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Profiling microbial community function from metagenomic and 
metatranscriptomic (‘meta’omic’) sequencing data is a critically 
important challenge in microbial ecology. It has the potential 

to characterize the extensive biochemical ‘dark matter’ observed in 
many communities1, as well as to link specific molecular activities 
to environmental2 and health-associated3 phenotypes. In contrast 
with taxonomic profiling, functional profiling aims to quantify the 
gene and metabolic pathway content contributed by known and 
uncharacterized community members4. While taxonomic profiling 
can be performed on a maximally informative subset of meta’omic 
sequencing reads5,6, comprehensive functional profiling must con-
sider all reads and the vast space of genes from which they might 
derive, thus adding considerable analytical complexity.

Several methods exist for functional profiling of metagenomes7–9, 
a subset of which have been applied to metatranscriptomes10–13. 
These include HUMAnN14, which we developed during the Human 
Microbiome Project (HMP)15 for host-associated and environmen-
tally associated meta’omic functional profiling. Like later methods, 
HUMAnN interprets translated search of meta’omic sequenc-
ing reads to reconstruct metabolic functions. Although existing 
methods benefit from recent advances in translated search16–18, 
they remain considerably slower than nucleotide-level analyses. 
Additionally, while some functional profiling methods incorporate 
taxonomic concepts for database refinement7 or targeted quantifica-
tion9, most are limited to reporting community-level abundances 
rather than per-organism contributions. Similarly, functional pro-
filing lags behind efforts in strain-level analysis of microbial com-
munities19–21, despite a growing appreciation for strain-specific 
functions within species.

We developed HUMAnN2 to integrate taxonomic information 
with functional profiles and to limit the translated search bottleneck 
by incorporating a tiered approach with nucleotide-level search, 

accelerated translated search, and pathway reconstruction compo-
nents. HUMAnN2 exceeds the accuracy and performance of pure 
translated search strategies. Moreover, gene and pathway abun-
dances quantified by HUMAnN2 are automatically stratified into 
contributions from known and uncharacterized species. This pro-
vides previously inaccessible detail in interpreting host-associated 
and environmental community meta’omes.

Results
Algorithm overview. HUMAnN2 implements a ‘tiered search’ 
strategy to quickly and accurately profile the functional content of a 
meta’ome at species-level resolution (Fig. 1a, Supplementary Fig. 1, 
Methods), the results of which can also be used for strain profiling. 
In the first tier, HUMAnN2 rapidly identifies known microbial spe-
cies in a sample by screening DNA or RNA reads with MetaPhlAn2 
(ref. 22). HUMAnN2 then constructs a sample-specific database by 
merging preconstructed, functionally annotated pangenomes of 
the identified species23. In the second tier, HUMAnN2 performs 
nucleotide-level mapping of all sample reads against the sample’s 
pangenome database. Relative to comprehensive translated search, 
nucleotide-level mapping against relevant pangenomes quickly 
explains a large fraction of reads with fewer opportunities for spuri-
ous alignment. In the third and final tier, reads that do not align to 
identified species’ pangenomes are subjected to accelerated trans-
lated search against a comprehensive protein database (by default, 
UniRef90 or UniRef50 (ref. 24)).

The tiered search generates mappings of meta’omic reads to gene 
sequences with known or ambiguous taxonomy. These mappings 
are weighted by quality and sequence length to estimate per-organ-
ism and community-total gene family abundance, which can be 
regrouped to other functional systems (for example, COGs25, KOs26, 
Pfam domains27, and GO terms28). Finally, gene families annotated 

Species-level functional profiling of metagenomes 
and metatranscriptomes
Eric A. Franzosa   1,2,7, Lauren J. McIver1,2,7, Gholamali Rahnavard   1,2, Luke R. Thompson   3, 
Melanie Schirmer   1,2, George Weingart1, Karen Schwarzberg Lipson4, Rob Knight   3,5, 
J. Gregory Caporaso   4, Nicola Segata   6 and Curtis Huttenhower   1,2*

Functional profiles of microbial communities are typically generated using comprehensive metagenomic or metatranscriptomic 
sequence read searches, which are time-consuming, prone to spurious mapping, and often limited to community-level quantifi-
cation. We developed HUMAnN2, a tiered search strategy that enables fast, accurate, and species-resolved functional profiling 
of host-associated and environmental communities. HUMAnN2 identifies a community’s known species, aligns reads to their 
pangenomes, performs translated search on unclassified reads, and finally quantifies gene families and pathways. Relative 
to pure translated search, HUMAnN2 is faster and produces more accurate gene family profiles. We applied HUMAnN2 to 
study clinal variation in marine metabolism, ecological contribution patterns among human microbiome pathways, variation in 
species’ genomic versus transcriptional contributions, and strain profiling. Further, we introduce ‘contributional diversity’ to 
explain patterns of ecological assembly across different microbial community types.

NATuRE METHOdS | www.nature.com/naturemethods

mailto:chuttenh@hsph.harvard.edu
http://orcid.org/0000-0002-8798-7068
http://orcid.org/0000-0002-9710-0248
http://orcid.org/0000-0002-3911-1280
http://orcid.org/0000-0001-6456-3679
http://orcid.org/0000-0002-0975-9019
http://orcid.org/0000-0002-8865-1670
http://orcid.org/0000-0002-1583-5794
http://orcid.org/0000-0002-1110-0096
http://www.nature.com/naturemethods


Articles NAtURe MetHods

to metabolic enzymes are further analyzed to reconstruct and quan-
tify complete metabolic pathways (by default, MetaCyc29) in the 
community and per organism.

