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developed methods, which perform chimera filtering as a separate 
step, if at all. UPARSE-OTU is essential for the dramatic improve-
ment in accuracy achieved by the pipeline. Unlike QIIME10, 
mothur9 and AmpliconNoise6, UPARSE does not require  
technology- or gene-specific parameters (such as an OTU size 
cutoff), algorithms (such as flowgram denoising) or data (such as 
a curated multiple alignment), which makes it highly robust with 
respect to variations in the input data and suggests that UPARSE 
could be successfully applied to a wide range of marker genes and  
sequencing technologies.

Definitive assessment of OTU accuracy is not possible because 
the definition of an OTU for a given experiment is left to the inves-
tigator11. Here I assessed the accuracy of an OTU by comparing 
its representative sequence to the closest true biological sequence, 
considering incorrect or missing bases in the OTU sequence to 
be errors. I classified OTU sequences as ‘Perfect’ (identical to the 
biological sequence), ‘Good’ ( 1% errors), ‘Noisy’ (>1% to 3% 
errors), ‘Chimeric’ (>3% errors and chimeric with high confi-
dence), ‘Contaminant’ (high-identity match to a species not in 
the targeted community) or ‘Other’ (>3% errors or a biological 
sequence missing from the reference databases). Although these 
categories are somewhat arbitrary, it is reasonable to regard a 
method that produces mostly Perfect and Good OTUs as having 
higher specificity than one that produces many Chimeric and 
Other OTUs. If the sensitivity of the method is also comparable to 
or better than that of other methods, then it is reasonable to regard 
that method as more accurate. I defined sensitivity as the number 
of detectable species that are assigned to OTUs, and a detectable 
species as one having at least one read with 3% errors.

To assess performance using the 16S gene, I used two mock 
communities (‘Even’ and ‘Staggered’) derived from one set of 21 
microbial strains12, obtaining reads from two technical replicates 
sequenced on Illumina MiSeq3 and three on 454 GS FLX Titanium 
(Roche)13 for each community (Supplementary Note 1).  
Several species were absent or represented by only one or a few 
reads, especially in the Staggered community, thus making it rea-
sonable to expect <21 OTUs. I also tested UPARSE on the internal 
transcribed spacer (ITS) region in two fungal mock communi-
ties14 (Supplementary Note 1).

I compared results from UPARSE on the 16S mock communities 
with those obtained using QIIME, mothur and AmpliconNoise 
(Fig. 1 and Supplementary Note 1). In all 16S mock data sets, a 
large majority of UPARSE OTUs were classified as Perfect, Good 
or Contaminant, which suggests that they are accurate recon-
structions of biological sequences. By contrast, from 41 to 71% 
of mothur OTUs and 23 to 67% of QIIME OTUs were Chimeric. 
QIIME reported many more OTUs than did UPARSE or mothur 
on pyrosequenced data sets, with OTUs ranging from 1,900 to 
3,647 (see also Supplementary Note 1). With AmpliconNoise, 
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Amplified marker-gene sequences can be used to understand 
microbial community structure, but they suffer from a high 
level of sequencing and amplification artifacts. The UPARSE 
pipeline reports operational taxonomic unit (OTU) sequences 
with 1% incorrect bases in artificial microbial community 
tests, compared with >3% incorrect bases commonly reported 
by other methods. The improved accuracy results in far fewer 
OTUs, consistently closer to the expected number of species in 
a community.

A number of recent large-scale studies have taken advantage of 
next-generation sequencing to characterize microbial commu-
nity structure and function, including the Human Microbiome 
Project (HMP)1 and a survey of the Arabidopsis thaliana root 
microbiome2. Many of these projects assess community structure 
by sequencing amplified markers, such as the 16S ribosomal RNA 
gene, which are organized into OTUs: groups of sequences that 
are intended to correspond to taxonomic clades or monophyletic 
groups. Yet data analysis in this type of study is hampered by 
ubiquitous artifacts introduced by amplification and sequencing. 
Current techniques for reducing artifacts include quality filter-
ing of reads3, denoising of flowgrams4–6, chimera filtering6,7 and 
clustering8, but many biases and spurious OTUs due to unfiltered 
artifacts often remain, confounding inferences of community 
structure and function9. A large fraction of OTU representative 
sequences produced by recommended procedures with commonly 
used metagenomic sequence analysis pipelines6,9,10 on artificial 
(‘mock’) communities of known composition have <97% identity 
with true biological sequences, a divergence generally considered 
sufficient to infer a new species8, and the number of OTUs often 
far exceeds the number of expected species.

