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SN1.1 Most QIIME OTUs are spurious. 

The number of OTUs reported by QIIME on the 454 reads ranges from 1,247 (Stag1P) to 

3,647 (Stag2P) (see Table SN1.4), many more than would be expected on a mock 

community with 21 species. This is consistent with the findings of Bokulich et al.1, who 

obtained large numbers of OTUs in a preliminary QIIME analysis of the MiSeq reads, 

reducing the number to 206 only after applying a post-hoc OTU size cutoff (their 

"secondary filtration" parameter c). The lack of chimera filtering is a significant problem, as 

chimeras comprise an estimated 25% to 67% of the QIIME OTUs (Table SN1.4). To 

investigate further, I compared OTU sequences to the mock community reference database 

over a sliding window of 150nt. Results for Even1P are shown in Fig. SN1.1, similar results 

were seen on the other sets. Each window was separately aligned to the reference database 

to find the best match in order to suppress reduced identities due to chimeric crossovers. 

This shows that most QIIME OTUs have high identity (mean 98%) with the reference 

database at the beginning of the sequence, falling to lower identities towards the end of the 

sequence (mean 87% in the window for positions 400-550). This shows that the large 

number of OTUs is primarily due to high read error rates, especially towards the end of the 

sequence, as quality tends to drop as the position increases (Fig. SN1.1, lower plot, see also 

Fig. SN3.1).  

 

To investigate whether these problems can be mitigated by improved quality and chimera 

filtering, I ran the QIIME pick_otus.py script on the quality filtered and trimmed reads 

produced by UPARSE, both with and without a preprocessing step using UCHIME de novo2 

to filter chimeras. Results are shown in Table SN1.5, which demonstrate that UPARSE 

quality filtering and trimming and chimera filtering with UCHIME de novo followed by 

pick_otus.py gave results comparable with mothur, with between 41 and 213 OTUs per 

sample of which approximately half are chimeric. 

SN1.2 Results on fugal mock communities. 

Two fungal mock communities (here called Even and Staggered) based on 11 species were 

created by Ihrmark et al.6 and sequenced by 454 GS FLX Titanium. Reads for three primers 

designated ITS1f, gITS7 and fITS9 were obtained from the NCBI Short Read Archive 
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(accession SRA052087) and a reference database was created using the Genbank 

sequences specified in Irhmark et al.'s Table 3. 

 

Results for UPARSE and QIIME are summarized in Table SN1.3. In this case, I used the 

QIIME defaults except that UCHIME de novo was used to filter chimeras before clustering as 

this is a reasonable strategy that might be followed by a knowledgeable user of QIIME. 

Comparison with mothur was not possible because it requires a reference multiple 

alignment, and none is provided for the ITS region. I encountered technical difficulties with 

AmpliconNoise on these datasets which were not resolved by the submission deadline. 

 

QIIME created from 298 to 1,863 OTUs, none of which had similarity ≥97% with a known 

biological sequence. 

 

UPARSE created from 30 to 167 OTUs. Sensitivity to detectable species (i.e., species with at 

least one read having 3% or fewer errors) ranges from 50% on Stag3.ITS1f to 100% on 

Even.gITS7. The low sensitivity on Stag3.ITS1f is explained by the fact that there are only 

four detectable species from the designed community, two of which were not recovered 

due to very low coverage: Rhizina undulata (present in two singleton reads) and Fusarium 

poae (one singleton read).  

 

A large fraction of the UPARSE OTUs are classified as Contaminant or Other. This is at least 

partly explained by the experimental procedures used to create the community (Björn 

Lindahl, personal communication), which unfortunately complicate interpretation of the 

results. Many of the community species were obtained from field-collected fruit bodies, so 

some contaminants were expected due to fungal material (e.g., spores) from other species 

in the environment. Manual analysis of selected OTUs classified as Other align well to 

known fungi in the conserved 28S and 5.8S regions, suggesting that they are due to novel 

species rather unfiltered errors or chimeras, though this cannot be established definitively 

(Björn Lindahl, personal communication). If the Other OTUs are assumed to be novel 

contaminants, then the results are consistent with high accuracy for UPARSE on these 

datasets. 
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SN1.3 UPARSE detection of chimeras with >2 segments. 

Table SN1.6 summarizes chimeras with >2 segments reported by UPARSE-REF in the 

mothur and AmpliconNoise OTUs by comparison with the mock community reference 

database. See Fig.  SN1.2 for an example alignment. 

 

UPARSE-REF is not designed to maximize chimera detection accuracy as it has been 

defined previously in the literature. With the parameters used in UPARSE-OTU, any 

chimeric model is enough to cause a read to be discarded, regardless of how many 

differences are implied. This design probably results in many more false positives by the 

standards of previous benchmarks, but regardless UPARSE is able to generate highly 

accurate OTUs without a large cost in sensitivity. To resolve the apparent paradox, consider 

the characteristics desired of a chimera detection method in the context of OTU 

construction compared to the typical bioinformatics goal of achieving a compromise 

between high sensitivity and high specificity. The benchmarking methods introduced by 

Haas et al.3 and further developed by Edgar et al.2 (mea culpa) strongly emphasized 

sensitivity to low-divergence chimeras, defined as chimeras formed from parents with high 

similarity, and rigorous suppression of false positives, defined as any biological sequence 

classified as chimeric by comparison with large databases of other known biological 

sequences. However, if the parents of a 2-segment chimera are highly similar having, say, 

97% identity, then the chimera must be <3% diverged from its closest parent (C) because 

at least half of the sequence must be identical to C. Such a chimera will usually be merged 

into the OTU for C, in which case it would be harmless if not detected by a chimera filtering 

stage in a pipeline. Similarly, false positives are harmless if they are reads with errors that 

produce a weak chimeric signal that is less than 3% different from an existing OTU, and 

some false positives due to genuinely novel biological sequences are tolerable if this 

enables us to achieve a large reduction in the OTU error rate. For our purposes here, it is 

more important to minimize false negatives with high divergence ≥3% from the closest 

parent sequence as those are the misclassifications that will produce spurious OTUs. 

