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Preliminaries

Format, target

A mix of basic and advanced theory and algorithms

Trying to show connections between fields

With practicals on a VM with toulbar2 (and more)

Make you curious and dig into it

Whether you like theory, algorithms or code!
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Organized in four times

Format, target

1. Introducing Cost Function Networks (CFN) and coding a Visual Sudoku solver

2. Algorithms and theory: how does it work (not exhaustive)

3. Modeling and solving with toulbar2

4. Learning CFN from data (back to the Visual Sudoku)
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Preliminaries

What you should have done

Install VirtualBox: h�ps://www.virtualbox.org/wiki/Downloads

Download our (4GB) Virtual Machine disk: h�p://shorturl.at/hL157

Uncompress it to ACPAIOR.vdi (7z, more than 12GB)

Launch VirtualBox and create a new "Debian 64 bits" Machine (set # CPU/RAM/video
RAM)

Use the above “.vdi” disk for storage

If you didn’t

It’s Ok, we will also show how it’s done.

3 76

https://www.virtualbox.org/wiki/Downloads
http://shorturl.at/hL157


Where it started

A Constraint Network

a sequence of discrete domain variables V

a set Φ of e Boolean functions (or constraints)

Each ϕS ∈ Φ is a truth function from DS → {t, f}

Joint truth function

ΦM =
∧

ϕS∈Φ

ϕS

The Constraint Satisfaction Problem (NP-complete)

Is it possible to satisfy all constraints simultaneously?

Is it possible to make ΦM = t ?

What is the minimum of ΦM ? (t < f )
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Different languages, different frameworks

Languages for domains and constraints

Conjunctive Propositional Logic: Boolean domains, constraints as clauses

Good Old Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Clauses

A disjunction of li�erals

Each li�eral is a variable or its negation

Forbids one assignment

Sensitive to negation

Example

(¬X ∨ Y ∨ Z)

(X = t, Y = f, Z = f)
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Different languages, different frameworks

Languages for domains and constraints

Conjunctive Propositional Logic: Boolean domains, constraints as clauses

Good Old Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Tables (or tensors) for ϕS

A multidimensional table with a Boolean for
every v ∈ DS

Says if v is authorized (t) or not (f )

Insensitive to negation

Pairwise equality (3 values)

 t f f
f t f
f f t
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Different languages, different frameworks

Languages for domains and constraints

Conjunctive Propositional Logic: Boolean domains, constraints as clauses

Good Old Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Global constraints

Names for specific (useful) constraints

Most famous
AllDifferentS
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Different languages, different frameworks

Languages for domains and constraints

Conjunctive Propositional Logic: Boolean domains, constraints as clauses

Good Old Constraint Networks: Boolean tables (tensors) for domains and constraints

Constraint Programming: interval variables, specialized constraints, control

Application domains: NP and beyond

Digital circuit verification, scheduling and other resource management problems, planning,
so�ware verification, theorem proving,. . .

Excel at the analysis of complex perfectly known systems
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From Boolean to numbers

Cost Function Network CFN(k)

a sequence of discrete domain variables V

a set Φ of e integer cost functions

Each ϕS ∈ Φ is a numerical function bounded by k (finite or infinite)

Joint cost function using a+k b = min(a+ b, k)

ΦM =
∑
ϕS∈Φ

k
ϕS

The Weighted Constraint Satisfaction Problem (NP-hard)

What is the minimum of ΦM ?

decision NP-complete: can ΦM be less than a given threshold?
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Revisiting language

Tables (or tensors) for ϕS

A multidimensional table with a number for
every v ∈ DS

Global functions

Names for specific (useful) functions

So� equality (3 values)

 0 1 1
1 0 1
1 1 0



A useful one
WeightedRegularS(A)
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Numbers and logic together

Costs and constraints

We assume non negative integer costs (algorithms)

A constraint is a cost function that maps to {0, k}
A pure Constraint Network is just a CFN(1)

Optimum preserving operations

scaling: fixed decimal point numbers ok (263 ≈ 19 digits)

shi�ing: negative numbers ok

so minimization and maximization ok
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Solver friendly Cost Function Networks

Extra assumptions inside the solver w/o l.o.g.

