

Material

2

3

http://genoweb.toulouse.inra.fr/~formation/4_Galaxy_RNAseq/

Slides & Exercise leaflet (doc)

- pdf : one per page
 - pdf : three per page with comment lines

Data & results files (data)

Seno toul bioinfo

Session organisation

- Sequence quality
- Theory + exercises
 Spliced read mapping Visualisation
 - Theory + exercises
- expression measurement
- Theory + exercises
- mRNA calling
 - Theory + exercises

What you should know

How to connect to Sigenar galaxy workbench? http://sigenae-workbench.toulouse.inra.fr/galaxy/

Citicae Midi-Fyrenees	eno Σ oul Σ ioinfo			ENC	COD	E
lorma	ENCODE	Statistics about the cu	Irrent G	ENCODE freeze (version	13)	
e Biot		Statistics of previous Gen	ode free	zes are found archived here		
Plateform	XVVVV	*The statistics derive from the gtf fill reference genome.	s, which inc	clude only the main chromosomes of the	human	
-	Project					
	Data	Version 13 (March 201	2 freeze	, GRCh37)		
	Statistics	General stats				
	Participants				_	
	Publications	Total No of Genes	55123	Total No of Transcrinte	192067)
	RGASP 1/2	Protein-coding genes	20070	Protein-coding transcripts	77901	
	RGASP 3	Long non-coding RNA genes	12393	- full length protein-coding:	55928	
	Contact us	Small non-coding RNA genes	9173	 partial length protein-coding: 	21973	
		Pseudogenes	13123	Nonsense mediated decay transcripts	11549	
		 processed pseudogenes: 	9895	Long non-coding RNA loci	19835	
		- unprocessed pseudogenes:	2550	transcripts		
		- unitary pseudogenes:	156			
		 polymorphic pseudogenes: 	31			
		- pseudogenes:	298	Total No of distinct translations	78119	
		immunogiobuiin/T-cell receptor gene segments		Genes that have more than one	14235	
		- protein coding segments:	364	distinct translations		
		- pseudonenes:	193			

Intron Retention

ition

Stolate Transcriptome variability summary

Hardson area

13

15

2____3

nboj/journal/v25/n5/fig_tab/7601023a_F2.html

in in

- Number of transcripts
 * possible variation factor between transcripts: 10⁶ or more,
 * expression variation between samples.
- Many types of transcripts *mRNA, ncRNA,...
- Isoforms (with non canonical splice sites)
- Intron retention
 *The splicing is not always completed
 *Is a new isoform or a transcription error
- Transcript decay (degradation)
- Allele specific expression

re.com

Seno Stoul S bioinfo	sification ?		
EST	PCR/RT-QPCR	SAGE	MicroArrays
No quantification	Quantification	Quantification	Indirect quantificatio
Low throughput	Low throughput (up to hundreds)	Low throughput (up to thousands)	High throughput (up to millions)
Discovery (Yes)	No	No	Discovery (Yes)
		11/10/1	/

 $\rightarrow\,$ Need transcript sequence partially known

→ Difficulties in discovering novels splice events

Seno toul bioinfo

What is RNA-Seq ?

- use of high-throughput sequencing technologies to sequence cDNA in order to get information about a sample's RNA content
- Thanks to the deep coverage and base level resolution provided by next-generation sequencing instruments, RNAseq provides researchers with efficient ways to measure transcriptome data experimentally

Nature Reviews Genetics 10, 57-63 (January 2009) | doi:10.1038/nrg2484

RNA-Seq: a revolutionary tool for transcriptomics

RNA-Seq is a recently developed approach to transcriptome profiling that use deep-sequencing technologies. Studies using this method have already altered our view of the sectant and complexity of uskaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

16

http://en.wikipedia.org/wiki/RNA-Seq

What is different with RNA-Seq ?

- No prior knowledge of sequence needed
- Specificity of what is measured
- Increased dynamic range of measure, more sensitive detection
- Direct quantification
- Good reproducibility
- Different levels : genes, transcripts, allele specificity, structure variations
- New feature discovery: transcripts,
- isoforms, ncRNA, structures (fusion...)
- Possible detection of SNPs, ...