Sensitivity of, say, 99% sounds good, but it is better to think of it as a 1% false negative 

rate. With millions of reads, a problem of the order of 1% can induce many bad OTUs. Here, 
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achieving acceptably low error rates in the final OTUs is a major challenge. Sensitivity to 

low-abundance biological sequences is unimportant unless spurious OTUs can be 

suppressed to the point where the signal to noise ratio is sufficient to allow robust 

biological inferences in downstream analysis. 

SN1.4 Results with variants of UPARSE. 

Table SN1.9 reports results with variants of UPARSE designed to show the essential 

contribution made by each step in the pipeline. For Illumina, only the recommended "m" 

sets are shown (merged pairs allowing mismatches) in an effort to make the tables smaller 

and more easily comparable; similar results are obtained with unpaired reads. Table 

SN1.9a shows results with the default pipeline for comparison. SN1.9b shows results 

without length trimming. SN1.9c shows results with UCHIME de novo followed by UCLUST7 

used in place of UPARSE-OTU. Chimera-filtered reads were sorted in order of decreasing 

abundance before running UCLUST. SN1.9d shows results if singletons are retained. In all 

cases, accuracy is significantly degraded, with increased numbers of Chimeric and Other 

OTUs. This is particularly striking when singletons are retained: the number of OTUs 

increases from ~20 to between 53 and 1,354, many or most of which are classified as 

Chimeric and Other. The number of Contaminants also increases to as many as 95 

(Stag2m). At first glance, this might appear to support an argument that retaining 

singletons can greatly improve sensitivity to low-abundance species. However, closer 

examination of the MEGABLAST hits calls this conclusion into question. Unlike other 

datasets, where most contaminants are aligned to sequences obtained from isolate species, 

most of the hits are to environmental 16S sequences, which may be artifacts of previous 

experiments, which are reproduced surprisingly often3. This underscores the difficulty of 

reliably identifying contaminants and reminds us that results must be interpreted with 

caution. 
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Figure SN1.1 Local identity of QIIME OTUs correlates with read error rate. 

Mean identity of QIIME Even1P OTUs with the 16S mock community reference database is 
shown computed over a sliding window of length 150nt (upper red line). Bars show the 
standard deviation. The lower line (blue) shows the mean probability that the base call is 
correct as a function of position in the read, as predicted by quality scores in the FASTQ 
records. These results show that most QIIME OTUs are derived from reads of expected 
species in the mock community rather than contaminants. The lack of quality trimming and 
chimera filtering produces large numbers of OTUs that are >3% diverged from the original 
biological sequences. 
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Figure SN1.2. UPARSE-REF alignment of a 3-segment chimera to the reference 

database. 

This figure shows the alignment generated by UPARSE-REF of an AmpliconNoise OTU 
sequence from Even1P to the reference database. The OTU sequence is identical to reads 
FO09O1002JK77H and FO09O1002JW207. The OTU sequence is Rows are A, T and C for 
the three parent sequences (T is also the closest sequence in the reference database), M 
representing the model, which has letters A, T and C indicating the parent segment, + 
showing differences that support the model, and Q showing the query sequence. In rows A, 
T and C, dots indicate a letter that is identical with the query sequence. The alignment 
shows that the model constructed from three segments is identical to the query, while the 
closest reference sequence is 3.3% different. This chimera will therefore create a spurious 
OTU if it is not detected. 
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Table SN1.1 16S mock datasets. 

This table shows details and nomenclature for 16S mock community reads used in this 
study. SRR is the NCBI Short Read Archive accession. Primers gives the primers, Reads the 
number of unfiltered 454 reads, Pairs is the number of unfiltered Illumina read pairs. 
Illumina datasets are from Bokulich et al.1, deposited in the QIIME database8. 

454 datasets 

Run Community SRR Primers Reads 

Even1P Even SRR053818 V3-V5 37,377 

Even2P Even SRR072220 V3-V5 14,779 

Even3P Even SRR072239 V3-V5 13,863 

Stag1P Staggered SRR072221 V3-V5 13,287 

Stag2P Staggered SRR072223 V3-V5 29,050 

Stag3P Staggered SRR072237 V3-V5 8,964 

 

Illumina paired reads 

Replicate Community Primers Pairs 
Even1 Even V4 1,520,374 

Even2 Even V4 1,644,911 

Stag1 Staggered V4 1,857,075 

Stag2 Staggered V4 2,576,656 

 

Illumina datasets 

Sets Description 
Even1F .. Stag2F Forward reads only. 

Even1R .. Stag2R Reverse reads only. 

Even1m .. Stag2m Merged pairs, allowing mismatches. 

Even1x .. Stag2x Merged pairs, disallowing mismatches. 

AllF All forward reads Even1F+Even2F+Stag1F+Stag2F. 
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Table SN1.2. Read abundances per species in 16S mock communities. 

This table gives the number of reads per species for the 16S datasets. A read was assigned 
to a species if it had a global alignment with ≥97% identity to a reference sequence. In the 
case of Illumina (lower table), only forward reads are shown as these have lower error 
rates than reverse reads, and merging of  pairs may lose some pairs that fail to overlap. 
 

454 datasets 
Species Even1P Even2P Even3P Stag1P Stag2P Stag3P 

Streptococcus.mutans 451(4.4%) 62(2.8%) 60(2.8%) 1393(49.0%) 2779(54.7%) 507(67.3%) 

Deinococcus.radiodurans 756(7.3%) 1503(67.2%) 1353(64.1%) 1(0.0%) 4(0.1%) 0 

Staphylococcus.epidermidis 635(6.2%) 103(4.6%) 82(3.9%) 956(33.6%) 1350(26.6%) 129(17.1%) 

Bacteroides.vulgatus 2248(21.9%) 55(2.5%) 96(4.5%) 0 4(0.1%) 1(0.1%) 

Staphylococcus.aureus 1968(19.1%) 64(2.9%) 60(2.8%) 110(3.9%) 173(3.4%) 17(2.3%) 

Acinetobacter.baumannii 1890(18.4%) 101(4.5%) 147(7.0%) 10(0.4%) 34(0.7%) 2(0.3%) 

Propionibacterium.acnes 445(4.3%) 144(6.4%) 112(5.3%) 13(0.5%) 17(0.3%) 1(0.1%) 

