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Human gut microbiota form complex, balanced ecosystems1. 
Perturbations of these biota may drive infections2, obesity3,4, 
diabetes5–7 and inflammatory8 and neurological disorders9. 

Rodent and human studies have shown that fecal transplants10, pre-
biotics11, probiotics12 and antibiotics13, for example, can alter the gut 
microbiota and improve host health. An estimated increase in life 
expectancy of 2–10 years is attributable to antibiotics14. However, 
early-life exposure to antibiotics (especially macrolides) has also 
been associated with metabolic, inflammatory and neurologi-
cal impairments both in animal models15–17 and in observational 
human studies18–22.

When exposed to antibiotics, microbial communities respond 
not only by changing their composition, but also by evolving, 

optimizing and disseminating antibiotic resistance genes (ARGs), 
collectively forming resistomes23. The human gut microbiota is con-
sidered a reservoir for ARGs where members exchange these genes, 
thereby propagating resistance24. The development and spread of 
microbial antibiotic resistance is a serious health concern given that 
previously reliable antibiotics now fail. The intestinal microbiota 
from subjects in different countries harbour different ARG reper-
toires, reflecting the local usage patterns of antibiotics in healthcare 
and food production25. However, only a few studies have character-
ized the effects of particular antibiotic regimens on the gut ecosys-
tems of individuals with respect to the associated resistomes. In a 
longitudinal 16S ribosomal RNA gene amplification and shotgun 
metagenomics study of children receiving macrolides or penicillins 
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(β -lactams), we found decreased diversity and enriched ARG car-
riage from the exposure, more so in the former than the latter18. Two 
previous 16S rRNA gene amplification-based studies performed in 
one cohort demonstrated how treating healthy individuals with a 
single common antibiotic (for example, clindamycin, ciprofloxacin, 
amoxicillin or minocycline) led to an enrichment of ARGs (imputed 
based on taxonomic composition) and long-lasting compositional 
effects on the microbiota, including depletion of butyrate-produc-
ing species26,27. Another 16S rRNA gene study reported that a seven-
day treatment with vancomycin caused profound changes in the 
microbiota, whereas a seven-day amoxicillin treatment did not28. In 
contrast, a recent single-antibiotic study reported reduced micro-
bial diversity after a three-day amoxicillin treatment29. Finally, a 
study using shotgun metagenomic data suggested that the effects of 
cefprozil (a β -lactam) on the gut microbiota depended on its initial  
state30, reconciling previously divergent results. Antibiotic resistance  
genes undetected at baseline were found after a seven-day treatment 
with the antibiotic30. However, the effects of a combinatorial multi-
ple-antibiotic treatment on the microbiota and the role of ARGs in 
gut microbial persistence have not been studied so far.

Recently, we conducted an intervention in 12 healthy men who 
underwent prospective eradication of the gut microbiota through a 
combination of three broad-spectrum bactericidal antibiotics (van-
comycin, gentamicin and meropenem) during a single four-day 
course and investigated the effects on host metabolism31. This mul-
tidrug cocktail is a modified version of prophylactic antibiotic pro-
tocols from intensive care units32 and includes antibiotics given to 
patients with infections by multidrug-resistant bacteria. In the pres-
ent study, using shotgun metagenomics on stool samples collected 
before and at four different time points over a period of six months 
after treatment, we tracked the process of eradication, partial sur-
vival, gradual regrowth and re-establishment of these gut microbial 
communities. Using a metagenomic species approach33, we link 
individual ARGs of the resistome to their carrier taxa, assessing how 
the ARG repertoire of intestinal microorganisms helps or hinders 
them during survival and recolonization.

Results
Overall composition of gut microbiota of young healthy adults 
recovers from a broad-spectrum antibiotic exposure. We charac-
terized the gut microbial composition of the 12 study subjects using 
species-level metagenomic operational taxonomic units (mOTUs)34. 
Using samples collected at baseline (D0), immediately after antibi-
otic treatment (4 d after baseline; D4) and at three further time points  
(8, 42 and 180 d after baseline; D8, D42 and D180, respectively), we 
traced the eradication and recovery of gut microbial species by ecologi-
cal alpha and beta diversity measures. The gut microbial alpha diversity 
of our subjects recovered within six months of the intervention (Fig. 1).  
By D4, immediately after intervention, both the species richness 
and Shannon diversity were dramatically reduced compared to D0 
(two-sided Wilcoxon signed-rank test; false discovery rate (FDR)-
adjusted P values (q) =  0.0098 and q =  0.0065, respectively). However, 
despite the broad-spectrum nature of the intensive antibiotic treat-
ment, full eradication was not achieved and numerous species were 
detectable by D4 (Fig. 1a). By D8, the gut microbiota still exhibited 
reduced richness, but Shannon diversity had significantly increased 
(Fig. 1b; two-sided Wilcoxon signed-rank test; q =  0.0065), suggest-
ing that the surviving microorganisms started recovery by regrowing 
more evenly. Thereafter, both richness and Shannon diversity were 
gradually regained during the six-month follow-up (as measured at 
D42 and D180). Interestingly, although we observed no significant 
differences in Shannon diversity between D0 and D180, the species 
richness remained significantly lower by D180 (two-sided Wilcoxon 
signed-rank test; q =  0.011), suggesting that some microorganisms that 
were originally present may have been permanently lost or severely 
depleted due to the treatment.

In line with the alpha diversity measures, principal coordinate 
analysis based on Bray–Curtis dissimilarities demonstrated that gut 
microbial compositions immediately after treatment (D4 and D8)  
had profound differences from D0, but gradually returned towards 
their initial composition (Fig. 2a). To analyse the full composi-
tional changes after antibiotic perturbation beyond the first two 
principal coordinates, we compared the perturbed samples to their 
corresponding samples at D0 using Bray–Curtis dissimilarities. 
To verify whether these observed changes were more severe than 
expected over time in the absence of antibiotics, we also compared 
the Bray–Curtis dissimilarities between same-donor samples in our 
cohort to Bray–Curtis dissimilarities between same-donor samples 
with comparable sampling intervals in two control populations35,36. 
Compared to D0 samples, D4 and D8 showed very high composi-
tional differences (median values 0.98 and 0.95, respectively), indi-
cating drastic changes in the microbiome composition immediately 
post-treatment (Fig. 2b). These differences were significantly larger 
than same-donor differences in the control populations (two-sided 
Wilcoxon rank-sum test, q <  0.001). By D42 and D180, the com-
munities still exhibited compositional differences from D0, but 
at a significantly lower magnitude (median values 0.70 and 0.64, 
respectively). These differences were still significantly larger than 
same-donor differences at even larger time separations in control 
populations (Fig. 2b; two-sided Wilcoxon rank-sum test, q <  0.05). 
However, the compositional differences between D42 and D180 
samples were not significantly different from the variation seen over 
comparable durations in control populations (Fig. 2b, rightmost 
panel; two-sided Wilcoxon rank-sum test; US Human Microbiome 
Project (HMP) dataset, time interval > 100 d, P =  0.10; Voigt dataset, 
time interval > 300 d, P =  0.57) suggesting that the gut microbiota 
had reached a stable composition by D42.