Tiered search outperforms pure translated search. We assessed 
HUMAnN2’s accuracy by profiling synthetic metagenomes 
(Methods). We first simulated a human gut metagenome contain-
ing 10 million 100-nucleotide (nt) DNA reads (1 Gnt) drawn from 
the 20 most abundant bacterial species in HMP stool samples15. 
Species’ abundances were geometrically staggered from ~0.1×  to 
~70×  genomic coverage (Fig. 1b) and included nine members of 

genus Bacteroides—both challenges for accurate per-species profil-
ing. We analyzed this synthetic metagenome using HUMAnN2’s 
tiered search and a pure translated search strategy (Supplementary 
Note 1 and Supplementary Fig. 2; parallel analysis of a 100-member, 
non-human-associated community).

For community-level gene family (UniRef90) abundances, the 
sensitivity, precision, and overall accuracy (1 – Bray–Curtis dis-
similarity) of HUMAnN2’s tiered search were 86, 90, and 89%, 
respectively (Fig. 1c). Thus, HUMAnN2 (i) detected most expected 
gene families in the community, (ii) reported only a small propor-
tion of spuriously detected families, and (iii) correctly assigned the 
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Fig. 1 | HuMAnN2 functionally profiles microbial communities with high accuracy using tiered search. a, Overview of HUMAnN2’s tiered search 
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vast majority of reads to their source families. Gene families profiled 
by pure translated search were less accurate (overall accuracy 67%), 
due in part to the greater potential for spurious alignment when 
aligning all sample reads against a comprehensive protein database.

The per-species accuracy of HUMAnN2’s tiered search remained 
high for the 14 species present at 1×  genomic coverage or greater, 
including the nine Bacteroides species. Below 1×  coverage, sensitiv-
ity and overall accuracy dropped off with coverage, as greater num-
bers of gene families were undersampled in that domain. However, 
precision remained consistently high for low-coverage species, 
indicating that their pangenomes did not recruit substantial unre-
lated reads. The small subset of reads (1.4%) that passed into the 
translated search tier and mapped to proteins produced an ‘unclas-
sified’ stratification with a minority contribution to overall error 
(Supplementary Note 2).

Accuracy trends for HUMAnN2’s tiered search were similar 
at the pathway level, with pathway precision generally exceeding 
gene family precision (Fig. 1d). This is due to the greater difficulty 
of spuriously matching a complete pathway, which requires mul-
tiple distinct reactions (gene families) to spuriously recruit reads. 
Simultaneously, HUMAnN2’s requirement of detecting complete 
(or nearly complete) pathways causes sensitivity and overall accu-
racy to decay more rapidly with decreasing coverage. For less-
well-characterized samples, gene-level error inherent to the pure 
translated search strategy tended to be ‘smoothed out’ during path-
way quantification, though pathway profiles from pure translated 
search were still less accurate than those from HUMAnN2’s tiered 
search (87% versus 98%).

HUMAnN2’s tiered search was also 3×  faster than pure trans-
lated search in the synthetic evaluation (runtime < 1 h; Fig. 1e and 
Supplementary Notes 1 and 3). We further benchmarked the per-
formance of tiered search on 397 HMP metagenomes spanning 
six body sites (Supplementary Note 4). In a typical sample, ~60% 
of reads mapped during the pangenome search, and an additional 
~20% mapped during translated search (Supplementary Fig. 3). 
Thus, for well-characterized, real-world metagenomes, HUMAnN2 
explains the majority of sample reads during the fast pangenome 
search, making it considerably more efficient than a pure translated 
search strategy.

Comparison with existing methods. We compared HUMAnN2 
with existing functional profiling methods built upon pure trans-
lated search: HUMAnN1 (ref. 14), COGNIZER10, MEGAN12, and 
ShotMAP13 (Fig. 1e). This comparison was based on estimation 
of community-level clusters of orthologous groups (COGs) abun-
dances, an output format common to all methods (Methods). 
We constructed a custom search database for ShotMAP based on 
UniRef90 and used the other three methods’ recommended data-
bases. We note that these three methods may differ in their systems 
of COG definition relative to our UniProt-based gold standard, 
which could influence their accuracy relative to HUMAnN2 and 
ShotMAP. However, the isolate genomes sampled in these evalua-
tions predate all methods except HUMAnN1, which limits potential 
bias due to database coverage.

Overall accuracy was highest for HUMAnN2’s tiered search 
(97%), followed by HUMAnN2’s pure translated search (83%), 
ShotMAP (72%), HUMAnN1 (59%), MEGAN (56%), and 
COGNIZER (43%). The increased accuracy of HUMAnN2’s pure 
translated search may be attributed to our post hoc alignment fil-
tering and weighting aimed at maximizing specificity (Methods; 
Supplementary Figs. 4 and 5). HUMAnN2’s tiered search pro-
filed the 10-million-read synthetic metagenome in 45 min. This 
was similar to HUMAnN1 using accelerated translated search16 
(42 min), yet HUMAnN2 provides considerably more detailed 
output and considers an ~20×  larger sequence space. HUMAnN2  
was > 3×  faster than all other methods.

Performance on metatranscriptomes and nonreference species. 
We performed extensive additional evaluations of HUMAnN2. 
HUMAnN2 remains accurate and efficient when profiling 
broadly defined gene families (UniRef50; Supplementary Note 3) 
or a synthetic gut metatranscriptome (Supplementary Note 5 and 
Supplementary Fig. 6). Critically, HUMAnN2 performed ably on 
metagenomes containing new isolates of known species as well 
as novel species (with the latter profiled by the translated search 
tier). This was accomplished by profiling a complex (100-member) 
synthetic community while holding out fractions of HUMAnN2’s 
pangenome database to simulate novel species (Supplementary 
Note 1 and Supplementary Fig. 2) and by applying HUMAnN2 and 
other methods to communities of isolate genomes that post-date 
the methods’ databases (Supplementary Note 6 and Supplementary 
Figs. 7–10).