Seno toul E bioinfo - No more amplification - Single Molecule Sequencing Technology (tSMS)

Third Generation RNA-Seq

- Single Molecule Real Time (SMRT) sequencing technology (PacBio RS)
- One read per transcript

19

http://www.genengnews.com/gen-articles/third-generation-sequencing-debuts/3257/

Seno E

Different approaches :

Alignment to

- De novo
 - No reference genome, no transcriptome available
 - Very expensive computationally
 - Lots of variation in results depending on the software used
- Reference transcriptome
 - Most are incomplete - Computationally inexpensive
- Reference genome - When available
 - Allow reads to align to unannotated sites
 - Computationally expensive
 - Need a spliced aligner

20

seno toul bioinfo

What are we looking for?

Identify genes

- List new genes

Identify transcripts

- List new alternative splice forms

Quantify these elements \rightarrow differential expression

Usual questions on RNA-Seq !

- How many replicates ?
 - Technical or/and biological replicates ?
- How many reads for each sample?
- How many conditions for a full transcriptome ?
- How long should my reads be ?
- Single-end or paired-end ?

22

Seno toul bioinfo

ENCODE answers

- RNA-Seq is not a mature technology.
- Experiments should be performed with two or more biological replicates, unless there is a compelling reason why this is impractical or wasteful
- A typical R² (Pearson) correlation of gene expression (RPKM) between two biological replicates, for RNAs that are detected in both samples using RPKM or read counts, should be between 0.92 to 0.98. Experiments with biological correlations that fall below 0.9 should be either be repeated or explained.
- Between 30M and 100M reads per sample depending on the study.

NB. Guidelines for the information to publish with the data.

Seno D toul D bioinfo

Statisticians answers

Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing

BMC Genomics 2012, 13:484 doi:10.1186/1471-2164-13-484

Jose A Robles (jose.robles@csiro.au)

Conclusions

This work quantitatively explores comparisons between contemporary analysis tools and experimental design choices for the detection of differential expression using RNA-Seq. We found that the DESeq algorithm performs more conservatively than edge Rand NBPSeq. With regard to testing of various experimental designs, this work strongly suggests that greater power is gained through the use of biological replicates relative to library (technical) replicates and sequencing depth. Strikingly, sequencing depth could be reduced as low as 15% without substantial impacts on false positive or true positive rates.

Seno E toul E bioinfo

Sequencing

Cluster generation:

- 35 amplification cycles
- 1 cluster \rightarrow 2 000 identical molecules
- 500 000 clusters / flocell

Sequencing:

- Image acquisition:
- 50 min / cycle

Ex: $2x100bp \rightarrow 2x100x50 min$

Seno Dicinfo

Paired-end sequencing

- Modification of the standard single-read DNA library preparation facilitates reading both ends of each fragment
- Improvement of mapping
- Help to detect structural variations in the genome like insertions or deletions, copy number variations, and genome rearrangements

Seno toul bioinfo

RNAseq specific bias

- Influence of the library preparation
- Random hexamer priming
- Positional bias and sequence specificity bias. Robert et al. Genome Biology, 2011,12:R22
- Transcript length bias
- Some reads map to multiple locations

natique Midi-Pyrénées	Seno toul bioin	Verifying RNA-Seq raw data	
e Bioinfor	FastQC		
Plateforme	http://ww	w.bioinformatics.bbsrc.ac.uk/projects/fastqc/	
		Press for gen	
		Mer generation (bei gene generation)	
		Annormal advances Annormal advances	
	-	Has been developed for genomic data ³⁷	

Take home message on quality analysis

Elements to be checked :

- Random priming effect
- K-mer (polyA, polyT)

Alignment on reference for the second quality check and filtering.

A good run?:

- Expected number of reads produced (2x500millions / flowcell),
- Length of the reads expected (100pb),
- Random selection of the nucleotides and the GC%,
- Good alignment: very few unmapped reads, pairs mapped on opposite strands.