Specific microbial taxonomic changes during recovery and recol-
onization. We investigated which microorganisms became extinct 
or survived after the treatment, which microorganisms colonized 
the gut de novo and which microorganisms were lost permanently 
by following the changes in the relative abundance of individual 
microbial species over time. By D8, 4 days post-intervention, the 
relative abundances of 50 species had significantly changed (two-
sided Wilcoxon signed-rank test adjusted for compositionality, 
q <  0.05). There was an enrichment of low-abundance commensals 
like Escherichia coli, Veillonella spp., Klebsiella spp., E. faecalis and 
F. nucleatum (Supplementary Fig. 1 and Supplementary Table 1), 
indicating a major ecological change. We also observed a deple-
tion of other commensals, particularly butyrate producers, such 
as Faecalibacterium prausnitzii, Roseburia hominis, Anaerostipes 
hadrus, Coprococcus spp. and Eubacterium spp. This replicates 
reported decreases of short-chain fatty acid producers under anti-
biotic treatment27,28.

By D42, none of the species whose relative abundance differed 
significantly between D0 and D8 exhibited significant differences, 
suggesting that most of the dominant microorganisms of the human 
gut had regrown. Some of the previously blooming species, includ-
ing Klebsiella spp., Megasphaera micronuciformis, E. faecalis and  
F. nucleatum, were no longer detectable. Others, such as E. coli and 
Veillonella spp., remained but returned to D0 levels, so that by the 
end of the observational period they were not particularly elevated. 
Clostridium spp. were generally undetectable pre-intervention 
but significantly increased in their relative abundance by D42  
(two-sided Wilcoxon signed-rank test after adjusting for composi-
tionality, q <  0.05) (Supplementary Fig. 1 and Supplementary Table 1).  
These species are known to form endospores under unfavourable 
conditions, reviving when environmental conditions are once again 
favourable37. This may have provided them with an advantage in 
our clinical setup, with spores reviving on sensing an emptier gut 
and effectively colonizing the gut after intervention. Specifically, 
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Clostridium bolteae abundance was significantly increased by 
D42 (two-sided Wilcoxon signed-rank test after compositionality 
test, q =  0.026) and remained elevated in all 12 subjects on D180 
(two-sided Wilcoxon signed-rank tests after compositionality test, 
q =  0.052; Supplementary Figs. 1,2). Finally, some species detected 
at D0 were not detected again within the study time frame. These 
included: (1) members of genus Bifidobacterium that are considered 
pathogen-protective and immunostimulatory; (2) butyrate pro-
ducers such as Coprococcus eutactus and Eubacterium ventriosum 
and (3) methane-producing Methanobrevibacter smithii associ-
ated with the efficient digestion of polysaccharides. These results 
with regards to compositional changes broadly match expecta-
tions from the relative susceptibility to antibiotics of human gut 
microorganisms from a recent in vitro microbial growth inhibition 
screen38 (see Supplementary Analysis, Supplementary Table 4 and 
Supplementary Fig. 12).

We then investigated taxonomic changes at an increased reso-
lution using metagenomic species33 (MGSs) derived from the inte-
grated gene catalog (IGC) of 9.9 million gut microbial genes39. MGSs 
include cultured as well as uncultured gut microbial species and 
provide sub-species-level resolution in some taxonomic groups, as 
each MGS is probably derived from an independent chromosome33. 
MGS-based analysis confirmed many of the microbial changes 
observed using mOTUs (Supplementary Fig. 3 and Supplementary 
Table 1) and highlighted additional changes. It corroborated the 
post-intervention significant increase of species usually only found 
at low abundance. Furthermore, it confirmed the depletion of butyr-
ate producers (Supplementary Fig. 3) post-treatment and provided 
increased sub-species resolution, highlighting eight different MGSs 
belonging to F. prausnitzii, one to R. hominis, three to Eubacterium spp.  
and two to Coprococcus spp. as significantly depleted (two-sided 
Wilcoxon signed-rank test after adjusting for compositionality, 
q <  0.05). Remarkably, only two F. prausnitzii strains were able to 
recover by D180, another six could not recover through the study 
period (Supplementary Fig. 3), reflecting the different recovery 
capacities between conspecific strains.

Resistance gene carriage impacts survival and colonization poten-
tial of gut microorganisms. We hypothesized that differences in 
antibiotic resistance potential among microorganisms could explain 
the differences in their recovery patterns, which involve trends at 

the species level (Supplementary Fig. 1) as well as differences 
between conspecific strains (Supplementary Fig. 3). For this, we 
updated the ARG annotation of IGC genes40 to ARG families in the 
Comprehensive Antibiotic Resistance Database (CARD)41 and the 
ResFams42 database. By mapping metagenomic reads to IGC, we esti-
mated the abundance of known ARGs against β -lactams (parent class  
of meropenem; note that several β -lactamases cannot cleave  
carbapenems43), aminoglycosides (parent class of gentamicin),  
glycopeptides (parent class of vancomycin) and all other antibiotic 
classes, which were grouped for comparison. We conducted the 
analysis at the antibiotic class level as existing ARG annotation is 
frequently incomplete, whereas cross-resistance between structur-
ally similar antibiotics is common and likewise incompletely anno-
tated. We further quantified multidrug efflux pumps (MEPs), which 
could potentially confer unspecific multidrug resistance. Antibiotic 
resistance genes against β -lactams and aminoglycosides were not 
significantly altered from D0 abundances (Fig. 3). Our results were 
robust to the choice of ARG database (see Methods). The larger 
contribution to the ARG abundance changes that we observed 
are driven by genes more likely to be chromosomal than located 
on mobile genetic elements (see Methods). Antibiotic resistance 
genes against glycopeptides were significantly depleted by D4 and 
remained so until D8 (Fig. 3; two-sided Wilcoxon signed-rank test, 
q <  0.05). We observed no significant differences when comparing 
either D42 or D180 to D0. Abundances of MEPs were significantly 
elevated by D8 (two-sided Wilcoxon signed-rank test, q <  0.01) and 
these were maintained until D42 (two-sided Wilcoxon signed-rank 
test, q <  0.05). By D180, no category showed significant differences 
when compared to D0 (Fig. 3). Thus, the overall ARG abundance 
analysis did not show clear temporal patterns that could explain the 
differences between species and conspecific strains.