We additionally compared HUMAnN2 with metagenomic 
assembly of synthetic metagenomes (Supplementary Note 7). 
This evaluation expands previous comparisons of assembly and 
reference-based approaches on real-world human metagenomes30, 
which produced very similar rankings of domain-level functional 
diversity. While assembly was advantageous for uncovering novel 
sequence diversity in deeply sequenced human metagenomes, 
HUMAnN2 identified more known domains in metagenomes with 
modest sequencing depths. This advantage follows from the known 
challenge of detecting low-coverage metagenomic sequences by 
assembly31, which was also observed in our synthetic evaluations.

Contributional diversity of core human microbiome pathways. 
HUMAnN2’s tiered search quantifies community-encoded func-
tions and stratifies their abundances according to who performs 
them. These data can be explored in greater detail by applying tra-
ditional within-sample (alpha) and between-sample (beta) com-
munity diversity measures32 to species’ contributions to a specific 
function, defined here as the function’s ‘contributional diversity’ 
(Methods). A function contributed by a single species has low 
within-sample (‘simple’) contributional diversity, while a function 
with many equal contributors has high within-sample (‘complex’) 
contributional diversity. If a function is contributed by the same 
assemblage of species across samples, it has low between-sample 
(‘conserved’) contributional diversity, whereas a function contrib-
uted by different assemblages has high between-sample (‘variable’) 
contributional diversity.

We explored the contributional diversity of human microbiome 
pathways that were core to a body site (nonzero in > 75% of indi-
viduals) and largely explained by known species (< 25% unclassi-
fied in > 75% of individuals) among the 397 HMP metagenomes 
introduced above. (Note that functions with extensive ‘unclassified’ 
abundance could be contributed by one or many different species 
within and across samples, hence their exclusion from this analysis.) 
Within- and between-sample contributional diversities were intui-
tively bounded above by their community-level analogs (Fig. 2a 
and Supplementary Fig. 11; examples in Fig. 2b–e). Contributional 
diversity rivals community diversity for functions that are broadly 
distributed in a given ecology. For example, phosphopantothenate 
biosynthesis in the gut had complex, variable contributors across 
subjects (mirroring gut ecology; Fig. 2b). Conversely, human 
microbiomes often contained pathways contributed by the same 
dominant organism across subjects, resulting in low within- and 
between-sample contributional diversity (Supplementary Fig. 12). 
For example, glutaryl-CoA biosynthesis in the gut was contributed 
principally by Faecalibacterium prausnitzii (Fig. 2e).

Oral sites were the most enriched for pathways with high 
within-subject but low between-subject contributional diversities, 
suggesting that they were encoded by complex yet similar mix-
tures of species across individuals (Fig. 2c). Core pathways at the 
vaginal site exhibited low within-sample but high between-sample 
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contributional diversity, consistent with vaginal ecologies domi-
nated by single, differing Lactobacillus species among subjects33 
(Fig. 2d). That said, a subset of core pathways in non-vaginal sites 
also exhibited the same ‘simple but variable’ contributions, which 
is further evidence for potential discordance between per-function 
and community-level diversities (Supplementary Fig. 13).

Clinal variation in marine microbial community function. To 
demonstrate HUMAnN2’s applicability to environmental micro-
bial communities, we applied the tiered search to quantify KEGG 
Orthogroup (KO) abundance in a dataset of 45 marine metagenomes 
from the epipelagic and mesopelagic zones of the Red Sea (Fig. 3 and 
Supplementary Note 4). We identified a number of high-variance KOs 
that were not detected in a previous analysis of the same samples with 
HUMAnN1 (ref. 34; examples in Fig. 3a–e). Notably, KOs detected by 
both HUMAnN1 and HUMAnN2 were in the majority, and their 
abundances were well correlated between the two methods (Fig. 3f).

Variation in KO abundance was often associated with sam-
ple temperature, the primary predictor of genetic diversity in the 
marine water column34,35. Many high-variance KOs were maximally 
abundant in deep and cool waters and sharply less abundant at 
warmer temperatures. Three such KOs, among the six most vari-
able overall, were implicated in fatty acid biosynthesis, particularly 
in archaea (Fig. 3a–c). Indeed, HUMAnN2’s taxonomic stratifica-
tions revealed that the community abundances of these KOs were 
dominated by contributions from a single-cell genome36 of Marine 
Group I Thaumarchaeota (47–89% of copies).

Conversely, D-glycerate 3-kinase was more abundant in warmer, 
surface waters (Fig. 3d) and was largely attributed to Prochlorococcus 
marinus (25%) and Candidatus Pelagibacter ubique (21%), the two 
most abundant bacterial species in the surface ocean. These two 
species may use this enzyme to salvage glycerate in different aspects 
of central carbon metabolism (Prochlorococcus in photorespira-
tion and Candidatus Pelagibacter as an entry point to glycolysis). 
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Cob(I)alamin adenosyltransferase was notable for being enriched at 
low and high depths and depleted at intermediate depths (Fig. 3e).  
Cobalamin is a required cofactor for ribonucleotide reductase 
in certain marine bacteria, including Prochlorococcus37. Indeed, 
Prochlorococcus was the enzyme’s dominant contributor in surface 
samples (71–96%), whereas Verrucomicrobia was dominant in the 
deepest samples (36–41%).