Neisseria.meningitidis 560(5.4%) 33(1.5%) 56(2.7%) 9(0.3%) 17(0.3%) 3(0.4%) 

Rhodobacter.sphaeroides 26(0.3%) 22(1.0%) 12(0.6%) 180(6.3%) 364(7.2%) 64(8.5%) 

Clostridium.beijerinckii 364(3.5%) 32(1.4%) 17(0.8%) 37(1.3%) 80(1.6%) 5(0.7%) 

Streptococcus.pneumoniae 345(3.4%) 30(1.3%) 33(1.6%) 0 1(0.0%) 0 

Escherichia.coli 51(0.5%) 6(0.3%) 5(0.2%) 98(3.4%) 178(3.5%) 11(1.5%) 

Streptococcus.agalactiae 119(1.2%) 3(0.1%) 4(0.2%) 21(0.7%) 40(0.8%) 7(0.9%) 

Actinomyces.odontolyticus 61(0.6%) 53(2.4%) 40(1.9%) 0 0 1(0.1%) 

Enterococcus.faecalis 101(1.0%) 11(0.5%) 10(0.5%) 0 0 0 

Pseudomonas.aeruginosa 79(0.8%) 7(0.3%) 6(0.3%) 3(0.1%) 19(0.4%) 2(0.3%) 

Lactobacillus.gasseri 77(0.7%) 3(0.1%) 6(0.3%) 3(0.1%) 0 1(0.1%) 

Bacillus.cereus 62(0.6%) 4(0.2%) 3(0.1%) 8(0.3%) 11(0.2%) 2(0.3%) 

Listeria.monocytogenes 49(0.5%) 0 8(0.4%) 1(0.0%) 2(0.0%) 0 

Methanobrevibacter.smithii  0 0 0 1(0.0%) 4(0.1%) 0 
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Table SN1.3. Results on fungal mock communities. 

With QIIME, all OTUs were classified as "Other". Mothur was not able to process this set 
due the lack of a curated reference multiple alignment, and AmpliconNoise was not 
included owing to unresolved technical difficulties running the software. 

 

UPARSE 

Set Reads OTUs Perfect Good Noisy Chimeric Contaminant Other 

Even.fITS9 1.2x104  42 7 1 0 0 32 2 

Even.gITS7 7.8x104  167 8 3 0 0 99 57 

Even.ITS1f 3.0x104  157 8 1 0 0 111 37 

Stag.fITS9 1.6x104  30 5 0 0 0 17 8 

Stag.gITS7 8.2x104  182 5 3 1 0 130 43 

Stag.ITS1f 8.2x104  86 2 0 0 0 73 11 

 

QIIME 

Set Reads OTUs Perfect Good Noisy Chimeric Contaminant Other 
Even.fITS9 1.2x104  371 0 0 0 0 0 371 

Even.gITS7 7.8x104  1,863 0 0 0 0 0 1,863 

Even.ITS1f 3.0x104  1,159 0 0 0 0 0 1,159 

Stag.fITS9 1.6x104  298 0 0 0 0 0 298 

Stag.gITS7 8.2x104  1,860 0 0 0 0 0 1,860 

Stag.ITS1f 8.2x104  657 0 0 0 0 0 657 
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Table SN1.4. Results on 16S mock datasets. 

Columns are: Set=dataset (see Table S1), OTUs=number of OTUs, Perfect, Good, Noisy, 
Cont[aminant] and Chim[eric] are the numbers of OTUs in each category. See Online 
Methods for definitions of categories. 
 
UPARSE 454 

Set OTUs Perfect Good Noisy Cont. Chim. Other 
Even1P 22 7 13 1 0 1 0 
Even2P 20 14 5 0 1 0 0 
Even3P 19 14 5 0 0 0 0 
Stag1P 16 9 6 0 1 0 0 
Stag2P 20 10 8 1 1 0 0 
Stag3P 12 6 6 0 0 0 0 

 
AmpliconNoise 454 

Set OTUs Perfect Good Noisy Cont. Chim. Other 
Even1P 75 16 4 0 1 48 6 
Even2P 49 18 1 1 2 25 2 
Even3P 54 18 1 1 2 29 3 
Stag1P 26 16 1 2 2 4 1 
Stag2P 40 17 2 0 1 18 2 
Stag3P 28 16 1 0 1 10 0 

 
mothur 454 

Set OTUs Perfect Good Noisy Cont. Chim. Other 
Even1P 141 13 6 9 0 100 13 
Even2P 53 18 0 2 0 28 5 
Even3P 64 16 0 4 0 35 9 
Stag1P 44 12 2 4 0 22 4 
Stag2P 71 14 0 10 0 36 11 
Stag3P 34 13 2 3 0 14 2 

 
QIIME 454 

Set OTUs Perfect Good Noisy Cont. Chim. Other 
Even1P 2518 4 16 9 0 1681 808 
Even2P 2257 3 14 4 0 974 1262 
Even3P 2160 5 11 8 0 900 1236 
Stag1P 1247 6 8 11 0 416 806 
Stag2P 3647 7 9 11 0 963 2657 
Stag3P 1900 2 7 18 0 437 1436 
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UPARSE Illumina 
m=merged paired reads (recommended), x=merged with mismatches excluded, F=forward only, R=reverse only. 

Set OTUs Perfect Good Noisy Chim. Cont. Other 
Even1m 26 20 0 0 0 6 0 
Even2m 25 20 0 0 0 5 0 
Stag1m 26 20 0 0 0 6 0 
Stag2m 

 
24 20 0 0 0 4 0 

Even1x 23 20 0 0 0 3 0 
Even2x 23 20 0 0 0 3 0 
Stag1x 22 19 0 0 0 3 0 
Stag2x 

 
23 19 0 0 0 4 0 

Even1F 15 13 0 1 1 0 0 
Even2F 15 13 0 1 1 0 0 
Stag1F 13 11 0 0 0 2 0 
Stag2F 

 
12 11 0 0 0 1 0 

Even1R 19 19 0 0 0 0 0 
Even2R 19 19 0 0 0 0 0 
Stag1R 15 15 0 0 0 0 0 
Stag2R 18 13 2 0 0 1 2 

 
AllF dataset 
Pooled Illumina dataset with all forward reads. 