Unlike previous gut resistome analyses, our use of the MGS 
approach33 enabled us to link ARGs to the MGSs that they belong 
to. First, we observed that both the MGSs that survived the treat-
ment and the first colonizers often harbour ARGs against multiple 
antibiotics (Supplementary Figs. 4,5). Second, by using the abun-
dances of MGSs and the abundance of individual ARGs within 
them, we noted each MGS as either detected or undetected in 
each study sample and, when detected, we marked those as either 
resistant or non-resistant to each of the three antibiotics. We then 
assessed how possession of ARGs affected the chance of survival 
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of an MGS (detection at D0 and at a later time point) using Fisher’s 
exact test (see Methods for details). Metagenomic species with  
β -lactam ARGs had significantly higher odds of survival (odds ratio 
(OR) =  1.64 (1.24–2.17)) by D8, but this effect decreased at later time 
points (Fig. 4). In contrast, MGSs with glycopeptide ARGs had sig-
nificantly decreased chances of survival from D0 to D8 (OR =  0.32 
(0.23–0.44)) and D42 (OR =  0.71 (0.60–0.84)), again with the effect 
weakening over time. This change may be due to the increase of 
Gram-negative species in the initial time points after treatment, 
which are naturally resistant to vancomycin without the need for 
specific ARGs. Strikingly, MGSs with aminoglycoside ARGs exhib-
ited a gradual decrease of survival odds from D0 to D180 (OR =  0.67 
(0.48–0.93)). Although we observed a significant enrichment of 
MEPs by D8 (Fig. 3), MGSs carrying MEPs did not show higher 
chances of survival. Interestingly, MGSs that were undetected at 
D0 had significantly higher odds of de novo colonization of the 
gut ecosystem at a later time point if they carried ARGs against any 
of the three classes used: aminoglycoside ARGs (OR =  4.32 (2.29–
8.57); OR =  1.91 (1.24–2.94); OR =  2.01 (1.39–2.92); for D8, D42 
and D180, respectively), β -lactam ARGs (OR =  1.64 (1.12–2.40); 
OR =  1.40 (1.12–1.77); OR =  1.12 (0.91–1.37), respectively), or gly-
copeptide ARGs (OR =  2.45 (1.61–3.74); OR =  2.33 (1.86–2.94); 
OR =  1.33 (1.09–1.62), respectively), although this effect also weak-
ened over time (Fig. 4). We observed the opposite pattern in the 
long term for MGSs carrying MEPs, suggesting that the possession 
of more MEPs does not increase the chances of colonizing the gut 
environment post-treatment (OR =  0.51 (0.35–0.76) and OR =  0.54 
(0.38–0.76) for D42 and D180, respectively). The survival and 
colonization likelihood trends for MGSs harbouring β -lactam and 
aminoglycoside ARGs were not observed in the control population 
(HMP same-donor sample pairs with an interval > 100 d; Fig. 4), 
suggesting that MGSs carrying β -lactam ARGs could be positively  

selected for, whereas species carrying aminoglycoside ARGs here 
could be negatively selected for. The latter could reflect that amino-
glycosides are inactive under anaerobic conditions (as those found 
in the gut) and are usually administered for local or systemic infec-
tions. The trend observed for species carrying glycopeptide ARGs 
could indicate that, under the present multidrug treatment, carry-
ing vancomycin ARGs may not be beneficial for the survival of a 
microorganism. This may indicate that these ARGs are not func-
tional and/or are expensive to make (most known vancomycin 
resistance systems are operons of up to nine genes encoding pro-
teins that build an alternative cell-wall precursor less susceptible to 
glycopeptide binding44), or it could reflect that most of the vanco-
mycin resistance in the gut microbial population is not encoded by 
ARGs but is due to the overall cell envelope composition. The same 
trends were observed for carrying glycopeptide ARGs in the control 
population (HMP; > 100 d) but with lower odds (Fig. 4; OR =  0.57 
(0.49–0.65) and OR =  1.36 (1.18–1.56) for survival and de novo 
colonization, respectively). Thus, glycopeptide resistance capacity 
may be found more frequently in taxa with a generally higher gut 
turnover. Carrying MEPs significantly increased the chance of MGS 
survival in the control population (Fig. 4; OR =  1.78 (1.36–2.32)), 
but we did not observe this pattern in our intensive treatment, sug-
gesting that MEPs were altogether insufficient to provide resistance 
to our antibiotic cocktail.

We next tested whether ARG families that changed significantly 
in abundance post-intervention were also enriched within the 
genomes of species that were enriched post-intervention. Indeed, 
taxonomic compositional changes predicted the gene-level changes 
for 65 of 82 families (Supplementary Analysis and Supplementary 
Table 6). The remaining ARG families may represent cases of genes 
that are more variably found across conspecific gut strains, or genes 
that have been carried on mobile elements in the recent evolutionary  
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past. We note among others that the carpapenem-resistance asso-
ciated resistance-nodulation-cell division pump AdeJ, character-
istic of Acinetobacter baumannii45,46, is detected and elevated after 
intervention in these samples in the absence of its typical host, sug-
gesting that its genomic carriage in the gut may be wider than previ-
ously thought.