Seno Di to ul Di bioinfo

Reference transcriptome file

What is a GTF file ?:

- derived from GFF (General Feature Format, for description of genes and other features)
- Gene Transfer Format:
- http://genome.ucsc.edu/FAQ/FAQformat.html#format4

<seqname> <source> <feature> <start> <end> <score> <strand> <frame> [attributes] [comments]

The [attribute] list must begin with:

gene_id value : unique identifier for the genomic source of the sequence. transcript_id value : unique identifier for the predicted transcript.

The chromosome name should be the same in the gtf file 42

TopHat algorithm : first step

Y

46

atics 2009:25:1105-1111

ell C et al. Bioinf

TopHat finds junctions by mapping reads to the reference:

Seno toul bioinfo

- all reads are mapped to the reference genome using Bowtie
- reads not mapped to the genome are set aside as IUM (initially unmapped)
- · low complexity reads are discarded
- for each read : allow until 20 alignments

Storing Why does it find small exons?

- In the last tophat versions :

Short read sequencing machines can currently produce reads 100bp or longer but many exons are shorter than this so they would be missed in the initial mapping. **TopHat solves this problem mainly by splitting all input reads into smaller segments which are then mapped independently**. The segment alignments are put back together in a final step of the program to produce the end-to-end read alignments.

Seno Diciona

Exon assembly process

C et al. Bio

ell C et al. B

tics 2009;25:1105-1111

- TopHat then assembles the mapped reads
- Define island: aggregates mapped reads in islands of candidate exons
 - Generate potential donor/acceptor splice sites using neighbouring exons
- Extend islands to cover eventually splice junctions
 - +/- 45 bp from reference on either side of island

Seno toul E Spice junction reference -15 To map reads to splice junction : 3 - Enumerate all canonical donor and acceptor sites in islands • long (>= 75 bp) reads: "GT-AG", "GC-AG" and "AT-AC" introns · Shorter reads: only "GT-AG" introns - Find all pairings which produce GT-AG introns between islands • 50 bp < Intron size < 500,000 bp 51

49

50 tics 2009;25:1105-1111

TopHat Inputs

Inputs :

- bowtie2 index of the genome ftp://ftp.cbcb.umd.edu/pub/data/bowtie indexes/ http://bowtie-bio.sourceforge.net/index.shtml
- file fasta (.fa) of the reference or will be build by bowtie, in the index directory
- File fastq of the reads

! the GTF file and the Bowtie index should have same name of chromosome or contig

Command lines :

bowtie2-build <reference.fasta> <index_base> tophat [options] <index_base> <reads1_1]> <[reads1_2]>

53

Stoul E

TopHat Options

Some useful options (command line) :

- -h/--help
- -v/--version - - bowtie1 (instead of bowtie2)
- o/--output-dir
- -r/--mate-inner-dist : no default value
- -m/--splice-mismatches : default 0
- -i/--min-intron-length : default 50
- -I/--max-intron-length : default 500000, prefer 25000 for non human
- --max-insertion-length : default 3
- --max-deletion-length : default 3 -p/--num-threads

Seno toul E bioinfo Special note on the website

Please Note TopHat has a number of parameters and options, and their default values are tuned for processing mammalian RNA-Seq reads.

If you would like to use TopHat for another class of organism, we recommend setting some of the parameters with more strict, conservative values than their defaults.

Usually, setting the maximum intron size to 4 or 5 Kb is sufficient to discover most junctions while keeping the number of false positives low.

55

More topHat options

Your own junctions : -G/--GTF <GTF2.2file> -j/--raw-juncs <.juncs file> --no-novel-juncs (ignored without -G/-j)

Your own insertions/deletions: --insertions/--deletions <.juncs file> --no-novel-indels

56

Seno Dicinfo

Library types

library-ty	pe To su	pHat will treat the reads as strand specific. Every read alignment will have an XS attribute tag. Consid pplying library type options below to select the correct RNA-seq protocol.
Library Type	Examples	Description
fr-unstranded	Standard Illumina	Reads from the left-most end of the fragment (in transcript coordinates) map to the transcript strand, and the right-most end maps to the opposite strand.
fr-firststrand	dUTP, NSR, NNSR	Same as above except we enforce the rule that the right-most end of the fragment (in transc coordinates) is the first sequenced (or only sequenced for single-end reads). Equivalently, it assumed that only the strand generated during first strand synthesis is sequenced.
fr-secondstrand	Ligation, Standard	SOLID Same as above except we enforce the rule that the left-most end of the fragment (in transcri coordinates) is the first sequenced (or only sequenced for single-end reads). Equivalently, it assumed that only the strand generated during second strand synthesis is sequenced.