Method OTUs Perfect Good Noisy Chime. Cont. Other 
UPARSE 19 17 0 0 0 2 0 

QIIME 206 24 34 31 93 0 24 
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Table SN1.5. 16S 454 mock community results with variants of QIIME. 

This table shows evaluations for OTUs produced by the QIIME pick_otus.py script from 
reads that were quality-filtered by USEARCH. Methods are: UQ, using USEARCH quality-
filtered reads, and Uch+UQ where UCHIME de novo was run on the trimmed reads before 
running pick_otus.py. Columns are: Nr OTUs, number of OTUs, V=100% and V<97% where V 
is identity with the closest reference sequence, and Chimeras gives the number of chimeras 
reported by UPARSE-REF and UCHIME respectively using the mock community reference 
database. 
 

Set Method Nr OTUs V=100% V<97% Chimeras 

Even1P 
UQ 413 3 364 306 / 348 

Uch+UQ 213 8 186 143 / 170 

Even2P 
UQ 193 0 156 148 / 162 

Uch+UQ 84 14 65 60 / 62 

Even3P 
UQ 189 0 150 143 / 158 

Uch+UQ 86 13 65 55 / 62 

Stag1P 
UQ 91 1 65 59 / 65 

Uch+UQ 51 9 34 25 / 32 

Stag2P 
UQ 149 1 106 103 / 111 

Uch+UQ 92 12 65 57 / 65 

Stag3P 
UQ 62 2 39 39 / 43 

Uch+UQ 41 7 23 20 / 22 
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Table SN1.6. Chimeras with >2 segments in mothur and AmpliconNoise OTUs. 

This table shows the number of chimeras with number of segments m>2 found by UPARSE-
REF in the mothur and AmpliconNoise (AN) OTUs using the 16S mock community 
reference database. Here, d is the number of differences (mismatches plus gaps) between 
the OTU sequence and the UPARSE model. If d=0, the chimeric model is identical to the OTU 
so is almost certainly correct, and if d≤3 then the model is probably correct since the 
breakpoint penalty b=3 ensures that the read must have at least 3×(m – 1) more 
differences with the closest parent sequence than with the chimeric model. In a read of 
length 250, a read with a model with m=3 and d=3 must be ~3.5% diverged from the 
closest reference sequence but is only ~1% diverged from the chimeric model, making the 
chimera prediction strongly credible. UCHIME, the most sensitive previously published 
methods, reports less than half of the d≤3 chimeras using the mock community reference 
database (last column), showing the importance of improved chimera filtering. 
 

mothur m=3 m=4 m=5  

 d ≤ 3 d = 0 d ≤ 3 d = 0 d ≤ 3 d = 0 UCHIME 

Even1P 51 26 3 2 1 0 20 

Even2P 10 9 1 1 0 0 3 

Even3P 10 6 1 0 0 0 3 

Stag1P 12 9 1 1 0 0 4 

Stag2P 22 15 1 1 0 0 8 

Stag3P 8 4 0 0 0 0 5 

 

AN m=3 m=4 m=5  

 d ≤ 3 d = 0 d ≤ 3 d = 0 d ≤ 3 d = 0 UCHIME 

Even1P 12 7 2 0 0 0 5 

Even2P 5 2 0 0 0 0 2 

Even3P 4 2 0 0 0 0 1 

Stag1P 1 1 0 0 0 0 0 

Stag2P 6 3 0 0 0 0 2 

Stag3P 2 1 0 0 0 0 0 
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Illumina datasets 

Species Even1F Even2F Stag1F Stag2F 
Staphylococcus.aureus 652811(48.8%) 703126(50.1%) 1154884(69.2%) 1532791(68.1%) 

Acinetobacter.baumannii 290480(21.7%) 264653(18.8%) 15840(0.9%) 22647(1.0%) 

Streptococcus.mutans 18171(1.4%) 19825(1.4%) 129549(7.8%) 183274(8.1%) 

Rhodobacter.sphaeroides 13648(1.0%) 13017(0.9%) 108835(6.5%) 151485(6.7%) 

Methanobrevibacter.smithii 6561(0.5%) 7700(0.5%) 111533(6.7%) 147893(6.6%) 

Deinococcus.radiodurans 81553(6.1%) 101711(7.2%) 975(0.1%) 1433(0.1%) 

Escherichia.coli 8686(0.6%) 9938(0.7%) 63781(3.8%) 95444(4.2%) 

Pseudomonas.aeruginosa 38165(2.9%) 40374(2.9%) 27416(1.6%) 39163(1.7%) 

Clostridium.beijerinckii 31398(2.3%) 34746(2.5%) 26083(1.6%) 35943(1.6%) 

Bacteroides.vulgatus 42576(3.2%) 47736(3.4%) 343(0.0%) 498(0.0%) 

Bacillus.cereus 18322(1.4%) 19591(1.4%) 13911(0.8%) 19965(0.9%) 

Listeria.monocytogenes 31286(2.3%) 34335(2.4%) 1976(0.1%) 3378(0.1%) 

Helicobacter.pylori 31594(2.4%) 33645(2.4%) 2245(0.1%) 3062(0.1%) 

Streptococcus.agalactiae 16218(1.2%) 16004(1.1%) 9807(0.6%) 14066(0.6%) 

Streptococcus.pneumoniae 24206(1.8%) 23107(1.6%) 73(0.0%) 125(0.0%) 

Actinomyces.odontolyticus 14062(1.1%) 15934(1.1%) 87(0.0%) 103(0.0%) 

Enterococcus.faecalis 12380(0.9%) 13642(1.0%) 162(0.0%) 244(0.0%) 

Neisseria.meningitidis 2427(0.2%) 3050(0.2%) 258(0.0%) 367(0.0%) 

Lactobacillus.gasseri 1815(0.1%) 2435(0.2%) 104(0.0%) 198(0.0%) 

Propionibacterium.acnes 127(0.0%) 181(0.0%) 13(0.0%) 11(0.0%) 
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Table SN1.7. 454 pipeline statistics. 