Increase of antibiotic resistance functional potential and enrich-
ment of virulence factors following antibiotic exposure. We next 
investigated whether there were microbial functions that increased 
in abundance alongside the otherwise usually low-abundance spe-
cies by D8 and later post-treatment time points. We used previously 
published annotation of IGC genes40 to the Kyoto Encyclopedia 
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of Genes and Genomes (KEGG) database47, estimating the abun-
dance of KEGG modules and pathways for each sample. The relative 
abundance of 192 KEGG modules and 64 KEGG pathways changed 
significantly from D0 to D8 (two-sided Wilcoxon signed-rank test, 
q <  0.05; Supplementary Table 1a). Among the significant modules, 
15 represented different efflux pumps, confirming the enrichment 
of MEP genes identified in our ARG analysis. Five of these efflux 
complexes included TolC, which is a central component of multiple 
bacterial efflux pumps that are responsible for exporting numer-
ous and diverse antibiotics, including β -lactams, in both growing 
and dormant bacteria48. It is crucial to note that gene enrichment 
visible under our study design reflects the fitness of bacterial taxa 
that carry such genes, which may or may not depend in turn on the 
thus-enriched genes themselves. The involvement of TolC in efflux 
pumps extruding bile acids could conceivably impact such fit-
ness, although this cannot be concluded from the present data and 
remains speculative. Furthermore, we observed an increase in the 
abundance of transporters including seven bacterial phosphotrans-
ferase systems, which catalyse phosphorylation and transporta-
tion of a variety of sugars into the cell, allowing microorganisms 
to maximize the assimilation of available sugars to grow faster 
in a competitive environment. Remarkably, 27 modules encod-
ing two-component systems, which are basic signalling cascades 
for responding to environmental perturbations, had significant 
changes in relative abundance (two-sided Wilcoxon signed-rank 
test, q <  0.05; Supplementary Table 1); this included systems known 
to respond to glycopeptide (vancomycin/bacitracin) antibiotics in 
Gram-positive organisms (LiaSR, BceSR, VraSR). Consistent with 
the increase in enterobacteria and other Gram-negative bacteria at 
D8, lipopolysaccharide-related features increased, as well as systems 
for alternative forms of respiration (for example nitrate, tetrathion-
ate and trimethylamine oxide anaerobic respiration). It has been 
recently shown that the use of alternative electron acceptors, often 
produced as part of inflammatory response, help enterobacteria to 
bloom in the human gut49–52.

By D42, only 41 KEGG modules were significantly different in 
their relative abundance, including 8 MEPs (6 of which include the 
TolC gene) and 4 two-component systems, but none of the KEGG 
modules related to resistance against specific antibiotics (two-sided 
Wilcoxon signed-rank test, q <  0.05; Supplementary Table 1b). By 
D180, no functional feature from KEGG was significantly differ-
ent in relative abundance, suggesting that the microbiota recovered 
to near D0 composition, also with regards to functional potential 
(Supplementary Table 1c).

Several virulence factors, such as capsule synthesis and type II, 
III and VI secretion systems (T2SS, T3SS and T6SS; Supplementary 
Table 1), were also increased by D8, which led us to investigate 
them further. For this purpose, we used IGC annotations to the 
Pathosystems Resource Integration Center (PATRIC) database 
of virulence factors53 and estimated the abundance of PATRIC 
functional categories in each sample. Both immediately (D4) and 
four days (D8) after the treatment there was a strong enrichment 
of genes involved in quorum sensing. This may be a consequence 
of selection for bacteria better able to coordinate gene expression 
under changes in cell density due to significantly reduced micro-
bial density post-treatment. However, our data cannot be used to 
conclude this. Activities controlled by this system are involved in 
virulence, pathogenic potential and biofilm formation of micro-
organisms54. By D8, a set of virulence factors were significantly 
enriched (Fig. 5), including exotoxins, pore-forming toxins and 
secreted effectors required for invasion or for inhibiting phagosome 
formation or maturation and allowing intracellular proliferation.  
In contrast, changes in lipopolysaccharide, capsule formation capac-
ity, fimbriae and pili presumably reflect the increase in enterobacteria, 
which commonly carry such elements. These observations indicate 
that the earliest gut colonizers, after suppression of D0 commensals,  

may be bacteria with pathogenic potential. Despite this initial 
enrichment of virulence factors after the treatment, these factors 
were cleared by D42 and did not seem to cause long-term effects in 
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healthy individuals of this study, which is consistent with what we 
reported in an earlier study31.

Discussion
Gut microbiota of young healthy subjects showed resilience and 
a capacity for recovery from a combinatorial antibiotic treatment 
designed to maintain prophylaxis on gut microbiota, although some 
species or strains detectable at D0 remained undetected through-
out the rest of the study period. When we compared our metage-
nomic observations to a recent drug susceptibility screen of diverse 
gut species, the results were concordant (Supplementary Analysis, 
Supplementary Table 4 and Supplementary Fig. 12), confirming 
that we recorded the direct effects of drugs in the gut microbiota. 
It is important to note that an accurate estimation of the extent of 
loss of bacteria would require analysis of absolute count data, which 
could be obtained experimentally through mass-normalized qPCR 
analysis of samples. Although this was impossible for the present 
study due to sample availability, it can be undertaken in future fol-
low-up experiments.

Contrary to expectations, we observed no immediate enrich-
ment of ARGs targeted to the antibiotics used in the healthy indi-
viduals in this study (Fig. 3). However, four days post-treatment, a 
specialized community of previously low abundant or undetectable 
species, alongside ARG and virulence factor enrichment (Figs. 3,5 
and Supplementary Fig. 4) arose, whereas short-chain fatty acid pro-
ducers, particularly butyrate producers, were depleted as reported 
in earlier studies27,28. The increase in the abundance of MEP genes 
and microbial structural elements (for example lipopolysaccharide, 
pili, fimbriae, among others) presumably reflects the taxonomical 
changes observed post-treatment, as many of these systems are part 
of the core genomes of Enterobacteriaceae spp., which increased 
after the treatment (for example, E. coli and Klebsiella spp.). Other 
virulence elements (for example, T2SS, T3SS, T6SS, capsules and 
exotoxins) seemed to exhibit enrichment beyond what these tax-
onomic shifts imply, as they were present only in some virulent 
strains of Enterobacteriaceae spp. and/or other unrelated pathobi-
ont species.

