots.txt 
 
Alpha rarefaction 
python $q/parallel/rarefaction.py -i $working_dir/otu_table.txt -o 
$working_dir/alpha_rare/ -m 100 -x 2500 -s 250 -n 10 -N 
$q/rarefaction.py    
 
python $q/parallel/alpha_diversity.py -t $tree -m chao1,PD_whole_tree 
-i $working_dir/alpha_rare -o $working_dir/rare_chao1_PD -N 
$q/alpha_diversity.py 
 
python $q/collate_alpha.py -i $working_dir/rare_chao1_PD/ -o 
$working_dir/rare_collated 
  
Create Rarefaction Plots 
python $q/make_rarefaction_plots.py -m 
../Qiime_paper_Full_mapping_All.txt -r PD_whole_tree.txt -o ./  
 
Qiime paper analysis with V2/V6 data combined, denoised data 

Note that the denoising steps use currently unpublished software, so cannot be run with QIIME 
alone (manuscript is in preparation). Smaller datasets can be handled with QIIME together with 
the published version of the PyroNoise software4. 
The denoiser was run separately on each of the 10 full GSFLX runs, and for each run we 
started with these input files in a separate folder: 
 454Reads.sff.txt 
 454Reads.fasta 
 454Reads.qual (from sffinfo) 
 Barcode_mapping.txt 
 
Demultiplex and quality filtering, creates output seqs.fna, increase the number after -s by 
1000000 to avoid collisions from the same sample_id in different runs (for V6 add: -l 90 -L 
110 -b 5 -p 
"CNACGCGAAGAACCTTANC,CAACGCGAAAAACCTTACC,CAACGCGCAGAACCTTACC,ATACGCGAR
GAACCTTACC,CTAACCGANGAACCTYACC"). 
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python split_libraries.py -m Barcode_mapping.txt -i 454Reads.fasta -q 
454Reads.qual -r -s 1000000  
 
Cut barcodes and primers from flowgrams, prefix dereplication 
python denoise_preprocess.py -i 454Reads.sff.txt -f seqs.fna -o 
Preprocessed/ -s -v  
 
Run actual denoising with 40 cpus on the cluster. Produces output files: 
 centroids.fasta 
 unclustered.fasta 
 denoiser_mapping.txt 
python denoiser.py -i 454Reads.sff.txt -p Preprocessed -o Denoised/ -c 
-n 40 -b 3 -v  
 
Combine centroids and singletons 
cat Denoised/unclustered.fasta Denoised/centroids.fasta 
>/Denoised/denoised.fasta  
 
Finished denoising of run, repeat with next run 
After all runs are denoised, combine results of all 10 runs. 
cat  */Denoised/denoised.fasta > all_runs_denoised.fasta cat 
*/Denoised/denoiser_mapping.txt > all_runs_denoiser_mapping.txt cat 
*/seqs.fna > all_split_libraries_seqs.fna  
 
Pick OTUs 
python $q/parallel/pick_otus_blast.py -i 
$HOME/qiime_paper_denoised/all_denoised.fasta -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-20 -r 
$HOME/greengenes_filtered/greengenes_unaligned.fasta-
OTUs_at_0.01.fasta -O 100 -e 1e-20 
  
Combine denoiser mapping and OTU mapping, convert flowgram id's to unique sample_ids 
taken from split_libraries.py output. Creates final OTU map (qiime_input_otu_map.txt) and 
replaces ids in denoised fasta file: qiime_input_seqs.fasta 
python denoiser_to_qiime_linker.py all_split_libraries_seqs.fna 
all_runs_denoiser_mapping.txt all_runs_denoised.fasta 
blast_picked_otus/all_runs_denoised_otus.txt  
 
Pick representative seqs (Note: the members of an otu are ordered, such that '-m first' on this 
otu map is basically identical to the usual qiime default '-m most_abundant') -- result is 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-20/repr_set.fasta 
python pick_rep_set.py -m first -i qiime_input_otu_map.txt -f 
qiime_input_seqs.fasta 
 
Assign taxonomy 
python $q/parallel/assign_taxonomy_rdp.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-20/repr_set.fasta -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/ -O 100  
 
Build OTU Table 
python $q/make_otu_table.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-20/otus.txt -t 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/repr_set_tax_assignments.txt -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/otu_table.txt  
 