I have developed a pipeline (UPARSE, http://drive5.com/uparse/  
and Supplementary Software) for constructing OTUs de novo 
from next-generation reads that achieves high accuracy in bio-
logical sequence recovery and improves richness estimates on 
mock communities. UPARSE works by quality-filtering reads, 
trimming them to a fixed length, optionally discarding singleton 
reads and then clustering the remaining reads. Clustering uses 
UPARSE-OTU, a novel ‘greedy’ algorithm that performs chimera 
filtering and OTU clustering simultaneously—unlike previously 
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from 15 to 64% of OTUs were Chimeric. On the fungal ITS com-
munities, QIIME again produced large numbers of OTUs, none 
of which was within 3% of a known biological sequence, whereas 
UPARSE successfully reconstructed many of the expected species 
and many contaminants, though results on these data sets are 
harder to interpret (Supplementary Note 1).

The much closer agreement between the number of OTUs 
and the number of mock species (plus detected contami-
nants) achieved by UPARSE (Fig. 1c) suggests that UPARSE 
OTUs approach a 1:1 correspondence with species sampled  
in situ. This is difficult to establish with certainty, even on mock  
samples, because additional undetected contaminants cannot be 
ruled out, and generalizing from mock to real communities—
which may have greater diversity—demands caution. UPARSE 
discards singletons by default, which may reduce sensitivity by 
eliminating a few rare taxa, especially for samples with low read 
coverage. However, even if singletons are retained, some of the 
true diversity will probably still be lost owing to primer mis-
matches or abundance below the minimum required for detec-
tion. Even if all taxa are believed to be present in the sequence 
data, it is not clear that a reliable estimate of species richness is 
possible with a pipeline that retains singletons but generates many 
spurious OTUs. This is especially problematic if the frequency 

of spurious OTUs depends on the number of reads per sample, 
community structure, chimera formation rates and sequencing 
protocol, which are real possibilities that undermine generaliza-
tions from mock-community results. Spurious OTUs are greatly 
reduced by UPARSE, a result suggesting that more robust esti-
mates of richness and diversity are possible.

To assess performance on biological samples collected in situ, 
I randomly selected a set of body-site samples from the HMP 
that were sequenced using 454 (Supplementary Note 1). I clas-
sified an OTU as ‘Named’ if its representative sequence had a 
global alignment with at least 97% identity to a sequence in the 
Greengenes Named Isolate database15, Chimeric if it was classified 
as a chimera by UCHIME7 using the Chimera Slayer reference  
database12 or as Other (Fig. 2). These samples had a relatively 
small number of reads (from 394 to 5,937), so the artifact fre-
quency as a fraction of unique read sequences was expected to 
be lower than that in the mock communities (Supplementary 
Note 2). A low artifact frequency implies that pipelines with poor 
artifact filtering should perform relatively well and that many of 
the classifications of OTUs as Other were probably due to species 
being unrepresented in the Greengenes Named Isolate database 
rather than unfiltered artifacts.

As expected, default QIIME had the largest fraction of chimeric 
OTUs and the largest overall number of OTUs, as this pipeline 
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Figure 1 | Results on 16S mock communities. (a) Pie charts constructed 
by averaging the fraction of OTUs in each category over all data sets  
from 454 sequencing and for the AllF data set for Illumina (AllF,  
all forward reads; data sets described in Supplementary Note 1).  
(b,c) Sensitivity (b) and number of species (c) per OTU for the 454 data 
sets. For Illumina, UPARSE OTUs have 0.95 species per OTU averaged over 
data sets Even1m to Stag3m, whereas QIIME has 0.1 species per OTU on 
the AllF set (not shown). For 454, the QIIME species per OTU values are 
too small to be visible, ranging from 0.005 (Stag2P) to 0.014 (Stag1P). 
AN, AmpliconNoise. Even (E) and Staggered (S) mock communities in b,c 
are analyzed by run number (1–3).
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Figure 2 | Results on Human Microbiome Project (HMP) data sets.  
(a) Average number of reads per sample for the site and the average 
number of OTUs per sample obtained with each method. Samples 
are sorted in order of increasing number of UPARSE OTUs. Peaks and 
valleys for other methods therefore indicate cases in which there is a 
disagreement in the trend in relative diversity measured as the number 
of OTUs. (b) Average fraction of OTUs in three categories: named 
(within 3% of a sequence in the Greengenes Named Isolate database), 
chimeric (according to UCHIME) and other. Methods are UPARSE (default 
parameters), UPARSE+1 (singletons not discarded), QIIME (defaults), 
QIIME+ch (with chimera filtering) and mothur (recommended HMP 
pipeline). AmpliconNoise was not assessed on these samples owing 
to technical difficulties running the software. MidVagina, mid-vagina; 
IntVagina, vaginal introitus; SupPlaque, supragingival plaque; SubPlaque, 
subgingival plaque.
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has no artifact filtering. Default QIIME also had the strongest  
correlation between number of OTUs and number of reads  
(Pearson correlation coefficient r = 0.76, compared to default 
UPARSE with lowest r = 0.42), supporting the hypothesis that 
the number of OTUs tends to increase with the number of reads 
because of artifacts rather than correctly detected species. All 
methods except default UPARSE agreed closely with the number 
of OTUs for the ‘Elbow’ site, which has the smallest number of 
reads. Here, the sensitivity of UPARSE was probably reduced 
by the discarding of singleton reads that are accurate biological 
sequences. These results are consistent with the expectation that 
the artifact frequency (as a fraction of unique read sequences) 
increases with the total number of reads and that UPARSE pro-
duces estimates of diversity that are more robust to changes in 
read depth than are estimates of other pipelines. UPARSE+1 
results (in which singletons are retained) agreed closely with 
mothur on OTU number for most samples, probably reflecting 
similar numbers of unfiltered artifacts due to singletons.