Interestingly, Clostridium spp. were particularly likely to colonize 
after the antibiotic intervention, perhaps having survived as spores. 
This is relevant as Clostridium difficile infections are associated with 
the use of broad-spectrum antibiotics in acute care settings, which 
reduce host resistance to colonization and expansion of this patho-
gen55. Fecal microbiota transplantation successfully treats recur-
rent C. difficile infections by reconstituting the normal microbiota 
homeostasis and thus breaking the infection recurrence cycle56. 
Future drug development to minimize antibiotic-induced gut dys-
biosis should target the Clostridium spore-germination process and 
increase the abundance of beneficial species with direct coloniza-
tion resistance such as Bifidobacterium spp., which were depleted by 
our intervention. We validated and extended the results of a previ-
ous report30, where C. bolteae was enriched after a single course of 
a β -lactam antibiotic. Thus, we hypothesize that rather than being 
a direct marker for autism57–59, liver transplant rejection in rats60, or 
low diversity61 as previously suggested, C. bolteae might be a marker 
of general β -lactam and/or antibiotic-induced dysbiosis, as patients 
with these disorders or conditions are likely to be overexposed to 
antibiotics. Consistently, C. bolteae is particularly resistant to β -lac-
tams in vitro, compared to other firmicutes38. This should be further 
analysed with an appropriate experimental design that enables dis-
entangling the effects of antibiotic uptake from those of the disor-
ders themselves on the gut microbiota.

By combining shotgun metagenomics with a quantitative metage-
nomic species approach, we tested whether antibiotic resistance 
potential modulates gut microbial recovery following antibiotic 
treatment. Microorganisms that harbour β -lactam ARGs exhib-
ited initially increased odds of survival and de novo colonization  

post-treatment. Species harbouring β -lactam, but not aminoglyco-
side ARGs, were possibly positively selected for by our intervention, 
which is consistent with the stronger action of β -lactams against 
enteric bacteria and in anaerobic conditions. Strikingly, while 
microorganisms carrying glycopeptide ARGs exhibited increased 
odds of de novo colonization, they had decreased odds of survival 
through the intervention, possibly reflecting that such resistance 
mechanisms may be inactive or too energy- and time-consuming 
to be activated during the short course of a multidrug antibiotic  
challenge. We cannot exclude interactions between the three  
administered drugs that may partially mask their effects or  
render their resistance mechanisms obsolete. Moreover, as we rely on  
databases of curated ARG families, we cannot rule out the possibility 
that the enrichment of ARG families may be biased by the extent to 
which antibiotic resistance has been characterized in different organ-
isms. Many of the gene-level findings that we report are due to the  
taxonomic shifts (Supplementary Analysis and Supplementary 
Tables 5,6); that is, they could be considered as gene/functional-
level projections of taxonomic shifts. Although we hypothesize that 
these shifts in functional potential may provide a fitness advantage 
to the microorganisms that harbour these functions, metatranscrip-
tomic studies are needed to substantiate or falsify this hypothesis.

In summary, our results demonstrate that the gut microbiota of 
young, healthy adults are resilient to a four-day broad-spectrum 
antibiotic treatment, that most of these communities can recover 
to their D0 composition and that the resilience/recovery patterns of 
individual species are modulated by ARG carriage. Further studies 
are needed to verify whether the human gut microbiota is likewise 
resilient to multiple antibiotic exposures over prolonged peri-
ods and whether these results hold in children with an immature 
gut microbiota or in elderly people with an age-related decline in 
immune competence and perturbed intestinal microbiota.

Methods
Study volunteers and antibiotic exposure. Fecal samples were taken from 12 
healthy Caucasian males, aged between 18 and 40 yr with an average age of 
23.4 yr (s.d. =  5.3 yr) at the start of the study, glycated haemoglobin A1c below 
43 mmol mol−1 (< 6.1%) and with normal bowel function (1–3 bowel movements 
per day). The exclusion criteria included: any use of antibiotics 6 months before 
inclusion; BMI below 18.5 kg m−2 or above 25 kg m−2; smoking; abnormal serum/
plasma levels of electrolytes, lipids, creatinine, liver enzymes (alanine transaminase, 
aspartate aminotransferase, alkaline phosphatase), thyroid stimulating hormone 
or haemoglobin; any current or existing disease in the gastrointestinal system or 
family history of inflammatory bowel disease or diabetes; lactose intolerance or 
coeliac disease; allergy against the antibiotics used in this study and the use of 
medication that could not be paused during the study period. In addition to a 
screening visit, the study design encompassed five study visits (D0, D4, D8, D42 
and D180) and a four-day broad-spectrum antibiotic intervention consisting of 
once-daily administration of 500 mg meropenem, 500 mg vancomycin and 40 mg 
gentamicin dissolved in apple juice and ingested orally. This cocktail is a modified 
version of a protocol used in intensive care units32 and is designed to eradicate as 
many gut microorganisms as possible without causing direct side effects. None of 
the three antibiotics are absorbed by the gut mucosa62–64. Except keeping the diet 
unaltered throughout the study period and avoiding yoghurt products on the four 
days preceding each visit, no dietary regulations were required. The study was 
approved by the Scientific-Ethics Committee of the Capital Region of Denmark, 
registered with ClinicalTrials.gov (ID: NCT01633762) and conducted according to 
the Helsinki Declaration. All the subjects gave informed consent to participate in 
this study. Data regarding glucose metabolism, and gut and pancreatic hormone 
secretion have been published previously, alongside further information about the 
protocol and experimental procedures31. The present experiment was conducted 
only once on the present cohort, with no separate replication cohort at this point.