TopHat Outputs

58

Outputs :

Seno Distance

- accepted_hits.bam : list of read alignments in SAM format compressed
- junctions.bed : track of junctions,
- scores : number of alignments spanning the junction
 insertions.bed and deletions.bed : tracks of insertions and deletions
- logs directory files
- unmapped.bam : Unmapped or multi-mapped (over the threshold) reads
- prep_reads.info : number of reads and read length for input and output

Spice class of the series o

Seno toulΣ bioinfo

Bam & Bed

- BAM (Binary Alignment/Map) format:
 - Compressed binary representation of SAM
 - Greatly reduces storage space requirements to about 27% of original SAM
 - · Bamtools: reading, writing, and manipulating BAM files
- Bed (Browser Extensible Data) format:
 - tab-delimited text file that defines a feature track http://genome.ucsc.edu/FAQ/FAQformat.html#format1
 - The first three required BED fields are:
 - <chromosome> <start> <end>
 - 9 additional optional BED fields

Seno toul bioinfo

Tophat technical issues

- Temporary disk space
 - 100 000 000 pair-ends = 0,5 To of temporary disk space
- Number of cpus
 - 100 000 000 pair-ends = 5-7 cpu days on the local cluster
- New platform cluster:
 - 34 cluster nodes with 4*12 cores and 384 GB of ram per node: 1632 cores
 - 1 hypermem node (32 cores and 1024 GB of ram)
 - A scratch file system (157 To available, 6 Gbps bandwith)

formatique Midi-Pyrénées	Seno E toul E bioinfo	Visualizing alignments on IGV
te Bloin	Import a referen	ice genome
Iteform	File View Tracks Help	
ž.	Load from File Load from URL	▼Go 音 ⑫ □
	Load from Server New Session	Ø Import Genome
	Open Session	ID * (unique id, e.g. hg18)
	Import Genome	Name *
	Save Image	Fasta file is a directory
	Export Regions Import Regions	Fasta file *
	Clear Regions Exit	Cytoband
	/home/bardou/igv_session.xml	Gene file
		Allas file
		Supply a sequence URL if defining a web-hosted genome (optional, not common). See user guide for more details.
		Sequence UR
		 repaired Perspective file integrands can be a FASIA file, as directory of FASIA files, or ago of FASIA files, octatorally, gravity a spotaard file to display the chronoune leavagement and an annotation file to display be gare taxet. See the securitation for ideorphonal displayment annotation films.

Seno toul bioinfo

If you have the model file

The model is presented in the GTF file (Gene Transfer Format) Two approaches

- Gene level
- Transcript level

Tools for each approach

- htseq-count
- · cufflinks (sigcufflinks)

73

Seno toul bioinfo

HTSeq-count

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html

- Process the output from short read aligners in various formats
- Count how many reads map to each feature (in RNA-Seq, the features are typically genes)
 - counting reads by genes
 - or consider each exon as a feature to check for alternative splicing
- Inputs:
 - file with aligned sequencing reads: bam (or sam) file
 - list of genomic feature; gtf file

74

Seno Di Stoul Di Stoul Di Stoul

HTSeq-count

- Command line :
 - htseq-count [options] <sam_file> <gtf_file>
 - samtools view accepted_hits.bam | htseq-count --stranded=no -m intersection-nonempty - file.gtf -q > output.htseq-count.txt &

	union	intersection _strict	intersection _nonempty
gend.A	gene_A	gene_A	gene_A
gene _A	gene_A	ro_teature	gene_A
gene_A gene_A	gene_A	no_feature	gene_A
and and a	gene_A	gene_A	gene_A
A star	gene_A	gene_A	gene_A
Ame Ame A	ambiguous	gane_A	gene_A
A prog	ambiguous	ambiguous	ambiguous