Profiling strain-level functional variation. HUMAnN2’s accurate 
gene presence and absence calls (Fig. 1c) can be applied to track 
strain-level20 functional variation in well-covered community spe-
cies (Supplementary Note 4). While HUMAnN2 cannot assign new 
functions to a species, it identifies (potentially novel) subspecies-
level clades from metagenomes based on the presence and absence 
of functions observed across the species’ sequenced isolate genomes. 
For example, HUMAnN2’s gene family profiles of the HMP metage-
nomes introduced above revealed putative subspecies-level clades 
of Lactobacillus jensenii and Eubacterium eligens in the posterior 
fornix and gut, respectively (Supplementary Fig. 14).

Critically, HUMAnN2’s strain profiles provide a means of 
explaining subspecies-level functional variation based on enrich-
ments in ‘variable’ gene families20. For example, strain-variable 
genes in HMP species were intuitively enriched for mobile-element 
processes such as DNA-mediated transposition (Wilcoxon enrich-
ment test; FDR-corrected q <  0.2 in 42 species) and DNA integra-
tion (q <  0.2 in 105 species). In some cases, gene presence or absence 
was strongly correlated with body site, indicative of possible niche-
adapted subspecies. For example, Haemophilus haemolyticus strains 
from tongue metagenomes were enriched for genes involved in 
outer cell membrane assembly relative to plaque and buccal strains 
(q =  0.03; Supplementary Fig. 15).

Analyzing paired metatranscriptomes and metagenomes. 
HUMAnN2 can profile paired metagenomes (DNA reads) and 
metatranscriptomes (RNA reads) to compare and contrast microbial  
community functional potential and activity4, as well as their 

respective contributional diversities. To illustrate this, we pro-
filed core pathways (as defined above) from 78 paired meta’omes 
from the Inflammatory Bowel Disease Multi’omics Database 
(IBDMDB)38 (Supplementary Note 4). Within-sample contri-
butional diversity at the DNA and RNA levels were well corre-
lated across 181 pathways, suggesting that more diverse pathway 
encoding tends to result in more diverse transcription (Spearman’s 
r =  0.91; Fig. 4a). Simultaneously, DNA diversity tended to exceed 
RNA diversity, suggesting that pathways are not proportionally 
transcribed by the community species that encode them. Sucrose 
degradation was one such striking example: while encoded by 
many species, the pathway’s transcript pool was dominated by  
F. prausnitzii (Fig. 4b).

To differentiate changes in community gene expression from 
changes in gene copy number, it is critical to normalize functions’ 
RNA abundances against their DNA abundances. For example, 
within these profiles of the IBD gut, 71% of pathways’ RNA abun-
dances fell within an order of magnitude of their DNA abundances. 
Methanogenesis pathways were among the largest outliers, with 
RNA/DNA ratios indicative of strong expression39. HUMAnN2’s 
stratified profiles confirmed Methanobrevibacter smithii as a con-
sistent, dominant contributor to these pathways, resulting in low 
within- and between-subject contributional diversity.

discussion
HUMAnN2 introduces a novel tiered search algorithm that provides 
highly accurate profiles for characterized members of microbial 
communities, with fallback to translated search for uncharacterized 
members. These tiers operate jointly in far less time than traditional 
pure translated search. Moreover, tiered search provides taxonomic 
stratification of microbial functions at the species level, thus quan-
tifying the community abundance of functions while assigning 
them to specific contributors. The utility of tiered search will only 
improve as reference catalogs continue to expand. Additionally, 
tiered search facilitates this expansion by identifying unclassified 
meta’omic sequencing reads for external assembly of novel genes.
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HUMAnN2’s functional stratifications led us to introduce contri-
butional diversity as an analog of community-level diversity, enabling 
new analyses of microbial functions. Community-level function 
is often more conserved than community composition15,39–41, con-
sistent with a functional repertoire ‘defining’ a niche and satisfied 
by different microbial assemblages. Contributional diversity adds 
another means by which this feature of functional ecology may be 
understood1, in that, while some functions do appear to be distrib-
uted evenly across community members, others are more restricted. 
Similarly, modern multi’omic analyses of microbial communities 
distinguish between community functional potential (encoding by 
genomes) and functional activity (gene or protein expression)39,42,43. 
Contributional diversity reveals another way in which these mea-
surements can differ—for example, broadly encoded functions that 
are expressed dominantly by one or a few species.

Functional meta-analysis44 of diverse meta’omic profiles are 
among the areas opened up by the HUMAnN2 methodology, with 
the potential to reveal (i) novel microbial community biochemis-
try and signaling, (ii) these functions’ source species and contri-
butional diversity patterns, and (iii) species-resolved deviations 
between functional potential and activity. In the human micro-
biome, HUMAnN2 provides the opportunity to generate testable 
hypotheses regarding specific species-level (or strain-level) func-
tions associated with health-related differences in community-level 
function. To support these future discoveries, the method is imple-
mented as open source, fully documented software, packaged with 
demonstration data and training materials, and supports an active 
user community, accessible via http://huttenhower.sph.harvard.
edu/humann2.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0176-y.
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Methods
These methods detail the HUMAnN2 algorithm, the construction of its databases, 
our evaluations on synthetic metagenomes, and contributional diversity 
calculations. Methods related to our HUMAnN2 applications (the analyses of 
HMP metagenomes, Red Sea metagenomes, and paired IBDMDB meta’omes) are 
provided in Supplementary Note 4. Methods related to our evaluations on synthetic 
metatranscriptomes, novel isolate genomes, and assembled metagenomes are 
provided in Supplementary Notes 5, 6, and 7, respectively. Methods details can also 
be found in the Nature Research Reporting Summary.