CFNs have a constant function ϕ∅

CFNs have all unary functions ϕi, Xi ∈ V ϕi(u) = k means u deleted

All functions have di�erent scopes

Crucial property

ϕ∅ is a lower bound of the joint function ΦM
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Input formats for ToulBar2

�ite general so many formats

wcsp, (w)cnf, qpbo, opb, .uai, .LG

CFN: a JSON-like format (more tolerant)

An evolving Python API (binds to the C++ library)

We will only use

The CFN format and the Python API

10 76



Example: Min-CUT

Graph G = (V ,E) with edge weight function w

A Boolean variable Xi per vertex i ∈ V
A cost function per edge e = (i, j) ∈ E : ϕij = w(i, j)× 1[xi 6= xj ]

A simple graph

vertices {1, 2, 3, 4}
cut weight 1 or 1.5 (1, 3)

edge (1, 2) hard
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toulbar2 input file https://github.com/toulbar2/toulbar2

Min-CUT on 4 variables

{

"problem" :{"name": "MinCut", "mustbe": "<100.0"},

variables: {"x1": ["l"], "x2": ["l","r"],

"x3": ["l","r"], "x4": ["r"]}

"functions": {

"cut12": {"scope": ["x1","x2"], "costs": [0.0, 100.0, 100.0, 0.0]},

"cut13": {"scope": ["x1","x3"], "costs": [0.0,1.5,1.5,0.0]},

"cut23": {"scope": ["x2","x3"], "costs": [0.0,1.0,1.0,0.0]},

"cut34": {"scope": ["x3","x4"], "costs": [0.0,1.0,1.0,0.0]}

}

12 76



The same in Python

Min-CUT on 4 variables

import CFN

myCFN = CFN.CFN(100,1) # ub, resolution (optional)

print("Starting Upper bound:",myCFN.GetUB())

for i in range(4):

myCFN.AddVariable("x"+str(i+1),["l", "r"]) # returns an index

myCFN.AddFunction(["x1"],[0,100])

myCFN.AddFunction(["x4"],[100,0])

myCFN.AddFunction(["x1","x3"], [0,1.5,1.5,0])

...

sol = myCFN.Solve() # returns a triple (sol, cost, _)
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The classical 3-Sudoku problem

Definition

Variables Xij for cell (i, j) has domain {1, · · · , 9}
Set Ri contains all variables of row i, similarly for Cj & columns

Set Si contains all variables in sub-cell i

There is an All-Different constraint on each of these

or a clique of pairwise different constraints

Example

Let’s try to write this as a toulbar2 Python API program: open a terminal in the VM and cd

sudoku.
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Numbers: interfacing with DL

Two models Thanks to Tias Gun for the picture above

1. Booleans: Assign the cell variable with the prediction

2. Numbers: Add LeNet output tensor (negated) as a cost function

3. (min
∑
− log) ≡ (max

∏
) probabilities

4. Calibration: none here (simplest, listen to Tias tomorrow)

Example

Let’s try to see the code for this (Boolean case).
We cd ../sudoku-DL-CP, then cd ../sudoku-DL-CFN
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So...

Compared to [Mul+20] (CPAIOR’20, using COP)

The CFN variant corresponds to the “Hybrid1” approach of [Mul+20]

On SAT-Net problems, with global All-Di�erent, COP takes 0.79"

CFN/toulbar2 with pairwise di�erences: 0.05" (one core)

On 1000 problems, 996 are solved bactrack-free

CFN bounds clearly tighter than COP bounds [LL12]

Extensive comparison of CFN/toulbar2 [Hur+16]

Winner of successive “Approximate Probabilistic Inference” challenges
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Probabilistic interpretation of a CFN

As a discrete Markov Random Field (ML/Computer Vision)

a sequence of discrete domain variables V

a set Φ of e non negative real-valued cost functions

usually described as tables/tensors

M: induces a probability distribution

ΦM =
∏

ϕS∈Φ

ϕS PM ∝ ΦM

Maximum a Posteriori (MAP)

Maximizing PM or ΦM is the same.
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The CFN(∞) - MRF connection

MRFs tightly connected to CFNs (k =∞) (additive energy)

MRFM −−−−−→
− log(x)

CFNM` −−−−−→
exp(−x)

MRFM

In the end
WCSP on CFN(∞)⇔MAP on MRF
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CFN(∞) and finite costs as 01LP

The “local polytope” [Sch76; Kos99; Wer07] (without eq. (1))