This table shows the number of sequences at each stage in the 454 pipelines. Den. = after 
denoising, -Ch = after chimera filtering, Qual. = after quality filtering, OTUs = number of 
OTUs. The Uch+UQ variant of QIIME was used (see Table SN1.5) as this gave the best 
results; this uses UPARSE quality filtering following by UCHIME de novo before clustering 
by UCLUST. 

  AmpliconNoise mothur QIIME UPARSE 
Set Reads Den. -Ch OTUs Den. -Ch OTUs Qual. -Ch OTUs Qual. OTUs 

Even1P 37,377 851 86 75 3,518 492 141 29,503 3,050 213 29,503 19 

Even2P 14,779 409 55 49 2,166 237 53 9,262 1,780 84 9,262 18 

Even3P 13,863 396 71 54 1,841 250 64 7,092 1,377 86 7,092 16 

Stag1P 13,287 135 36 26 1,401 167 44 7,193 1,311 51 7,193 14 

Stag2P 29,050 236 54 40 2,561 317 71 13,759 2,391 92 13,759 16 

Stag3P 8,964 124 36 28 802 141 34 2,434 541 41 2,434 11 
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Table SN1.8. Illumina pipeline statistics. 

This table shows the number of sequences at each stage in the Illumina pipelines for the 
forward reads. Qual. = reads after quality filtering, OTUs (before c) = number of OTUs 
before size cutoff applied, OTUs (after c) = number of OTUs after size cutoff. For QIIME, all 
samples are pooled into a single set of reads (AllF), following the methodology of Bokulich 
et al.1. 

 

QIIME 

Set Reads Qual OTUs (before c) OTUs (after c) 

AllF 7,599,016 7,179,038 64,228 206 

 

UPARSE 

Set Reads Qual. OTUs 

AllF 7,599,016 7,550,545 19 

Even1F 1,520,374 1,512,253 14 

Even2F 1,644,911 1,634,886 15 

Stag1F 1,857,075 1,845,351 13 

Stag2F 2,576,656 2,558,055 12 
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Table SN1.9. Results with variants of UPARSE. 

Columns are: Set=dataset (see Table S1), OTUs=number of OTUs, Perfect, Good, Noisy, 
Cont[aminant] and Chim[eric] are the numbers of OTUs in each category. See Online 
Methods for definitions of categories and section S7 for discussion. 

 

12a. Defaults. 

Set OTUs Perfect Good Noisy Chim. Cont. Other 
Even1P 19 7 10 1 1 0 0 
Even2P 17 12 4 1 0 0 0 
Even3P 16 12 4 0 0 0 0 
Stag1P 13 7 6 0 0 0 0 
Stag2P 15 9 5 0 0 1 0 
Stag3P 11 6 5 0 0 0 0 
Even1m 25 18 1 1 0 5 0 
Even2m 22 18 1 0 0 3 0 
Stag1m 24 18 1 0 0 4 1 
Stag2m 21 17 1 0 0 3 0 

 

12b. Without length trimming. 

Set OTUs Perfect Good Noisy Chim. Cont. Other 
Even1P 30 7 11 1 4 3 4 
Even2P 25 13 6 0 1 0 5 
Even3P 23 10 5 2 1 1 4 
Stag1P 19 7 4 2 1 1 4 
Stag2P 25 7 4 3 4 3 4 
Stag3P 18 6 5 3 1 2 1 
Even1m 51 21 0 2 0 9 19 
Even2m 54 21 1 1 0 8 23 
Stag1m 66 21 0 0 0 9 36 
Stag2m 156 21 1 20 9 14 91 

 

12c. UCHIME and UCLUST instead of UPARSE-OTU 

Set OTUs Perfect Good Noisy Chim. Cont. Other 
Even1P 69 8 12 10 34 0 5 
Even2P 27 14 4 0 9 0 0 
Even3P 22 13 5 0 4 0 0 
Stag1P 26 9 6 0 11 0 0 
Stag2P 45 9 9 1 25 1 0 
Stag3P 9 5 4 0 0 0 0 
Even1m 162 20 0 1 136 5 0 
Even2m 180 20 0 1 156 3 0 
Stag1m 96 20 0 0 71 4 1 
Stag2m 117 19 0 0 95 3 0 
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12d. Singletons retained 

Set OTUs Perfect Good Noisy Chim. Cont. Other 
Even1P 69 7 12 2 17 7 24 
Even2P 76 13 6 3 15 3 36 
Even3P 91 10 6 4 19 9 43 
Stag1P 53 8 7 4 6 7 21 
Stag2P 87 8 6 8 14 5 46 
Stag3P 49 6 9 5 7 4 18 
Even1m 1008 22 0 137 86 51 712 
Even2m 1164 23 4 158 110 70 799 
Stag1m 968 21 2 115 48 52 730 
Stag2m 1354 21 2 157 72 95 1007 
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Table SN1.10. SRA accessions for HMP datasets  

HMP body site Short name 
L Retroauricular crease Ear 
R Retroauricular crease Ear 
L Antecubital fossa Elbow 
R Antecubital fossa Elbow 
Posterior fornix Fornix 
Attached/Keratinized gingiva Gingiva 
Vaginal introitus IntVagina 
Mid vagina MidVagina 
Buccal mucosa Mouth 
Anterior nares Nostril 
Hard palate Palate 
Saliva Saliva 
Stool Stool 
Subgingival plaque SubPlaque 
Supragingival plaque SupPlaque 
Throat Throat 
Tongue dorsum Tongue 
Palatine Tonsils Tonsils 
 