Algorithm overview. HUMAnN2 is a system for accelerated functional profiling of 
shotgun metagenomic and metatranscriptomic (meta’omic) sequencing from host-
associated and environmentally associated microbial communities. HUMAnN2 
implements a tiered search strategy comprising three search phases (tiers). In 
the first search tier, the meta’omic sample is rapidly screened to identify known 
species in the underlying community. This information is then used to construct 
a custom gene sequence database for the sample by concatenating precomputed, 
functionally annotated pangenomes of detected species. In the second search tier, 
the entire sample is aligned against this database, yielding (i) per-species, per-gene 
alignment statistics and (ii) a collection of unmapped reads. In the final search tier, 
unmapped reads are aligned against a user-specified (typically comprehensive and 
nonredundant) protein database by translated search, yielding (i) taxonomically 
unclassified per-gene alignment statistics and (ii) a collection of novel reads. 
Per-gene alignment statistics are weighted based on alignment quality, coverage, 
and sequence length to yield gene abundance values (i) for the community and 
(ii) stratified according to per-species and “unclassified” contributions. Gene 
abundance values are finally applied to metabolic network reconstruction to 
identify and quantify pathways in the community (also stratified according to  
per-species and 'unclassified' contributions). These processes, including the 
underlying databases and search parameters, are expanded in detail below.

Gene and pathway reference data as fixed inputs to HUMAnN2. 
Comprehensive protein databases. HUMAnN2 uses UniRef90 and UniRef50 
(ref. 24) as comprehensive, nonredundant protein sequence databases. Briefly, 
UniRef90 represents a clustering of all nonredundant protein sequences in 
UniProt45, such that each sequence in a cluster aligns with 90% identity and 80% 
coverage of the longest sequence in the cluster (the cluster seed). Each resulting 
cluster is represented by a single sequence (usually the best-annotated member 
of the cluster, which is not necessarily the seed). UniRef50 is constructed by 
clustering all UniRef90 representative sequences to make clusters aligning 
with 50% amino acid sequence identity and 80% coverage of the cluster seeds. 
We use UniRef90 and UniRef50 clusters (i) as a basis for describing gene 
family structure in microbial genomes and (ii) as a comprehensive database 
for translated meta’omic search (see below). Protein annotations used by 
HUMAnN2 (for example, Enzyme Commission (EC) number, COG25, KO26, 
Pfam domain27, and GO term28 assignments) are inferred from the annotations 
of representative UniProt sequences.

ChocoPhlAn pangenomes. Nucleotide-level search in HUMAnN2 is performed 
using collections of species pangenomes. We refer to this collection in HUMAnN2 
as “ChocoPhlAn.” (An earlier version of ChocoPhlAn was published as MetaRef46; 
the version of ChocoPhlAn incorporated in HUMAnN2 is identical to that 
underlying MetaPhlAn2 and its marker database22.) A species’ pangenome is a 
nonredundant representation of the species’ protein-coding potential. To construct 
a pangenome for a given species, we download all available isolate genomes for 
that species from NCBI GenBank, and/or RefSeq, along with associated coding 
sequence (CDS) annotations. Each isolate genome is analyzed with PhyloPhlAn47 
to confirm correct taxonomic placement. Using UCLUST48, we then cluster all 
CDSs from high-quality isolate genomes of a given species at 97% nucleotide 
identity. One representative (centroid) sequence from each cluster is saved. These 
centroid sequences constitute the species’ pangenome. These steps were conducted 
in the course of MetaPhlAn2 development.

To use ChocoPhlAn for functional profiling, we annotated each pangenome 
centroid sequence to UniRef90 and UniRef50 by (i) translating the centroid to 
produce an amino acid sequence and then (ii) performing protein-level search 
against UniRef90. If the centroid’s best hit in UniRef90 met the criteria for 
inclusion in the corresponding UniRef90 cluster (> 90% amino acid identity and  
> 80% coverage), then the centroid was annotated to the UniRef90 cluster and 
inherited its corresponding UniRef50 annotation. If not, the centroid was labeled 
as “UniRef90_unknown,” and a similar search was carried out against UniRef50 
(requiring > 50% identity to a UniRef50 sequence). If this search also failed, 
then the centroid was labeled as “UniRef50_unknown.” ChocoPhlAn includes 
pangenomes for > 4,000 cellular microbes (bacteria, archaea, and fungi), which 
include > 18 million gene clusters. HUMAnN2 v0.9.6 adds support for > 3,000 viral 
pangenomes, which include > 100,000 gene clusters.

Associating UniRef90/50 gene families with MetaCyc reactions. All alignments 
generated by HUMAnN2 are collapsed to UniRef90 or UniRef50 gene families, 
which constitute the method’s most highly resolved main output. Gene families 

must be further collapsed to enzyme/reaction abundances before metabolic 
pathway reconstruction. This required generating a map linking UniRef90 and 
UniRef50 identifiers to MetaCyc reactions. These links were established in two 
ways. First, MetaCyc reactions are associated with a subset of proteins in UniProt, 
which are identified by UniProt accession numbers (ACs). As each protein in 
UniProt is associated with a UniRef90 cluster (and, by extension, a UniRef50 
cluster), Reaction-AC associations were converted to Reaction-UniRef90 and 
Reaction-UniRef50 associations for use in HUMAnN2. Second, MetaCyc reactions 
are associated with entries in the Enzyme Commission (EC) catalog, a four-level 
hierarchical description of enzymatic activities. UniProt entries (and, by extension, 
UniRef entries) are also associated with EC numbers. This relationship enabled 
additional transitive association of MetaCyc reactions and UniRef90/50 identifiers 
using EC annotations as a bridge. To maintain specificity, only EC annotations of 
the highest level of specificity were used in this process (for example, a UniRef90 
entry associated with EC 1.1.1 would not be linked to a MetaCyc RXN associated 
with EC 1.1.1.1, nor would the reverse mapping be allowed). MetaCyc RXNs  
with at least one UniRef90 (or UniRef50) association are said to be 'quantifiable'  
in HUMAnN2.