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . , n}

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ,∀a ∈ Di

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ,∀b ∈ Dj

xia ∈ {0, 1} ∀i ∈ {1, . . . , n} (1)

nd+ ed2 variables, n+ 2ed constraints, a strong but expensive bound
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Binary WCSP as 01QP (optimization only)

Only nd variables

Minimize
∑
i,a

ϕi(a) · xia+
∑
ϕij∈Φ

a∈D,b∈Dj

ϕij(a, b) · xia · xjb such that

∑
a

xia =1 (∀i ∈ {1, . . . , n})

With Boolean variables
Pure �adratic Pseudo-Boolean Optimization[BH02] (posiform)
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Equivalence, relaxation

Definition (Function equivalence)

Two functions (or CFNs) are equivalent i� they are always equal

Definition (Relaxation of a function)

A function (or CFN) ϕ is a relaxation of ϕ′ i� ϕ ≤ ϕ′

For CFN(1) SAT/CSP

(ϕ relaxation of ϕ′)⇔ (ϕ′ |= ϕ)
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Presentation Outline

1 Algorithms
Conditioning based: systematic and local search
Elimination based: local consistency and variable elimination

2 All Toulbar2 bells and whistles

3 Learning CFN from data
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First tool: Conditioning

Conditioning: ϕS|X=a (X ∈ S) Assignment

ϕS|X=a(v) = (ϕS(v ∪ {X = a}) Scope S − {X}, negligible complexity

X1

a 1 2 3
X2 b 3 1 2

c 2 3 1

Conditioning by
X2 = b

X1

3 1 2
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Conditioning-based approaches

Systematic tree search Time O(dn), linear space

If all |DX | = 1 obvious minimum update k to ΦM(v)

Else choose X ∈ V s.t. |DX | > 1 and u ∈ DX and reduce to
1. one query where we condition by Xi = u
2. one where u is removed from DX

Return the minimum

Optimization Branch and Bound [LW66]

If the local lower bound︸ ︷︷ ︸
ϕ∅

reaches the global upper bound︸ ︷︷ ︸
k

Prune!

Partial search
Relaxed pruning ((1 + α)ϕ∅ ≥ k) [Poh70], bounded number of backtracks or discrepencies
(LDS [HG95])
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Depth First (CP) or Best First (ILP)?

Hybrid Best First Search [All+15] Anyspace

Uses Depth-First Search for a bounded amount of backtracks

Pending nodes are pushed onto a list of Open nodes

The next DFS starts from the best Open node

Tree-decomposition friendly (BTD [GSV06]/AND-OR search [MD09])

Nice properties

Good upper bounds quickly (DFS)

A constantly improving global lower bound (optimality gap)

Implicit restarts, easy parallelization
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Also local search of course (VNS here)
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Two last tools: Combination and Elimination

Combination of ϕS and ϕS′ Space/time O(d|S∪S
′|) for tensors

(ϕS +k ϕS′)(v) = ϕS(v[S]) +k ϕS′(v[S′])

X1

a 4 1 2 3
X2 b 6 3 1 2

c 4 2 3 1

=⇒

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Elimination of X ∈ S from ϕS Time O(d|S|), space O(d|S|−1) for tensors

ϕS [−X](u) = min
v∈DX

ϕS(u ∪ v) Produces relaxations

X1

a 5 6 7
X2 b 9 7 8

c 6 7 5

Eliminate X2
X1

5 6 5
Eliminate X1

∅
5
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Expensive but powerful tools

Used together

Combination accumulates all information in a single function

Elimination forgets one variable without loosing optimality information

At the core of

Local consistencies, Unit propagation: subproblem induced by one function

Variable elimination, the Resolution Principle: subproblem around one variable
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Good old Arc consistency (Constraint Networks)

FIltering by Arc Consistency (simplicity)

A value u ∈ Di such that there is no value v ∈ Dj such that
ϕij(u, v) = 0 can be deleted, leaving the problem equivalent.