Overall, these results show that UPARSE achieves a substantial 
improvement in OTU construction over current methods. The 
same UPARSE pipeline was consistently able to recover biological 
sequences from mock communities given three different types of 
reads (454, Illumina unpaired and Illumina paired), a range from 
10,000 to >2 million raw reads, and two distinct sequence regions 
(16S and ITS). UPARSE recovered almost all detectable species 
with sensitivity sufficient to detect several contaminants. Notably, 
I did not use parameter tuning, post hoc cutoffs or technology-
specific algorithms such as flowgram denoising, and I found that 
computational resource requirements were substantially reduced, 
especially compared to pipelines that use flowgram denoising 
(Supplementary Note 3).

UPARSE generated OTUs that were perfect reconstructions of 
sequences representing known species in some samples and that 
were mostly correct or very close to a known biological sequence 
in others, though a few chimeras and unclassified sequences 
remained. In practice, more chimeras and more correct sequences 
could be detected by using a reference database, whereas this work 

focused exclusively on de novo methods (pre-existing databases 
were used exclusively for assessment).

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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16S mock-community data. I analyzed 454 reads using mothur 
following the recommended procedure9 at http://www.mothur.
org/wiki/Schloss_SOP (downloaded 24 October 2012) and using 
AmpliconNoise v.1.29 with default parameters at the 0.03 distance 
cutoff. I did not use mothur for Illumina reads because there was 
no recommended procedure at the time this work was performed 
(October 2012). AmpliconNoise is designed specifically for pyro-
sequencing reads, so it could not be applied to the Illumina reads. 
I created QIIME OTUs using a recently recommended procedure 
for Illumina3 and commands recommended by the QIIME devel-
opers for 454 (J.G. Caporaso, Northern Arizona University, per-
sonal communication). See Supplementary Note 3 for software 
versions and commands.

UPARSE pipeline. The UPARSE workflow includes merging of 
paired reads, if applicable; read quality filtering; length trimming; 
merging of identical reads (dereplication); optionally discarding 
singleton reads; and OTU clustering using the UPARSE-OTU 
algorithm. These steps are described in more detail below.

Step 1: merging of paired reads. I merged overlapping paired 
reads using a method similar to PANDAseq16. Pairs with mis-
matches in the overlap were optionally discarded. In the over-
lapped region, I calculated the most probable base call and 
combined Phred score (Q) by calculating the posterior probabil-
ity of each base according to the corresponding position in the 
forward and reverse reads. I imposed a minimum Q score of 3, 
truncating one or both reads if necessary. The result of merging 
was a FASTQ file, which was filtered in step 2.

Step 2: read quality filtering. I performed quality filtering of 
reads in FASTQ format by imposing a minimum Phred score Qmin 
for all bases in the read, i.e., by truncating at the first base with  
Q < Qmin. By default, Qmin was 16 (see Supplementary Note 3).