Some options:

-m <mode> : inte</mode>	ersection-strict or
intersection-none	mpty (default union
-strandad -cuas	no or reverses

(default yes) -t <feature type> : 3rd column in GTF

```
file
```

-q : quiet -h : help

Seno D toul D bioinfo

Cufflinks in general

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation

Cole Trapnell, Brian A Williams, Geo Pertea, All Mortazavi, Gordon Kwan, Marijke J van Baren, Stever L Salzberg, Barbara J Wold & Llor Pachter Attillations i Contributions i Corresponding author

Nature Biotechnology 28, 511-515 (2010) | doi:10.1038/nbl.1621 Received 02 February 2010 | Accepted 22 March 2010 | Published online 02 May 2010

http://cufflinks.cbcb.umd.edu/

- assembles transcripts
- estimates their abundances : based on how many reads support each one
- tests for differential expression in RNA-Seq samples

<image><section-header>

78

<page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><page-header><image><image><image><image><image><image><image><image><image><image><image>

RPKM / FPKM

- Transcript length bias

Seno toul bioinfo

- **RPKM** : Reads per kilobase of exon per million mapped reads
 - 1kb transcript with 1000 alignments in a sample of 10 million reads (out of which 8 million reads can be mapped) will have:
 RPKM = 1000/(1 * 8) = 125
- the transcript length depends on isoform inference
- FPKM : for paired-end sequencing
 - A pair of reads constitute one fragment

80

Command line: • cufflinks [options]* <aligned_reads.(sam/bam)> Some options : -h/--help -o/--output-dir -p/--num-threads G/--GTF <reference_annotation.(gtf/gff)> : estimate isoform expression, no assembly novel transcripts

5	geno Σ	
0	bioinfo	

Hands-on : hints

samtools sort by read names

htseq-count on sorted bam file and strand-specific assay specify 'no', select mode to handle reads overlapping more than one feature(choice:intersection-nonempty)

	Your accepted hits barn rise:
	23: sort_ERR022486_dhr22 \$
	Your gtf or gff file:
	17: Danio_rerio_chr22.2v9.62.gtf 🔅
	Use this option if you want to skip all reads with alignment quality lower than the given minimum value (default: 0):
	0
	Use this option to feature type (3rd column in GFF file) to be used, all features of other type are ignored:
	CDS \$
Sigcufflinks with accented-hit bam	GFF attribute to be used as feature ID (default,suitable for Ensembl GTF files: gene_id):
eigeannine mar accepted masan	transcript_id
* Sigcufflinks (version 1.0.0)	Select whether the data is from a strand-specific assay. Specify 'yes', 'no', or 'reverse' (default: yes).
Your accented hits ham file:	no *
Or Tracket E000033406 and bits have a	Select mode to bandle reads overlapping more than one feature/choices: uplos intersection-strict
9. Tophat_ERR022480eu_nits_ban +	Intersection-nonempty; default: union):
Your gtf file:	intersection-nonempty . 0
17: Danio_rerio_chr22.Zv9.62.gtf ф	Execute
G or g ?:	
quantitate against reference transcript annota 💲	
	85
Execute	

S geno toul bioir	E Hands-on : file merging
Merge sigc	ufflinks
	* Final count file (version 1.0.0)
	Select a reference genome (r your genome of interast is not listed, please contact Sigenee Team): Deniv reris dan from control and the second
	Add new Dataset Execute 86

Seno Di toul Di bioinfo

Transcript reconstruction

88

The different paths :

- · Finding the gene locations
- · Finding the exons
- · Finding the junctions :
 - Between pairs junctions
 Within sequences junction
- Defining the model building strategy