MetaCyc reaction to pathway mapping. HUMAnN1 (ref. 14) incorporated KEGG’s 
structured pathway syntax26 to improve the accuracy of pathway reconstruction 
and quantification. This syntax specifies (i) the reactions that must be satisfied to 
complete a pathway, as well as (ii) possible alternative paths through the pathway 
(satisfiable by different combinations of reactions). We generated a corresponding 
structure for MetaCyc pathways by parsing MetaCyc’s pathway definition files. 
More specifically, each pathway was resolved to a directed acyclic graph connecting 
initial reactants with final products. (MetaCyc’s 'superpathways' were resolved to 
their respective subpathways and recursive paths were removed.)

Each reaction node in a pathway was annotated to describe whether it connects 
with other nodes via AND or OR relationships (indicating, for example, that 
reactions 1 and 2 are both required to convert A to B, or that either 1 or 2 can 
perform the conversion). A pathway is said to be satisfied when there exists a path 
from initial reactants to final products that only passes through reaction nodes 
that were detected (nonzero abundance) in a given meta’omic sample (see below). 
Pathways were excluded (i) if they contained less than four quantifiable reactions 
(reactions associated with level 4 EC numbers, which are in turn associated with 
UniRef90 and UniRef50 families) or (ii) if they included > 10% unquantifiable 
reactions (unquantifiable reactions in otherwise acceptable pathways were flagged 
as “optional” in the structured pathway syntax).

Quantifying gene families by tiered search. Taxonomic prescreen. HUMAnN2 
takes as input a quality-controlled (including host-read-depleted) meta’ome 
provided as a FASTA or FASTQ file (with optional GZIP compression). DNA/
RNA reads are initially screened using MetaPhlAn2 with default parameters (the 
resulting MetaPhlAn2 outputs are saved as temp output in HUMAnN2). Microbial 
species detected by MetaPhlAn2 above a target relative abundance threshold are 
passed to the next search tier (pangenome search). A lenient detection threshold  
of 0.0001 (0.01%) relative abundance is used as a default, which is equivalent to 
0.1×  fold coverage of a 5-Mbp microbial genome in a 10-Gnt metagenome in 
which 50% of reads map to sequenced isolate genomes.

Pangenome search. HUMAnN2 next concatenates the pangenomes of species 
detected in the prescreen as a single FASTA file, which it then provides as input 
for building a Bowtie 2 index49. All sample reads (as introduced above) are then 
profiled against this index using Bowtie 2 in “very sensitive” mode. Because 
HUMAnN2 is aligning to isolated coding sequences, it does not consider read end-
pairing relationships when evaluating Bowtie 2 alignment quality.

Translated search. Reads that failed to align against the pangenome database 
are mapped by translated search against a user-specified protein database. Four 
options are available: full versions of UniRef90 and UniRef50, and reduced versions 
of UniRef90 and UniRef50 containing only proteins associated with a MetaCyc 
reaction (discussed further in Supplementary Note 3). HUMAnN2 can call three 
translated search binaries to complete this task: DIAMOND16, RAPSearch2  
(ref. 17), and USEARCH48. DIAMOND is the recommended default. HUMAnN2 
tunes the parameters of the translated search depending on whether the user is 
mapping against UniRef90 clusters versus the broader (more inclusive) UniRef50 
clusters. For example, when using DIAMOND for translated search against 
UniRef50, the “–sensitive” search flag is invoked. The final output of the  
translated search is a tabular report of read-versus-protein alignment statistics 
(tabular BLAST format).

Alignment post-processing. Alignments in HUMAnN2 are post-processed to 
account for mapping quality and database sequence length. If a read has two or 
more high-quality alignments to distinct database sequences, the read’s single 
count is divided across the corresponding sequences in proportion to squared 
alignment identity. This serves as a more generic version of the default alignment 
weighting procedure implemented in HUMAnN1, which was based on alignment 
E value (a statistic that lacks strict equivalents in some alignment software, for 
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example, Bowtie 2). Notably, a variety of similar weighting schemes were found to 
be equivalently good during HUMAnN1 evaluation, and all markedly better than 
naive best-hit mapping14.

A weighted count to a sequence is further normalized by the alignable length 
of the database sequence (in kilobases) to produce a count in reads per kilobase 
(RPK) units. (Alignable length is the total length of the database sequence minus 
the aligned length of the read plus 1: the number of positions where an equivalent 
alignment to the database sequence could have begun.) These procedures are 
applied to nucleotide-level alignments against ChocoPhlAn pangenomes and to 
translated alignments against UniRef90/UniRef50. Weighted hits to sequences in 
the ChocoPhlAn pangenomes are summed within species according to UniRef90/
UniRef50 annotations (or UniRef90_unknown/UniRef50_unknown if no 
annotation exists). Weighted direct hits to UniRef90/UniRef50 families during 
translated search are summed and assigned to an “unclassified” species bin. These 
gene family abundances, along with a community total abundance (all species 
totals plus “unclassified”), are reported as HUMAnN2’s stratified gene family 
abundance table.

HUMAnN2’s translated search uses a comprehensive (rather than sample-
specific) sequence database, which results in more opportunities for spurious 
alignments to occur. To compensate for this, HUMAnN2 filters translated 
alignment results in two additional ways before applying the general weighting 
procedures outlined above. First, we say that a read is “well aligned” to a protein 
if the majority of the read is used in the alignment (tunable default: 90% query 
coverage). This forces translated alignment of reads to more closely resemble the 
non-local alignment modes of Bowtie 2 (as used in pangenome search). Next, a 
read’s weight is only distributed over proteins whose sequences were “well covered” 
by well-aligned reads (tunable default: 50% of positions covered). Without such 
a filter, it is possible for small, frequently occurring peptide motifs to spuriously 
recruit compatible reads across a wide range of database proteins (most of which 
are not present in the underlying community; Supplementary Fig. 5). Reads 
that were never “well aligned” or which only aligned to poorly covered proteins 
are exported alongside unaligned reads for downstream analyses (for example, 
assembly of novel gene sequences) external to HUMAnN2.