DNA extraction and shotgun metagenomics sequencing. Stool samples 
were collected before the treatment at D0 and at D4, D8, D42 and D180. The 
participants collected fresh stool samples at home that were immediately frozen 
in their home freezer at − 20 °C and delivered to Gentofte Hospital within 36 h 
of sampling. The samples were transported using insulating polystyrene foam 
containers with a transport time below 3 h and were stored at − 80 °C until DNA 
extraction. Microbial DNA was extracted from 200 mg frozen stool using the 
International Human Microbiome Standards standard operating procedure 
07 V265. Briefly, bacteria were first subjected to chemical lysis and mechanical 
lysis by bead-beating; next debris, aromatic compounds, proteins and RNA 
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were eliminated and finally, DNA was precipitated using alcohol. To enable the 
extraction of sufficient DNA from seven of the D4 and two of the D8 samples, 
we modified the DNA extraction procedure by extracting DNA from 3 ×  200 mg 
feces, adding only one-third of the advised amount of both the phosphate buffer 
and potassium acetate to each sample, and by adding 6 µ l RNase (instead of 2 µ l) 
after pooling the three samples. The DNA concentration was determined using a 
Qubit Fluorometer (Thermo Scientific) and the quality of the extracted DNA was 
estimated by agarose gel electrophoresis. Three of the samples from D4 repeatedly 
failed during library construction and were therefore discarded. We optimized 
the library preparation for six samples at D4 and two samples at D8 (marked 
by the suffix ‘opt’ in the Sample ID in Supplementary Table 2). Whole-genome 
shotgun sequencing was performed on the remaining 57 fecal samples using the 
Illumina HiSeq 2000 platform under paired-end sequencing (2 ×  100 base pairs 
(bp)). Data generation from the samples through metagenomic sequencing has 
been shown in a previous report to be fairly robust across multiple replications 
when standard protocols are applied36, thus no explicit replication of this step was 
made. We generated 79.4 ±  18.0 million raw metagenomic reads (7.94 ±  1.8 Gb) 
per sample. The sequencing depths (in millions of reads) for D0, D4, D8, D42 and 
D180 samples were 76.5 ±  11.1, 78.1 ±  13.2, 75.6 ±  19.6, 81.2 ±  11.4 and 85.4 ±  26.6, 
respectively, suggesting that the read depths were not significantly lower in the 
samples immediately after the intervention. The reads were quality controlled by 
removing adaptors and by trimming the reads using a quality trimming cut-off 
of 20 and a minimum read length of 30 bp66. On average, 6.8 million reads were 
filtered out due to adaptor contamination and 0.94 million reads did not pass the 
trimming criteria. Human DNA reads were removed by screening them against 
the human genome (version hg19). On average, 0.24 million reads were removed 
due to human contamination. This resulted in 69.3 ±  8.7, 66.5 ±  13.1, 68.2 ±  15.8, 
72.0 ±  12.1 and 79.8 ±  22.6 million high-quality non-human reads per sample for 
D0, D4, D8, D42 and D180, respectively. Sample information and quality control 
summary statistics for the reads are shown in Supplementary Table 2.

Taxonomic characterization and ecosystem diversity measures. To generate 
taxonomic abundance profiles, we used the MOCAT and MOCAT2 software 
packages40,66. Screened high-quality reads were aligned (alignment length cut-off 
of 45 bp and minimum 97% sequence identity for the option ‘screen’) to a database 
consisting of 10 universal single-copy marker genes extracted from 3,496 NCBI 
reference genomes and 263 metagenomes34. We obtained relative abundances for 
477 species-level mOTUs. We discarded the low abundance species by removing 
those that were present in less than two study samples and whose average relative 
abundance across all samples was lower than 0.01%, resulting in a pruned relative 
abundance table containing 269 mOTUs. Note that the mOTU annotated here 
as C. bolteae (relevant in the discussion of differential abundance analyses—see 
Results) has been reclassified as Lachnoclostridium bolteae recently67 and referred 
to by this name in a previous publication30.

Based on this table, we calculated species alpha diversity using two measures, 
the richness per sample by counting the number of mOTUs with non-zero 
abundance and the Shannon diversity index per sample. The species diversity 
measures can be affected by the amount of DNA available for sequencing, therefore 
we analysed whether or not library optimization had any effect on the diversity 
measures by plotting the richness and Shannon diversity together with the DNA 
mass per sample (Supplementary Fig. 7). We did not observe any particular pattern 
for how high or low amounts of DNA in a sample affected by these metrics.

Functional characterization. The high-quality reads were aligned against a 
combined database (IGChg38 hereafter) consisting of the hg38 release of the 
human reference genome and the IGC consisting of 9.9 million non-redundant 
microbial genes39. We used bwa mem68 (version 0.7.15-r1140) with default 
parameters. The purpose of adding the human genome was to filter out reads that 
mapped as well or better to some human sequence than to any bacterial gene. The 
alignments were first filtered to only retain alignments longer than 50 bp with  
> 95% sequence identity. The highest scoring alignment(s) was/were then kept for 
each read. Alignments were performed separately for paired-end and single-read 
libraries (single-reads are generated when a corresponding read from the other 
direction is removed due to the filtering steps mentioned earlier). As IGChg38 is 
a database predominantly of genes and not genomes, there will be a significant 
number of read-pairs where one end maps within the gene and the other end maps 
outside of the gene—either mapping to an adjacent gene or remaining unmapped 
by falling in the intergenic region. Therefore, we counted a whole read-pair aligning 
to a gene when (1) both ends from a read-pair mapped to the same gene, (2) only 
one end from a read-pair mapped to the gene, or (3) a read from the single-read 
library mapped to the gene. The percentages of read-pairs that mapped to the 
IGChg38 from D0, D4, D8, D42 and D180 samples were 95.4 ±  1.2, 76.1 ±  21.3, 
92.0 ±  5.7, 95.6 ±  1.4 and 95.7 ±  2.4, respectively. In a given metagenomic sample, we 
estimated the relative abundance of each gene in IGC as follows:

 1. Initialize two arrays of read-pair counts with 0 for each entry in IGChg38,  
Ui and Ci.

 2. For each read-pair that maps uniquely to entry i in IGChg38, add 1 to the 
corresponding count Ui. This results in a uniquely mapped read-pair count 
for each gene.

 3. Set Ci =  Ui.
 4. For each read-pair that mapped to multiple entries (for example, i1, i2,  

i3, … , in) in IGChg38, share it proportionately between these entries based on 
their abundance estimated from uniquely mapped read-pairs (Ui1, Ui2, Ui3, … ,  
Uin). For example, consider a read-pair mapping to multiple entries i1, i2,… 
, in. For each j in 1, 2,… , n, the respective Cij entry would be incremented by 
Uij/ΣkUik.

 5. Remove the entries corresponding to human chromosomes.
 6. Normalize the counts by gene lengths to obtain abundances.
 7. Convert them into relative abundances by dividing individual abundances by 

the total abundance.