 Number of built models
 - Intronic reads

Serie Cufflinks

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation

Cole Trapnell, Brian A Williams, Geo Pertea, All Mortazavi, Gordon Kwan, Mar L Satzberg, Barbara J Wold & Lior Pachter Attillations | Contributions | Corresponding author Nature Biotechnology 28, 511–515 (2019) | doi:10.1038/bl.1621 Received Q2 February 2019 | Acquied 22 March 2019 | Published online 62 Mar

Received 02 February 2010 | Accepted 22 March 2010 | Published online 02 May 2010

http://cufflinks.cbcb.umd.edu/

- assembles transcripts
- estimates their abundances : based on how many reads support each one
- tests for differential expression in RNA-Seq samples

91

Seno E toul E bioinfo

Cufflinks transcript assembly

h

- Transcripts assembly :
 - Fragments are divided into nonoverlapping loci
 - each locus is assembled independently :
- Cufflinks assembler

Trapnell C et al. Nature Biotechnology 2010;28:511-515

- find the mini nb of transcripts that explain the reads
- find a minimum path cover (Dilworth's theorem) :
 - nb incompatible read = mini nb of transcripts needed
 - each path = set of mutually compatible fragments overlapping each other
- Id = mini nb ded nutually ents other

Some videos of examples

- Chromosome 3 of the bovine genome, UMD3
- 3 locations
- 3 tracks :
 - Ensembl reference gene
 - Cufflinks model
 - Reads alignment

S toul E			Cuf	fli	nks tra	IC	kin	go	des	scrip	tion	
Bio Bio	- gen	es.fpk	m_tra	cking:								
Platefor	• contains the estimated gene-level expression values in the generic FPKM Tracking Format Quantification status											
tracking id	class code	nearest ref id	gene id	gene short name	tss_id	locus	length	coverage	status	FPKM	FPKM conf lo	FPKM_conf_hi
CUFF.560	-	-	CUFF.560	-	-	22:9743034-9762309	-	-	OK	105.69	77.9404	133.439
 isoforms.fpkm_tracking: contains the estimated isoform-level expression values in the generic FPKM Tracking Format 												
tracking_id	class_code	<u>nearest ref_</u> id	<u>gene i</u> d	<u>gene_</u> short <u>name</u>	tss_id	locus	length	coverage	status	FPKM	FPKM_conf_lo	FPKM_conf_hi
CUFF.560.1	-	-	CUFF.560	-	-	22:9743034-9747366	2466	2.84033	OK	23.7788	8.75448	38.803
CUFF.560.2	-	-	CUFF.560	-	-	22:9743034-9762309	4020	8.11967	OK	67.9765	50.3804	85.5727
CUFF.560.3	-	-	CUFF.560	-	-	22:9743034-9762309	3846	1.66444	OK	13.9344	(29.2533
	100											

Quantification strategy

- First set your gene and transcript model = build a reference GTF file
- Then use option -G to quantify the same set of elements on all your samples with sigcufflinks
- Then sort your raw_transcript.tsv files

Seno Dicinfo

- cut the second or third column of the sorted file
- Paste all the column in the count file

S genc tou bioi	Hands-on : file merg	jing
Sigcufflink	s with the new gtf file (transcript.gtf of previously step) with -G of	ption
Final coun	t : + Final count file (varsion 1.0.0)	
	Select a reference genome (If your genome of Interest is not listed, please contact Sigenae Team): Danio rerio dna chromosome 22 ; Your merged gif file:	ø
	17: Danis, rento, cht 22: 20: 63: gtf 2 Your first raw transcripts to fille from signifiliats: 194: signifiliats, onscripts_tor	
	Datasets Dataset 1 Other raw transcripts tsv file from sigcuffinks:	
	30: Sigouffinks_on_T.scripts_ted Remove Dataset 1	
	Add new Dataset	106

Quality for Bioinfo Plateform! Exam : http://bioinfo.genotoul.fr/index.php?id=93 Satisfaction form : http://bioinfo.genotoul.fr/index.php?id=79

107

Seno toul bioinfo

Seno toul bioinfo

Useful links

Seqanswer: http://seqanswers.com/ RNAseq blog: http://rna-seqblog.com/ Illumina: http://www.illumina.com/