SRA accession Body site 
SRS013674 Anterior_nares 
SRS013741 Anterior_nares 
SRS017971 Anterior_nares 
SRS021520 Anterior_nares 
SRS022129 Anterior_nares 
SRS023950 Anterior_nares 
SRS013656 Attached/Keratinized_gingiva 
SRS013714 Attached/Keratinized_gingiva 
SRS017953 Attached/Keratinized_gingiva 
SRS021502 Attached/Keratinized_gingiva 
SRS022111 Attached/Keratinized_gingiva 
SRS023932 Attached/Keratinized_gingiva 
SRS013654 Buccal_mucosa 
SRS013711 Buccal_mucosa 
SRS017951 Buccal_mucosa 
SRS021500 Buccal_mucosa 
SRS022109 Buccal_mucosa 
SRS023930 Buccal_mucosa 
SRS013652 Hard_palate 
SRS013708 Hard_palate 
SRS017949 Hard_palate 
SRS021498 Hard_palate 
SRS022107 Hard_palate 
SRS023928 Hard_palate 
SRS013670 L_Antecubital_fossa 
SRS021516 L_Antecubital_fossa 
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SRA accession Body site 
SRS022125 L_Antecubital_fossa 
SRS013666 L_Retroauricular_crease 
SRS013727 L_Retroauricular_crease 
SRS017963 L_Retroauricular_crease 
SRS021512 L_Retroauricular_crease 
SRS022121 L_Retroauricular_crease 
SRS023942 L_Retroauricular_crease 
SRS022133 Mid_vagina 
SRS013658 Palatine_Tonsils 
SRS013717 Palatine_Tonsils 
SRS017955 Palatine_Tonsils 
SRS021504 Palatine_Tonsils 
SRS023934 Palatine_Tonsils 
SRS022135 Posterior_fornix 
SRS013672 R_Antecubital_fossa 
SRS013738 R_Antecubital_fossa 
SRS022127 R_Antecubital_fossa 
SRS023948 R_Antecubital_fossa 
SRS013668 R_Retroauricular_crease 
SRS013732 R_Retroauricular_crease 
SRS017965 R_Retroauricular_crease 
SRS021514 R_Retroauricular_crease 
SRS022123 R_Retroauricular_crease 
SRS023944 R_Retroauricular_crease 
SRS013646 Saliva 
SRS013699 Saliva 
SRS017943 Saliva 
SRS021492 Saliva 
SRS022101 Saliva 
SRS023922 Saliva 
SRS024036 Saliva 
SRS013638 Stool 
SRS013687 Stool 
SRS021484 Stool 
SRS022093 Stool 
SRS023914 Stool 
SRS024028 Stool 
SRS013664 Subgingival_plaque 
SRS013729 Subgingival_plaque 
SRS017961 Subgingival_plaque 
SRS021510 Subgingival_plaque 
SRS022119 Subgingival_plaque 
SRS023940 Subgingival_plaque 
SRS013662 Supragingival_plaque 
SRS013723 Supragingival_plaque 
SRS017959 Supragingival_plaque 
SRS021508 Supragingival_plaque 
SRS022117 Supragingival_plaque 
SRS023938 Supragingival_plaque 
SRS013660 Throat 
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SRA accession Body site 
SRS013720 Throat 
SRS017957 Throat 
SRS021506 Throat 
SRS022115 Throat 
SRS023936 Throat 
SRS013650 Tongue_dorsum 
SRS013705 Tongue_dorsum 
SRS017947 Tongue_dorsum 
SRS021496 Tongue_dorsum 
SRS022105 Tongue_dorsum 
SRS023926 Tongue_dorsum 
SRS022131 Vaginal_introitus 
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Supplementary Note 2. Singletons and errors. 
SN2.1 Discussion of singleton sequences. 

Figure SN2.1. Singleton reads and error clouds. 

Table SN2.1. Singleton statistics for mock and real samples. 

SN2.1 Discussion of singleton sequences 

By definition, a singleton has a sequence found exactly once in the reads. Here, a bad read is 

defined to be a read with at least one error. Bad bases may be due to any experimental 

artifact, including sequencing, chimeras and PCR point errors. 

 

Let P(e) be the probability that a read contains e errors. Consider first a highly simplified 

model where P(0) = 1/2, P(1) = 1/2 and P(e>1) = 0. Suppose a given unique amplicon 

sequence has 100 reads, then this should give ~50 correct reads and ~50 bad reads, each 

with exactly one error. Suppose the read length is 500 and the only possible error is an 

incorrect base call, then there are 500 positions × 3 possible wrong bases = 1,500 possible 

incorrect read sequences. Assuming the errors are randomly distributed, then we expect 

most of the bad reads to be singletons, though per the birthday paradox errors may be 

duplicated by chance more often than one would naively expect. Notice that we have ~50 

unique sequences that are bad, but only one correct sequence. 

 

More realistically and more generally, suppose the following assumptions hold: 

 

(i) P(0) is large enough that a significant fraction of the reads is correct,  

 

(ii)  P(e>0) = 1 – P(0) is large enough that a significant fraction of the reads are bad, 

i.e. have one or more errors, and 

 

(iii) The probability of a given error being reproduced is small. 

 

Under these assumptions, a unique amplicon sequence Q with N reads will produce 

~N P(0) correct reads (i.e., one unique read with abundance ~N P(0)), and ~N P(e>0) 
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singletons having unique errors. There may also be a few bad reads with abundance >1 due 

to duplicated errors, but these are rare by assumption (iii). We can picture the bad reads as 

an "error cloud" composed mostly of singletons surrounding the correct sequence (Fig. 

SN2.1). 

 

Notice that the abundance of the correct sequence and the number of singleton bad reads 

derived from Q are both approximately proportional to N, the total number of reads for Q. 

Therefore, if we increase the number of reads by a factor d, the number of singletons due to 

errors will also increase by a factor of approximately d. 
 
Now suppose that in addition to some high-abundance amplicons, there are some rare 

biological sequences, some of which have exactly one read. For the number of correct or 

nearly correct singletons due to rare amplicons to be comparable with the number of 

singletons due to error clouds, there would have to be a very large number of low-

abundance biological sequences, bearing in mind that the requirement to produce exactly 

one read is very stringent -- many of them would be expected to produce zero or more than 

one read due to variations in abundance, read quality etc.  

 

If we use a sequencing technology with a significant error rate, and we observe some high-

abundance reads and many singletons, then a large fraction of the singletons almost 

certainly belong to the error clouds of high-abundance sequences. (Some of the high-

abundance reads may themselves have errors, e.g. chimeras, but these will also induce 

error clouds). These conclusions follow from the observations and assumptions (i), (ii) and 

(iii), regardless of the possible presence of low-abundance biological sequences. 