Beta diversity 
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python $q/beta_diversity.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/otu_table.txt -m dist_unweighted_unifrac -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_unweighted_unifrac.txt -t 
$HOME/greengenes_filtered/greengenes_lanemasked_filtered.ntree 
 
python $q/principal_coordinates.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_unweighted_unifrac.txt -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_unweighted_unifrac_coords.txt 
 
python $q/beta_diversity.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/otu_table.txt -m dist_weighted_unifrac -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_weighted_unifrac.txt -t 
$HOME/greengenes_filtered/greengenes_lanemasked_filtered.ntree 
 
python $q/principal_coordinates.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_weighted_unifrac.txt -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_weighted_unifrac_coords.txt    
 
python $q/make_3d_plots.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_unweighted_unifrac_coords.txt -m 
Mice_Hmice_Twins_Mapping_Plots.txt -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/3d_unweighted/ -p 
Qiime_paper_prefs_filter.txt   
 
python $q/make_3d_plots.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/beta_weighted_unifrac_coords.txt -m 
Mice_Hmice_Twins_Mapping_Plots.txt -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/3d_weighted/ -p Qiime_paper_prefs_filter.txt  
 
Alpha Rarefaction/Diversity 
python $q/parallel/rarefaction.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/otu_table.txt -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/rarefaction/ -m 100 -x 2500 -s 250 -n 10   
python $q/parallel/alpha_diversity.py -i 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/rarefaction/ -o 
$HOME/qiime_paper_denoised/blast_picked_otus_1e-
20/rdp_assigned_taxonomy/alpha_diversity/ -m 
observed_species,chao1,PD_whole_tree -t 
$HOME/greengenes_filtered/greengenes_lanemasked_filtered.ntree   
 
python $q/collate_alpha.py -i ./alpha_diversity/ -o 
./alpha_diversity_collated/ 

Nature Methods: doi:10.1038/nmeth.f.303



 

Expanded Figure 1 Legend. QIIME analyses of the distal gut microbiotas of 

conventionally-raised and conventionalized mice, gnotobiotic mice colonized with a 

human fecal gut microbiota (H-mice), and human adult mono- and dizygotic twins. The 

colors in the legend are used consistently throughout the panels, and separate samples by 

species and timepoint. (a) Principal coordinates analysis (PCoA) plot of mice, H-mice and twins 

using denoised sequence data and unweighted UniFrac (left), or Euclidean distances (right).  

The axes are PC1 (principal coordinate 1), PC2, and time in days. Human and mouse fecal 

samples were added at the end of the time series, to observe whether the stabilized H-mice 

communities were more similar to human twins or mice. The time series is shown as a rainbow 

color gradient from red (earliest time points) to cyan (latest time points); these contrast with the 

clear clusters of human (dark blue), mice (light and dark purple for the two studies), human fecal 

community 16S rRNA V6 reads (grey, rather than V2 reads). Note that the separation between 

communities correlated with the time series by UniFrac is lost when Euclidean distance is 

applied in the right panel: this result underscores the power of phylogenetic methods. (b) 

Histograms of unweighted UniFrac distances between the fecal microbiota of adult human 

twins, and Day 0 post-transplant H-mice on a low-fat/plant polysaccaride-rich diet (LF and PP) 

diet; Day 1 H-mice (LF and PP diet); Day 56 H-mice (LF and PP diet); human donor for the H-

mice study; and human twins (i.e., within category distances), all using the denoised sequence 

data. The histogram plots the distribution of UniFrac distances for a given comparison: smaller 

distances indicate groups of samples that are on average more similar as shown by branch 

length in a phylogenetic tree. Only a subset of the H-mice time-points are included in Fig. 1b to 

facilitate non-interactive visualization: in the interactive results, more timepoints can be 

examined easily. The colors match the colors of the relevant samples in Fig. 1a, and pie charts 

(colors shown in pie chart legend) summarize the taxa in those sets of samples (not the 

differences between those samples and the starting point). The pie charts associated with each 

group reinforce the convergence of community configuration in gnotobiotic mouse recipients of 

the human donor's fecal microbiota towards the donor's community as a function of time after 
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colonization: note that the transplanted community begins with a configuration that is very 

different from that of both humans or conventionally-raised (CONV-R) mice. The series of 

histograms demonstrates that the successive timepoints diverge from the starting point after 

transplantation. (c) Alpha diversity rarefaction plots of Phylogenetic Diversity for the H-mice 

samples (Day 0 through Day 56 on LF and PP diet). Raw sequence data (left) is compared to 

denoised sequence data (right). Note that the raw sequence data has far more diversity (as 

represented by branch length on the tree) than the denoised sequence data, but the relative 

amounts of diversity and hence the conclusions are unchanged. Colors for the groups are the 

same as in the other panels: means and standard deviations of the rarefaction curves for 

individual samples in each group are shown. (d) Connectivity of H-mice time series data (Day 0 

through Day 56 on LF and PP diet) using an OTU network, where lines connect the categories 

(or samples from the same time point and diet; top) and OTUs (bottom). This is a static 

representation of an interactive display in Cytoscape that allows exploration of which OTUs are 

in which groups of samples, and identification of OTUs that explain similarities and differences 

among samples. 
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