
Cluster practice - solution

1 - Single execution on a cluster
Goals : Identify genes of a transcript fasta file thanks to the alignment software blast (NCBI)

Exercise n°1 : Download data

1. Start your machine and open a terminal (putty for window). You can now try to access the
genotoul server by using ssh : ssh -X user_name@genologin.toulouse.inra.fr

2. Create in work directory a directory named cluster move to it

3. Download the transcript file:
http://genoweb.toulouse.inra.fr/~formation/cluster/data/contigs.fasta.gz

4. Connect to a node in interactive mode.

When you connect on the cluster in interactive mode you are systematically placed in your
home directory

5. Un-compress the file.

Manipulating files (compress, zip...) can use a lot of resources, it's necessary to perform it on
the cluster.

6. Display the ten first lines of “contigs.fasta” file. Which is the format file ? Which is the kind of
data ?

Exercise n°2 : Use simple submission command: use of NCBI_Blast+

1. Load the module: module load bioinfo/ncbi-blast-2.6.0+
2. Launch a blast against “ensembl_danio_rerio” in interactive mode on the cluster.

Your query is genomic, your database is proteic so you need a blastx program.
Set the evalue at 10e-10.

Syntax : blastx query <file.fa> db <dbname or path> evalue <evalue> out
<output_file>

For more help on blast, type blastx help

On Genologin Cluster, ncbi blast databases are available in /bank/blastdb, but you don't
need to specify the path.

1

mailto:user_name@genologin.toulouse.inra.fr

Cluster practice - solution

3. Open a new terminal and check all the jobs running or waiting on the cluster. Check
your own job.

What is your priority ? On which node are you running ?

4. Kill your job.

5. Use a text editor to create a command file cmd.txt with the same module load and the same
blast command line (but with a blastn instead of blastx). The first line of the file is :
#!/bin/sh
Launch it in batch mode (for the practice only, specify the queue testq : p testq)

6. Check the execution. When it's over, look at the blast output file and the execution trace file
(slurmxxxxx.out). Has the job finished correctly ?

7. Launch the same command without using a file (option --wrap=”command”)
Check the execution. When it's over, look at the blast output file and the execution trace file
(slurmxxxxx.out). Has the job finished correctly ?

8. If you didn't have any error until now, redo the previous submission with an error in the
command. Have a look to the trace file.

2

Cluster practice - solution

2 – Array of jobs

1. Split the fasta file in 10 fasta files into a directory called out_split
module load bioinfo/exonerate2.2.0
fastasplit <path> <dirpath>
Sequence Input Options:

f fasta [mandatory] <*** not set ***>
o output [mandatory] <*** not set ***>
c chunk [2]

2. Check the number of files

3. Check if the number of sequences in “contigs.fasta” file correspond to the sum of all
sequences in splitted files.

4. Create a command file (cmds.txt) for the job array with one blast command per fasta file.

5. Check the syntax.

The good practice is to check that there is not a syntax error.
To check it, we propose to execute the first line in interactive mode (use the srun --pty bash for
that).
Cut and paste the first line of the file in the terminal.
As soon as you seen that there is no syntax error, you can kill the process (by using ctrl+c) .

6. Launch the job array by requesting 2GB of memory per job. Check the execution, how many
jobs are running simultaneously ?

7. After execution check trace files.

8. Concat all blast result in one file.

3

Cluster practice - solution

3 – Parallel environment

1. Launch a blastx of all the contigs againt ensembl_danio_rerio with 8 threads on the same node.

2. Check the execution in detail. (squeue –help to see format options or use alias sq_long -u
<username>)

3. Use in the same time the job array and the parallel execution.
1. Split multifasta in a new directory.

2. Build a command file with blastx command and option -num_thread 8

3. Launch the job array with the --cpus-per-task option.

4