Step 3: length trimming. Step 2 produced reads with variable 
lengths, which can lead to problems due to terminal gaps in 
alignments. For example, dereplication (merging of identical 
sequences) is ambiguous when one read ‘A’ is an exact match to 
the prefix of a longer read ‘B’. If A and B are merged, then the 
unmatched suffix of B should have lower confidence because its 
sequence is supported by fewer reads, but this information is lost. 
If A and B are not merged, then the information that B supports A 
is lost. Similar issues arise when clustering at a lower identity for 
generating OTUs. I avoided these problems by truncating reads 
at a fixed length (L), discarding reads that were shorter. I used 
the following values: 454 L = 250, Illumina forward and merged  
L = 250 and reverse L = 200 (Supplementary Note 3).

Step 4: dereplication. I identified the set of unique read sequences 
and recorded the number of occurrences (abundance) for  
each sequence.

Step 5: discarding singletons. In typical data sets, a large major-
ity of unique read sequences are singletons, most of which are 
expected to have at least one error. Most such singletons can 
be discarded without loss of sensitivity, as the correct sequence 
will also be present. A small fraction typically has >3% errors, 
and these can induce a large number of spurious OTUs. I there-
fore generally recommend discarding all singletons in order to 
improve specificity at the cost of a small possible loss in sen-
sitivity due to discarding a few good singletons that are the 
only representatives of their taxa. Singletons can be retained if 

they match a reference database or for later clustering with new 
reads that may contain additional representatives of their taxa  
(Supplementary Note 2).

Step 6: OTU clustering. UPARSE-OTU is a greedy clustering 
method that uses a single representative sequence to define each 
cluster (OTU), using the following algorithm. A database of OTU 
sequences is initially empty. Unique read sequences are considered 
in order of decreasing abundance, motivated by the expectation 
that more abundant reads are more likely to be correct amplicon 
sequences6–8. If the read matches an existing OTU within the 
identify threshold (default 97%), the OTU abundance is updated 
but the database is otherwise unchanged. Otherwise, a model of 
the read is constructed by the UPARSE-REF algorithm (below) 
using the current OTU database as a reference. If the model is 
chimeric, the read is discarded; otherwise, the read is added to 
the database and thus becomes the representative sequence for 
a new OTU.

UPARSE-REF algorithm. Given a reference database D of 
sequences in the sample that is assumed to be complete and 
correct, UPARSE-REF infers errors in a sequence using parsi-
mony. Similar algorithms have previously been used to validate 
AmpliconNoise and to find candidate parents in Chimera Slayer12. 
UPARSE-REF was used (i) for identifying errors in mock- 
community reads using a database containing biological sequences 
in the sample (for validation, not for OTU construction) and  
(ii) as a subroutine in UPARSE-OTU, where a database of OTUs 
was constructed de novo from the reads. The goal of UPARSE-
REF is to derive a given sequence S with the fewest possible events 
starting from D. Here, events are mutations that arise from PCR or 
sequencing errors. This is done by constructing a model sequence 
M using one or more sequences from the database (‘refseqs’). 
Typically, M is a single refseq representing a nonchimeric ampli-
con. Otherwise, M is made from m refseq segments that are con-
catenated to represent a chimeric amplicon. If M has one segment, 
i.e., is a single refseq, then the distance between M and S is defined 
to be the number of mismatches d(S, M). These differences are 
interpreted as sequencer or PCR errors. For modeling chimera 
formation, crossover points may be introduced. If there are m seg-
ments, there are (m – 1) crossover events, and the total distance 
between S and M is then

Φ ( , ) ( , ) ( )S M d S M m 1

When there are insertions or deletions (indels), d(S, M) counts 
each gap in the pairwise alignment of S and M as one additional 
difference. Gaps are assumed to arise from an incorrect number of 
bases in the read or an indel mutation during PCR. The score  is 
thus the total number of base changes, indels and chimeric cross-
overs needed to explain how S was obtained from sequences in  
D via amplification and sequencing according to a given model M.  
Finding an optimal model, i.e., an M that minimizes , thus gives 
the most parsimonious explanation of S. UPARSE-REF finds 
an optimal M using dynamic programming, as follows. First,  
S is aligned to each refseq using the textbook Needleman-Wunsch 
algorithm, giving N pairwise alignments. Assuming no gaps, then 
for position j in S, let djk be 0 or 1 to indicate whether there is a 
difference with refseq k in its pairwise alignment at that position 
(0 = match, 1 = mismatch). Let jk be the score of the best model 

(1)(1)
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of  S1...j that terminates at the column containing position Sj in the 
alignment of S with refseq k. Then

Φ Φj k k N jk j kmin d k k1 1 1, ... ,{ ( )}1

Here, 1(x) is 1 if x is true or 0 if x is false. One may account for 
gaps by considering them to be differences in the next ungapped 
column, so with gaps djk is 1(mismatch) + (number of gaps imme-
diately preceding j). This definition ensures that  counts both 
gaps and mismatches as differences between M and S. The recur-
sion relation (equation (2)) is used to minimize  by dynamic 
programming. The model sequence M, number of segments m 
and number of simple differences d are recovered by trace-back 
through the dynamic programming matrix jk. M is interpreted 
as the most parsimonious explanation of S given D.