Quantifying pathway abundance and coverage. Using the UniRef50/UniRef90 to 
MetaCyc reaction mapping described above, a reaction’s abundance is computed 
as the sum of the abundances for all gene families that map to the reaction. These 
sums are computed for each species, the “unclassified” stratum, and the community 
as a whole, consistent with HUMAnN2’s gene-level abundance reporting.

HUMAnN2’s procedures for computing pathway abundance (copy number) 
and coverage (detection confidence) are computed largely as described and 
benchmarked in HUMAnN1 (ref. 14), with modifications added to account for  
(i) the move from KEGG- to MetaCyc-based pathway definitions and (ii) the need 
to compute the values in a stratified (per-species) manner as well as community-
wide. Starting from a set of reaction abundances, HUMAnN2 first performs 
an (optional) gap-filling step to account for conspicuously depleted reactions 
or under-annotation. The default gap-filling in HUMAnN2 replaces the least-
abundant reaction in the pathway with the abundance of the next-least-abundant 
reaction. Optional reactions are not considered in the gap-filling computations. 
Next, MinPath50 is applied to identify a parsimonious set of pathways to explain the 
observed reactions. Abundance and coverage are then computed for each pathway 
following HUMAnN1’s methods for structured (default) or unstructured pathway 
definitions. For structured pathways, abundance is computed as the harmonic 
mean of reaction abundances (after optimizing over alternative subpathways 
and optional reactions); for unstructured pathways, abundance is computed as 
the average of the top 50% most abundant reactions in the pathway. Coverage is 
calculated similarly after converting reaction abundances to measures of reaction 
detection confidence. These procedures are carried out for the reactions detected 
in each species, “unclassified” reaction abundance values, and community total 
abundance values.

Evaluation details. Simulating metagenomes. We defined synthetic metagenome 
'templates' consisting of lists of species and target relative abundance values. 
For each species in a template, we selected a random isolate genome of that 
species from among those represented in ChocoPhlAn. We induced 3% artificial 
nucleotide sequence mutations in the isolate genomes to approximate the 
properties of previously unseen isolate genomes of the same species; genomic loci 
and nucleotide states were sampled randomly during the mutation process. Next, 
we randomly pulled 5 million 250-nucleotide fragments (substrings) from among 
those genomes. To guarantee that genome copies in the synthetic metagenome 
followed the target relative abundance distribution, fragments were pulled from 
each genome with probability proportional to the product of the genome’s size  
and corresponding species’ target relative abundance. We converted each fragment 
to a pair of 100-nucleotide sequencing reads in FASTQ format using ART51 with 
its Illumina HiSeq 2500 error model (resulting in 10 million total synthetic reads 
or 1 Gnt).

We produced a gene family abundance gold standard by incrementing the 
abundance of each gene family found in a genome by the product of the genome’s 
coverage (in reads per kilobase (RPK) units) and the gene family’s copy number. 

Note that this procedure does not account for random per-gene variation in 
fragment sampling, which will thus contribute to deviations from the gold 
standard (and be more marked for low-coverage species). This issue is discussed 
further in Supplementary Note 1. Gold standards for other functional categories 
(for example, COGs) were generated by regrouping (summing) the gene family 
gold standard according to gene family functional annotations in UniProt. Gold 
standards for pathway coverage and abundance were generated by providing the 
gene family gold standard as an input file for HUMAnN2. Thus, our pathway-
level accuracy assessment measures the influence of gene-level error on pathway 
quantification and not the accuracy of assigning pathways to isolate genomes  
based on their annotated genes.

Comparing expected and observed profiles. We compared expected and observed 
gene and pathway abundance profiles at the community level as well as for each 
contributing species. Comparisons were made after sum-normalizing expected 
and observed profiles to relative abundance units. Four statistics were used for 
comparison: sensitivity, the fraction of expected features that were detected by 
HUMAnN2 (with “detected” defined as nonzero measured abundance); precision, 
the fraction of features detected by HUMAnN2 that were in the expected 
(gold standard) profile; overall accuracy, the fraction of feature abundance 
that was shared between the expected and observed datasets (1 - Bray–Curtis 
dissimilarity); and error mass, the proportion of total absolute error between 
the observed and expected profiles attributable to a particular stratification 
(individual species or “unclassified”).

Comparing HUMAnN2 with other methods. We profiled the 20-species, synthetic 
human gut metagenome with HUMAnN2, HUMAnN1 (ref. 14), COGNIZER10, 
ShotMAP13, and MEGAN12 to generate profiles of COG abundance. HUMAnN2 
was run in the default (tiered) mode and also in pure translated search mode 
against the full UniRef90 protein database. The resulting UniRef90 abundance 
profiles were converted to COG abundance profiles using the “humann2_regroup_
table” script with the UniRef90-to-eggNOG option (which is inclusive of COGs).

To analyze the synthetic gut metagenome with HUMAnN1 (updated to use 
DIAMOND16 for translated search), we constructed a database from HUMAnN1’s 
default protein sequence collection: the last public release of KEGG (v56)26. 
We then aligned the synthetic reads against this database using HUMAnN1’s 
recommended search parameters (top-20 hits with E value <  1.0) while invoking 
DIAMOND’s “sensitive” mode. The resulting tabular alignment output was 
provided as input to HUMAnN1. HUMAnN1’s default KEGG Orthogroup (KO) 
output was converted to COG abundance using a KO-to-COG mapping derived 
from KEGG v56 (“data/cogc” in the HUMAnN1 installation).