By using the functional annotations of IGChg38 genes provided in the most 
recent version of the MOCAT2 software40, we estimated the relative abundance 
of functional pathways, ARGs and virulence gene families, using the following 
databases: KEGG47, CARD41, ResFams42 and PATRIC53. We summed the abundance 
of all ARGs providing resistance to any glycopeptide, β -lactam or aminoglycoside 
(see Results for further reasoning). Genes from the IGChg38 were assigned to a 
CARD model by applying the CARD RGI software, requiring a hit scoring above 
the family-specific threshold, with the top hit taken if several were achieved. 
Similarly, ResFams hits were assigned to genes if no CARD hit was assigned and 
the score to a ResFams HMM model exceeded the gathering threshold for that 
model. Of the three ARG models in CARD version 1.1.5, we excluded target loss 
models (where loss of a gene confers resistance) and protein variant models (for 
example where known single-nucleotide variants affect antibiotic susceptibility)  
as ARGs under these models cannot be reliably identified using our analysis 
pipeline. Instead we used only the CARD homolog models, where under 
assumptions of curation of the database, the presence of a member of an ARG 
family is considered a reliable indicator for probable ARG potential. When 
using the homolog models, we assume that metagenomic reads highly similar 
to an ARG from a model (having > 95% nucleotide similarity) will confer this 
functional capacity. Although this cannot be fully guaranteed, 95% nucleotide 
identity is stringent enough to identify genes with very closely related functions, 
which makes it unlikely that any exceptions will have a significant impact on 
our reported results. This is also in line with the current state of the art for 
metagenomic analyses. We tested whether there is a bias introduced by our choice 
of the ARG database and found that our results on the antibiotics used in this 
study and on MEPs hold when using the Antibiotic Resistance Gene Database69, 
which due to its greater age has different discovery biases (Supplementary Fig. 8). 
Additionally, we benchmarked our ARG pipeline on three example, well-curated, 
bacterial genomes. Predicted and manually curated gene assignments (taken from 
GenBank) are shown in Supplementary Table 3. In brief, of the 154 ARGs assigned 
by our pipeline to these three genomes, none conflict with the curated annotation 
and 142 are exact matches or synonyms. The remaining 12/154 are all less specific 
assignments than the original annotation (for example ABC efflux pump instead 
of specifically MsbA). Thus, we conclude that the method used here is very 
conservative and that although false positives must occur, they will be relatively few 
and we are confident of the results generated with our ARG pipeline. The virulence 
gene abundances were binned at the level of PATRIC functional descriptors. For 
differential abundance testing at the microbial functional level, we discarded low 
abundance KEGG modules and pathways by removing those that were present in 
fewer than two samples and whose average relative abundance across all samples 
was lower than 0.01%, resulting in a pruned relative abundance table containing 
403 functional modules and 257 pathways.

Identifying metagenomic species. We demonstrated previously how binning  
co-abundant genes across a series of metagenomic samples enables the 
construction of MGSs based on a large gene catalog without the need for a 
reference genome database33. In the present study we used the IGC that is more 
than 2 ×  larger than the previously used catalog33. We built a more complete and 
accurate collection of such MGSs by grouping co-abundant genes across these 
1,267 metagenomes39, identifying 1,264 MGSs (each comprising at least 700 
genes). In our analyses, to estimate the relative abundance of an MGS in a sample, 
we calculated the median relative abundance of all genes belonging to that MGS 
in that sample. We then considered the MGS detected if the relative abundance 
calculated in this way was non-zero (that is, at least half the genes had non-zero 
abundance). The MGSs were annotated to species level if more than 50% of their 
genes could be aligned to a RefSeq reference genome at 95% sequence similarity and 
less than 10% of their genes had an alternative taxonomy. MGSs that could not be 
annotated at species level were then annotated at the genus level in a similar manner 
using an 85% sequence similarity requirement. Overall, we were able to map 278 
MGSs to the genus and/or species level. We discarded low abundance MGSs by 
removing those that were present in fewer than two samples and whose average 
relative abundance across all samples was lower than 0.0001%, resulting in a pruned 
relative abundance table containing 582 MGSs. Given that we had a sparse relative 
abundance table with many zero values, specifically for the differential abundance 
analyses, we set the average relative abundance threshold to 0.01% as with the 
mOTUs, resulting in a pruned relative abundance table containing 407 MGSs.

Control populations. To determine whether the changes reported here were really 
associated with the antibiotic treatment and not simply explained by the passage of 
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time, we employed three different control populations of previously published gut 
metagenome samples. We downloaded the metagenomes from two cohorts, HMP35 
and another healthy cohort used in a previous report to study the temporal and 
technical variability of the human microbiome36 (Voigt; antibiotic-treated samples 
were excluded), from the European Nucleotide Archive. Eighty-two paired HMP 
samples from 41 donors sampled at two different time points with time spans  
> 100 d and 35 paired Voigt samples from 7 donors with inter-sample time spans of 
2–773 d were processed using MOCAT as described above to produce comparable 
taxonomic and gene abundance profiles.

Statistical tests. To study the overall effects of antibiotic treatment on the 
gut microbiota, we determined ecosystem-level metrics such as alpha and 
beta diversity and used ordination techniques to plot and inspect the relative 
abundances of the mOTU taxonomic entities resolved. Species richness, Shannon 
index and Bray–Curtis dissimilarities were computed and principal coordinate 
analyses were conducted with R using the vegan and ape packages. In amplicon-
based studies, where taxonomic resolution varies strongly, a phylogenetic distance 
measure like UniFrac would be required. Here, as we can achieve a uniform and 
high resolution through deep shotgun metagenomic data, we instead made use of 
the Bray–Curtis distance metric, thereby achieving compatibility with previous 
shotgun metagenomic studies. Samples were rarefied to 14 million inserts using 
USEARCH software70 before conducting richness and diversity comparisons. 
Two-sided paired Wilcoxon signed-rank tests were used to test whether species 
richness and Shannon diversity were significantly different between paired samples 
at consecutive time points. Two-sided Wilcoxon rank-sum tests were used to test 
whether Bray–Curtis dissimilarities between same-donor samples in our study 
were significantly different to those between same-donor samples with similar 
time separation in control datasets. We also used two-sided paired Wilcoxon 
signed-rank tests to determine whether the microbial composition (mOTU and 
MGS relative abundances) or KEGG functional features (modules and pathways) 
changed significantly at each sampling time point (D4, D8, D42, D180) compared 
to D0. For better interpretability of results, we removed mOTU linkage groups 
without taxonomic annotation before performing differential abundance tests, 
which resulted in a relative abundance table containing 106 mOTU species. We 
adjusted the P values obtained using the Benjamini–Hochberg FDR-control 
procedure and reported all changes significant at q <  0.05.