OTU assessment on mock communities. An OTU representative 
sequence S for a mock community was assessed by comparison 
with the reference database (D) containing its known biological 
sequences. I aligned S to every database sequence and determined 
the highest pairwise identity (V). If V = 100%, I classified S is as 
Perfect; if 100% > V  99%, S was Good; or if 99% > V  97%,  
S was Noisy. If V < 97% and UCHIME or UPARSE-REF reported S 
as chimeric by comparison with D, then I classified S as Chimeric, 
noting that some Good and Noisy sequences may be also be chi-
meras but that these would be less likely to disrupt downstream 
analysis. In the case of UPARSE-REF, a high false positive rate is 
expected with default parameters (Supplementary Note 3). When 
I used UPARSE-REF in assessment, I reduced false positives by 
setting more stringent parameters: (i) I assigned a breakpoint 
penalty of 3, giving a higher weight to this event vs. the default of 
1 corresponding to unweighted parsimony, and (ii) the model was 
required to be 1% different from S because with higher diver-
gences, parsimony is expected to be less reliable because alter-
native explanations become more likely. If S was not Chimeric 
and V < 95%, then I searched S against the NCBI Nucleotide 
collection (nt) database17 using MEGABLAST. If I found a hit 
with identity 98% covering 98% of S, then I classified S as a 
Contaminant. I required V to be <95% rather than <97% for a 
contaminant because I found that with a 97% threshold, OTUs 
derived from mock species with 3–4% errors often had matches 
to nt, whereas with V < 95%, these false positive identifications 
were greatly reduced. If none of the above categories applied, then 
I classified S as Other. A sequence classified as Other might be a 
correct novel biological sequence missing from the reference data-
bases but is more likely to be a mock-community sequence with 

(2)(2)

>3% errors. There is thus some uncertainty in the Chimera and 
Contaminant classifications and in the interpretation of Others 
(Supplementary Note 1). Therefore, the Chimeric, Contaminant 
and Other categories should be regarded as indicating meaningful 
trends only if large differences are observed between pipelines, but 
they should not be considered definitive for individual sequences 
or used for ranking pipelines if differences are minor.

Sensitivity on mock communities. It is difficult to assess sensi-
tivity because contaminants cannot be fully accounted for. I took 
the approach of determining how many of the designed species 
in the mock community were represented in the OTUs. Because 
some of those species were present in only one or very few of 
the 454 reads (Supplementary Note 1), this number provided a 
reasonable indication of sensitivity. In the case of Illumina data 
sets, the minimum species abundance was 11 reads, so these data 
did not provide a good sensitivity test. I constructed global pair-
wise alignments for all OTUs with all reference sequences for the 
designed mock-community species, considering a species having 
at least one reference sequence aligning to at least one OTU with 
a pairwise identity 97% to be found, and I defined sensitivity as 
the total number of species found in the OTUs.

Species per OTU on mock communities. Attempting to measure 
specificity raises the additional complication that the intended or 
expected taxonomic scope of an OTU is typically not specified, 
so, for example, a pipeline might generate OTUs approximately 
corresponding to species, genera or a mix of different taxonomic 
levels. Any monophyletic group might reasonably be considered 
a valid OTU. Bearing in mind that no measure can be defini-
tive, I used the ratio of detected species to the number of OTUs 
as a proxy for specificity, assuming (i) a method that produces 
approximately one OTU per species is desirable in some appli-
cations, and (ii) methods that produce a consistent number of 
OTUs per species will produce more stable estimates of species 
richness. As most methods produce many OTUs per species,  
I used the inverse ratio, i.e., number of species divided by number 
of  OTUs, to produce a measure that usually falls in the range 0–1. 
I estimated the total number of detected species as the sum of the 
number of mock species found (as defined for sensitivity above) 
plus the number of OTUs classified as Contaminant.

16. Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G. &  
Neufeld, J.D. BMC Bioinformatics 13, 31 (2012).

17. Sayers, E.W. et al. Nucleic Acids Res. 40, D13–D25 (2012).
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