 

Table SN2.1 summarizes statistics for singletons and high-abundance reads in the 16S 

mock datasets and some real datasets from the Human Microbiome Project, which show 

that some high-abundance reads and many singletons are indeed observed. As expected, 

singletons are a large fraction of the reads, ranging from 79% to 87% of the unique 

sequences. There are several  read sequences with high abundance; these must have error 

clouds unless P(e>0) is very close to zero, which is contradicted by error probabilities 
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according to Phred scores in the reads and by error rates measured on control 

sequences4,5. Only a tiny minority of the singletons in the mock datasets are classified as 

Perfect, i.e. free of errors. Many are Good, meaning up to 1% errors, but most of these 

probably belong to error clouds for which a correct sequence with abundance > 1 is also 

present, meaning that discarding those Good singletons would not degrade sensitivity. 

Hundreds of other singletons in each sample are Noisy, Chimeric or Other. Chimeric 

sequences would certainly generate spurious OTUs, since by definition they are >3% 

diverged from the closest biological sequence. Many of the Noisy sequences would 

probably generate spurious OTUs, though some will be absorbed into a valid OTU. (While a 

Noisy sequence has ≤3% errors and will therefore be absorbed if its correct sequence is the 

centroid, it may fall outside the OTU otherwise). Most of the Other sequences probably 

have >3% errors (due to sequencing or undetected chimeras) which would also generate 

spurious OTUs, though it cannot be ruled out that a few are valid. The prediction that large 

numbers of spurious OTUs would be produced are supported by UPARSE results when 

singletons are retained (Table SN1.9), where most OTUs are classified as Other and are 

most likely spurious. A real community may have higher diversity than a mock community. 

However, if we sequence a real community and find several high-abundance sequences, 

then it follows from the mock community results that we can expect a comparable large 

number of spurious singletons due to the error clouds of those sequences, regardless of the 

possible presence of more low-abundance biological sequences. 
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Figure SN2.1. Singleton reads and error clouds. 

This figure illustrates features expected under assumptions described in section SN2.1. 

Most unique reads are singletons, and most singletons have at least one error. High-

abundance reads are surrounded by an "error cloud" composed mostly of singletons. The 

number of singletons in a cloud is approximately proportional to the abundance of the 

correct sequence (larger green dots indicate higher abundance). Most singletons have few 

errors and can be absorbed into the OTU for their correct sequence. (In the context of 

UPARSE, this is done in a post-processing step that maps unfiltered reads to OTU 

sequences). The remainder can be classified as "isolated" and "bad" singletons. Isolated 

singletons have ≤3% errors and are the only reads for a given taxon; they would generate 

valid OTUs that will otherwise be missed. Bad singletons have >3% errors and would 

generate spurious OTUs. Both isolated and bad singletons are expected to be small 

fractions of the singletons. While a small improvement in sensitivity may be achieved by 

keeping singletons in order preserve the isolated subset, this may result in an unacceptable 

increase in spurious OTUs due to bad singletons. 
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Table SN2.1. Singleton statistics for mock and real samples. 

Columns are: Set: dataset; Type: sequencer; SRR: SRA accession; Reads: total number of 

reads; Ab>100: number of unique read sequences with abundance > 100; Non-singletons: 

number of non-singleton unique read sequences; Singles: number of singletons; Pct.Sgl.: 

percentage of unique read sequences that are singletons; Good, Noisy, Chimera and Other: 

classifications defined in Online Methods. 
 

Set Ab>100 Non-
singles 

Singles Pct.Sgl. Perfect Good Noisy Chimera Other 

Even1P 36 1,452 5,600 79% 0 1,409 153 834 3,204 

Even2P 17 617 3,628 85% 0 1,549 119 482 1,478 

Even3P 15 526 3,535 87% 4 1,440 112 483 1,496 

Stag1P 9 476 2,370 83% 2 958 65 282 1,063 

Stag2P 15 1,100 4,378 80% 3 1,466 135 571 2,203 

Stag3P 5 254 1,695 87% 1 702 49 186 757 

Even1F 12 2,128 8,113 79% 4 6,553 249 392 915 

Even2F 13 2,157 7,223 77% 4 5,651 305 390 873 

Stag1F 10 2,126 10,081 82% 2 8,201 251 220 1,407 

Stag2F 12 2,928 13,410 82% 6 10,785 350 376 1,893 

 

Set Type SRR Reads Ab>100 Non-
singles 

Singles Pct.Sgl. 

Gingiva 454 SRR041506 4,364 10 119 620 80% 

Mouth 454 SRR041522 4,339 5 201 527 72% 

Stool 454 SRR041491 4,887 19 212 932 81% 

Throat 454 SRR041528 4,444 12 159 653 80% 

Tongue 454 SRR041503 5,217 12 177 731 80% 

Beer Illumina (Bolulich et al. 
set #9). 

2.8 M 616 10,955 46,442 81% 
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Note 3. Software commands, parameters and computational resources. 
SN3.1 Mothur command script. 

SN3.2 QIIME commands for 454 reads. 

SN3.3 UPARSE commands. 

SN3.4 User-settable parameters for UPARSE. 

SN3.5 Computational resources 

Figure SN3.1. Analysis of Even1P 454 reads. 

Table SN3.1. UPARSE command lines. 

Table SN3.2. User-settable parameter values. 
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SN3.1 Mothur command script 

Commands were run with mothur v1.27.0, 64-bit under Linux. The flowgram file reads.sff 

was obtained by the sff-dump.exe utility from the SRA download file. The oligos.txt file 

contained one line specifying the V5 primer: 

 
forward   CCGTCAATTCMTTTRAGT   v35 

 

The script was as follows. 