Given that the relative abundances of taxa in an ecosystem have to sum to one, 
relative abundances are compositional data. Differential analysis based on relative 
abundances is thus susceptible to compositional effects, as an increase in the 
relative abundance of one taxon will lead to a decrease in the relative abundances 
of other components71–73. To verify whether the observed microbial shifts were 
real or spurious differences arising due to such effects, we used a previously 
described compositionality test74, which verifies whether differences in the relative 
abundance of a taxon between time points (or groups) were due to a dramatic 
abundance change in another taxon (Supplementary Table 1). We did not test 
differences between D0 and D4 because, due to the nature of the intervention, 
there were pronounced changes during this period in most of the microorganisms, 
dramatically affecting the relative abundances of the surviving species. That 
compositional effects will complicate the interpretation of observed changes 
between these time points can therefore be assumed, even without such a test.

Summing the ARG abundances for each drug, we calculated relative abundances 
of ARG abundance against β -lactams, aminoglycosides and glycopeptides from all 
samples at each time point. We also considered MEPs, which can provide broad 
resistance to the three study antibiotics and an additional category where we pooled 
all other ARGs for comparison (‘others’). Two-sided paired Wilcoxon signed-rank 
tests were performed to test whether there was a significant enrichment in ARGs 
against the antibiotic classes used in the intervention at each time point compared to 
D0 and FDR-adjusted P values were reported.

To investigate whether carrying ARGs against the antibiotics used in the study 
is an advantage for a species in terms of its survival through the intervention or 
de novo colonization after the intervention, we generated contingency tables for 
how the survival (or de novo colonization) potential of MGS species changes 
depending on whether or not they were carrying appropriate ARGs. We compared 
all post-intervention time points to D0 in this analysis. For instance, to investigate 
the advantages of carrying aminoglycoside ARGs for survival during the first 
eight days of the study, this survival versus non-survival contingency table was 
determined as follows: a) the number of MGSs that were observed in both D0 and 
D8 (that is, that survived), carrying aminoglycoside ARGs, b) the number of MGSs 
that were observed in both D0 and D8, not carrying aminoglycoside ARGs, c)  
the number of MGSs that were observed in D0 but not observed in D8 (that is, 
that did not survive), carrying aminoglycoside ARGs and d) the number of MGSs 
that were observed in D0 but not observed in D8, not carrying aminoglycoside 
ARGs. An MGS was counted multiple times if it occurred in multiple samples, 
thus we counted the MGS-sample pairs above. Similarly, contingency tables were 
constructed to investigate the advantages of carrying aminoglycoside ARGs for  
de novo colonization by counting MGSs that were not observed on D0 but 
observed on D8 (that is, those that de novo colonized) and MGSs that were 
observed both on D0 and D8 (that is, those that already existed). Fisher’s exact tests 
were performed on these contingency tables to test whether the chances of survival 
or de novo colonization are affected by observable ARG carriage. The OR was 

calculated using the formula OR =  ad/bc. Odds ratios are reported in the text with 
95% confidence intervals. FDR-adjusted q values and odds of survival/colonization 
were represented in a heatmap. To ensure that our findings were not due to ARGs 
against one class being found in low-abundant, transient gut microbiota, we used 
HMP samples to test whether MGSs carrying ARGs against different classes 
were significantly different in their relative abundance, but we did not find any 
significant differences (Supplementary Fig. 9).

To assess the enrichment of virulence factors after antibiotic exposure we 
calculated the mean abundance of virulence factors (summed at the level of functional 
descriptors) across all samples at each time point and we scaled this number for easier 
visualization by subtracting D0 abundance and dividing by D0 standard deviation 
(analogous to a Z-score). A one-sided Wilcoxon rank-sum test was used to test 
whether there was significant enrichment of virulence factors following antibiotic 
exposure with respect to D0 and FDR-adjusted P values were reported. All statistical 
tests were performed within the R statistical computing environment.

Breakdown of ARG signal by taxonomy. To assess whether or not the changes 
seen under treatment in antibiotic resistance gene abundance across the cohort 
can be reduced to contributions from particular clades, we can break down such 
contributions by counting abundance separately of Co-abundance gene groups/
MGSs linked to different clades. Such taxonomic classification is achieved based 
on the highest similarity of their constituent IGC genes to genomes from the 
respective clades, under BLASTn analysis. To classify a Co-abundance gene group 
as belonging to a broader clade (for example a bacterial family), at least 40% of its 
genes must be most similar to gene variants found within that clade, with no more 
than 15% most similar to gene variants from another clade. Performing such an 
analysis for bacterial family, based on the high prevalence of many known ARGs in 
Enterobacteriaceae, reveals that the aminoglycoside resistance spike at D8 seems 
driven by this family, whereas the effects on other ARG classes traced are not 
(Supplementary Fig. 10).

Moreover, although the classification of groups of genes correlated in 
abundance as either mobile element entities or bacterial chromosomes is still 
only a partially solved problem, a basic proxy for this classification stems from 
whether or not such groups are large enough to be chromosomal (MGSs) or too 
small for this to be the case (Co-abundance gene groups). To assess whether the 
patterns observed here are driven largely by genes found on chromosomes or 
on smaller entities such as plasmids, a first check is thus possible by breaking 
down the respective contribution of these classes of gene groups. Supplementary 
Fig. 11 shows this analysis, revealing that the bulk of the ARG abundance from 
each sample traces to groups of correlated genes likely to represent bacterial 
chromosomes/taxa rather than smaller mobile elements like phages or plasmids.

Robustness to sequencing depth differences. We note that all our samples had 
a minimum sequencing depth of 17.6 million non-human read-pairs and at least 
11.9 million read-pairs were mapped to IGC. Thus, our detection threshold is quite 
low, on the order of 1 in 10 million. Although we cannot rule out that some specific 
species were present in a sample below our detection threshold, the overall trends 
reported in our survival and de novo colonization analysis were not affected by 
sequencing depth (see Supplementary Fig. 6).

Code availability. For the differential abundance testing, we used a 
compositionality test available at: https://github.com/apalleja/compositionality_
test/. Otherwise standard R packages were used.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The high-quality reads have been deposited in the European Nucleotide Archive 
with accession number ERP022986. Relative abundances of taxa and functional 
features can be downloaded at http://arumugamlab.sund.ku.dk/SuppData/Palleja_
et_al_2018_ABX/.
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