We analyzed the synthetic metagenome in COGNIZER using the “-p 4” 
option, which defines a workflow in which RAPSearch2 (ref. 17) profiles the 
metagenome against a reduced (non-redundant) COG sequence collection. This 
workflow was selected to be maximally time-efficient based on evaluations from 
the COGNIZER publication10. COGNIZER directly output a COG abundance 
table for downstream analysis.

We created a custom COG database for ShotMAP by supplying “build_
shotmap_searchdb.pl” with individual FASTA files containing all UniRef90 
sequences annotated to each COG. We used the option “–searchdb-split-size 
30000” to split the database into subsets to improve memory efficiency. We then 
ran ShotMAP with the option “–class-score 31.3”, which sets the minimum bit 
score for an alignment to be included in a family.

A DAA file was created for MEGAN by running DIAMOND to align the 
synthetic metagenome against the full NCBI NR database (downloaded 2 
November 2016). Using the MEGAN GUI, the DAA file was 'meganized' to 
COG abundance based on MEGAN’s included EggNOG mapping file (June 2016 
version). Using the MEGAN GUI EggNOG viewer, we exported COG abundances 
to a text file for downstream analysis.

All runs were carried out in Google Cloud instances of machine type 
n1-standard-8 (which have 8 cores and 30 GB of memory). To benchmark the runs 
we captured the elapsed time and the maximum RSS (resident set size) memory 
for the main process and all of its subprocesses, including all subprocesses in the 
process tree that have the main process as the top-most parent. These values were 
captured and recorded with the “humann2_benchmark” script. For workflows 
with separate mapping and post-processing steps (HUMAnN1 and MEGAN), 
elapsed time values encapsulate both steps, while maximum RSS values reflect 
the maximum across the two steps. Community-level COG abundances were 
sum-normalized and compared to the synthetic gold standard using the statistics 
described above.

Contributional diversity. We calculated contributional diversity for functions 
by applying traditional ecological similarity measures to the functions’ stratified 
abundance values. Here, the stratified values were renormalized after excluding 
“unclassified” abundance before computing diversity statistics. Functions with a 
non-trivial proportion of “unclassified” (> 25%) in a non-trivial fraction of samples 
(> 25%) were completely excluded from analysis. We used Gini–Simpson alpha 
diversity to measure within-sample contributional diversity of a function. This 
measure can be interpreted as the probability of selecting two “copies” of a function 

NATuRE METHOdS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NAtURe MetHods

derived from different species and varies from 0 (single contributor) to 1 (infinite 
contributors). We used Bray–Curtis beta diversity to measure between-subject 
contributional diversity of a function. This measure can be interpreted as the 
fraction of shared contributions between two samples and varies from 0 (identical 
contributions) to 1 (no contributors in common). Diversity values for a pathway 
computed over samples (or sample pairs) were summarized by averaging.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. HUMAnN2 is a Python2/3 compatible package. The latest 
version can be installed via pip or HomeBrew (or installed from source via  
http://huttenhower.sph.harvard.edu/humann2). HUMAnN2 is also bundled as part 
of the bioBakery virtual machine, which is available as a Vagrant Box, a Google 
Cloud image, and an Amazon Web Services AMI (via http://huttenhower.sph.
harvard.edu/biobakery). An archive of HUMAnN2 version 0.11.0 of the software 
(used in the evaluations reported here) is bundled with the publication.

The HUMAnN2 package includes 223 unit and functional tests, which run 
in ~20 min to verify successful installation and operation. Once installed, the 
complete HUMAnN2 workflow can be run with a single command by providing 
(i) an input meta’omic sequencing dataset (fasta/fastq format) and (ii) output 
folder. Four protein databases are available for use with HUMAnN2 (UniRef50 
full, UniRef90 full, UniRef50 EC-filtered, UniRef90 EC-filtered). These databases, 
along with ChocoPhlAn and a collection of useful “utility” mapping files, are 
downloaded independently of the HUMAnN2 installation using the included 
“humann2_databases” script. Alternatively, the user can build and run HUMAnN2 
with their own custom databases.

HUMAnN2 features four “bypass” modes to allow the user to tailor his or her 
workflow, for example, including/excluding tiers in the tiered search. A “resume” 
feature allows the user to bypass compute-intensive sections of the workflow that 
have already completed while fine-tuning downstream analyses. HUMAnN2 
includes 43 command-line arguments to customize runs for a user’s compute 
environment and to allow for parameter tuning (though a typical user will only 
interact with the two required “input” and “output” parameters). HUMAnN2 
is bundled with a (growing) library of support scripts to facilitate downstream 

analyses, such as merging and normalizing profiles, regrouping default gene 
family abundances to other functional categories, combining RNA and DNA 
profiles to generate “relative expression” measurements, inferring approximate 
taxonomic assignment for proteins in the “unclassified” stratum, generating strain 
profiles, and plotting stratified abundances. These and other topics are expanded 
in detail in HUMAnN2’s user manual: http://huttenhower.sph.harvard.edu/
humann2/manual.

data availability
The Human Microbiome Project (HMP) metagenomes analyzed in this 
work are available via http://hmpdacc.org. The IBDMDB metagenomes and 
metatranscriptomes analyzed in this work are available via http://ibdmdb.org. The 
Red Sea metagenomes analyzed in this work were previously deposited as NCBI 
BioProject PRJNA289734. The synthetic metagenomes and metatranscriptomes 
used in the evaluation of HUMAnN2 and other methods are available from the 
authors and at http://huttenhower.sph.harvard.edu/humann2.
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