 
sffinfo(sff=reads.sff, flow=T) 

trim.flows(flow=reads.flow, oligos=oligos.txt, pdiffs=2, bdiffs=1,processors=4) 

shhh.flows(file=reads.flow.files, processors=4) 

trim.seqs(fasta=reads.v35.shhh.fasta, name=reads.v35.shhh.names, oligos=oligos.txt, pdiffs=2, 

bdiffs=1, maxhomop=8, minlength=200, flip=T, processors=4) 

unique.seqs(fasta=reads.v35.shhh.trim.fasta, name=reads.v35.shhh.trim.names) 

align.seqs(fasta=reads.v35.shhh.trim.unique.fasta, reference=silva.bacteria.fasta, processors=4) 

screen.seqs(fasta=reads.v35.shhh.trim.unique.align, name=reads.v35.shhh.trim.unique.names, 

group=reads.v35.shhh.groups, end=27659, optimize=start, criteria=95, processors=4) 

filter.seqs(fasta=reads.v35.shhh.trim.unique.good.align, vertical=T, trump=., processors=4) 

unique.seqs(fasta=reads.v35.shhh.trim.unique.good.filter.fasta, 

name=reads.v35.shhh.trim.unique.good.names) 

pre.cluster(fasta=reads.v35.shhh.trim.unique.good.filter.unique.fasta, 

name=reads.v35.shhh.trim.unique.good.filter.names, group=reads.v35.shhh.good.groups, diffs=2) 

chimera.uchime(fasta=reads.v35.shhh.trim.unique.good.filter.unique.precluster.fasta, 

name=reads.v35.shhh.trim.unique.good.filter.unique.precluster.names, 

group=reads.v35.shhh.good.groups, processors=4) 

remove.seqs(accnos=reads.v35.shhh.trim.unique.good.filter.unique.precluster.uchime.accnos, 

fasta=reads.v35.shhh.trim.unique.good.filter.unique.precluster.fasta, 

name=reads.v35.shhh.trim.unique.good.filter.unique.precluster.names, 

group=reads.v35.shhh.good.groups) 

system(cp reads.v35.shhh.trim.unique.good.filter.unique.precluster.pick.names final.names) 

system(cp reads.v35.shhh.trim.unique.good.filter.unique.precluster.pick.fasta final.fasta) 

dist.seqs(fasta=final.fasta, cutoff=0.15, processors=4) 

cluster(column=final.dist, name=final.names) 

get.oturep(column=final.dist, name=final.names, fasta=final.fasta) 

quit() 

 

SN3.2 QIIME commands for 454 reads 

The QIIME release version was 1.5.0 at the time this work was done (Oct. 2012). This 

version does not support SRA or FASTQ files that lack barcodes. Following the advice of the 
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QIIME developers (J. Gregory Caporaso, personal communication), FASTQ files were 

converted to FASTA using the convert_fastaqual_fastq.py script using the new -c 

fastq_to_fastaqual option from developer version 1.5.0-dev (git commit hash 

4974f0fe84e6aa9e6f41aa65aacf6ad60bcb6576), downloaded from the QIIME github 

repository (http://github.com/qiime/qiime). OTUs were built from the FASTA reads using 

the v1.5.0 pick_otus.py script with default parameters.  

SN3.3 UPARSE commands 

FASTQ quality filtering and the UPARSE algorithm were executed using version 

6.1.351_i86linux32 of the usearch binary distribution. Command lines are given in Table 

S6. 

 

The UPARSE pipeline does not use the previously published algorithms USEARCH, UCLUST 

or UCHIME. 

SN3.4 User-settable parameters for UPARSE. 

UPARSE has only three significant user-settable parameters (minimum Q score, trim length 

and cluster radius) as summarized in Table S6. There are also minor parameters such as 

gap penalties and the alignment substitution matrix that would rarely if ever be set by a 

user. Minimum quality (Qmin) and truncation length (L) were selected by considering charts 

similar to Fig SN3.1; see figure caption for discussion. 

SN3.5 Computational resources. 

All pipelines except AmpliconNoise were executed on a single-CPU, 4-core desktop 

computer (3GHz Intel Xeon). The UPARSE pipeline required < 1Gb RAM to process all 

datasets described here, completing in wall-clock times ranging from a few seconds to five 

minutes. QIIME also required < 1Gb of RAM and completed in times ranging from a few 

minutes for 454 datasets to a few hours for the Illumina datasets. Mothur required 3Gb of 

RAM and completed in times ranging from 30 minutes to two hours per 454 dataset. 

AmpliconNoise required approximately four hours wall-clock time to execute the 454 

datasets on a 48-core server-class computer. 
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Figure SN3.1. Analysis of Even1P 454 reads. 

This figure shows an analysis of 454 reads for the Even1P dataset. The average number of 

expected errors over all reads if truncated at each position was calculated from the Q 

scores (red line, right-hand y axis). Four different quality filters are considered with 

different quality score thresholds (Qmin). The fraction of reads passing each filter if 

truncated each position is shown (left-hand y axis). The truncation length L=250 and 

Qmin=16 values (black dot) were selected as a compromise between stringent quality 

filtering to suppress errors (high Q), keeping as many reads as possible to increase 

sensitivity to low-abundance sequences (small L and low Q), keeping as many positions as 

possible to increase phylogenetic discrimination (large L), truncating in order to discard 

lower-quality regions towards the end of the reads (small L). 
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Table SN3.1. UPARSE command lines. 

This implementation of UPARSE requires FASTQ-formatted reads from which barcodes 

have been stripped.  

 

Step Command line 
Merge paired reads. usearch -fastq_mergepairs forward.fastq \ 

  -reverse reverse.fastq -fastqout merged.fastq 

Merge paired reads allowing no 

differences in the overlap region. 

usearch -fastq_mergepairs forward.fastq \ 

  -reverse reverse.fastq -fastqout merged.fastq \ 

  -fastq_maxdiffs 0 

Quality filtering and length 

truncation. 200 was used in place 

of 250 for reverse reads. 

usearch -fastq_filter reads.fastq -fastaout \ 

 filtered.fasta -fastq_trunqual 15 -fastq_trunclen 250 

Dereplication. usearch -derep_fulllength filtered.fasta \ 

   -output derep.fasta -sizeout 

 

Discard singletons. usearch -sortbysize filtered.fasta  \ 

  -output derep2.fasta -minsize 2 

 

UPARSE-OTU usearch -cluster_otus derep2.fasta -otus otus.fasta 

 

 
  

Nature Methods: doi:10.1038/nmeth.2604



Table SN3.2. User-settable parameter values. 

This table summarizes the major user-settable parameters in the UPARSE pipeline. 

 

Stage Parameter Description 

Quality filtering Qmin Minimum quality score. Default 16. 

 

Length trimming L Fixed length for unpaired reads. Values used: 454 

L=250, Illumina fwd L=250, rev L=200. 

 

UPARSE-OTU dmax OTU "radius". Default 3%. 
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