Arc consistency

Makes the domain Xi (ϕi) consistent with ϕij and ϕj
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Good old Arc consistency revisited (CFN(1))

Arc consistency of Xi w.r.t. ϕij [RBW06]

Combine ϕij and the unary ϕj

Eliminate Xj producing a function (message) on Xi

mj
i = (ϕij +k ϕj)[−Xj ]

X2

[
1 1
0 0

]
+k
[

0
1

]
=

[
1 1
1 1

]

Eliminate X2

[
1 1

]
Properties

The message can be added to ϕi (relaxation, value deletion)

Xi is AC w.r.t. ϕij if mi
j ≤ ϕi (no new information)

Unique fixpoint, reached in polynomial time (inconsistency detection)

Support of u ∈ Di on Dj the argmin of the elimination
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General CFN case [Sch00; LS03; LS04; CS04; Coo+10]

Obvious issue
Messages can not be included in the CFN: loss of equivalence, meaningless result

Equivalence Preserving Transformations with −k (α−k β) ≡ ((α = k) ? k : α− β)

Add the message mj
i to ϕj with +k

Subtract mj
i from its source using −k

Can be reversed, any relaxation of mj
i can be used instead
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Example with elimination and −k on one function

m2
1 m1

2

← →

X1 X2

→ ←
−m2

1 −m1
2⇓ m1

∅

ϕ∅ = 1

(Loss of) properties

Preserves equivalence but non-monotonic and fixpoints may be non unique (or may not exist)
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Many way to avoid loops (enforce fixpoint existence)

The many “so� ACs” [Coo+10]

NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Supports provide value ordering heuristics

EAC supports u for Xi: ϕi(u) = 0, can be extended for free on Xi’s star

VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

33 76



Many way to avoid loops (enforce fixpoint existence)

The many “so� ACs” [Coo+10]

NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Supports provide value ordering heuristics

EAC supports u for Xi: ϕi(u) = 0, can be extended for free on Xi’s star

VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

33 76



Many way to avoid loops (enforce fixpoint existence)

The many “so� ACs” [Coo+10]

NC+AC+DAC (FDAC): binary & unary (+ direction)[Sch00; Lar02; Coo03] Full Supports

+Existential AC: EDAC, a star (variable incident functions) [Lar+05] EAC supports

+Virtual AC: any spanning tree [Coo+08; Coo+10] VAC supports

Supports provide value ordering heuristics

EAC supports u for Xi: ϕi(u) = 0, can be extended for free on Xi’s star

VAC supports can be extended for free on any spanning tree [Kol06; Coo+08; Coo+10]

NC provides reduced cost-based pruning (back-propagation)

If (ϕ∅ +k ϕi(u)) = k, NC deletes u

33 76



Properties

Properties

Proper extension of classical NC/DAC or AC respectively (CFN(1))

Polynomial time and O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC)

Stronger bounds than AC in COP [LL12]

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04]

Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10]

Maximizing ϕ∅ is in P (local polytope dual + AC for k)

34 76



Properties

Properties

Proper extension of classical NC/DAC or AC respectively (CFN(1))

Polynomial time and O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC)

Stronger bounds than AC in COP [LL12]

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04]

Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10]

Maximizing ϕ∅ is in P (local polytope dual + AC for k)

34 76



Properties

Properties

Proper extension of classical NC/DAC or AC respectively (CFN(1))

Polynomial time and O(ed) space (Generalized ACs)

Incremental, strengthens ϕ∅ (NC ≤ AC ≤ FDAC ≤ EDAC≤ VAC)

Stronger bounds than AC in COP [LL12]

Sequence of integer EPTs

Computing a sequence of integer EPTs that maximizes ϕ∅ is decision NP-complete [CS04]

Set of rational EPTs OSAC [Sch76; Coo07; Wer07; Coo+10]

Maximizing ϕ∅ is in P (local polytope dual + AC for k)

34 76



Optimal Soft Arc Consistency (optimization alone)

Variables for a binary CFN, no constraints [Sch76; Kos99; CGS07; Wer07; Coo+10]

1. ui: amount of cost shi�ed from ϕi to ϕ∅

2. pija: amount of cost shi�ed from ϕij to ϕi(a)

3. pjib: amount of cost shi�ed from ϕij to ϕj(b)

OSAC

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈C)

pija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ Di

ϕij(a, b)− pija − pjib ≥ 0 ∀ϕij ∈ C,∀(a, b) ∈ Dij
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OSAC and the local polytope

The “local polytope”

Minimize
∑
i,a

ϕi(a) · xia +
∑
ϕij∈Φ

a∈Di,b∈Dj

ϕij(a, b) · yiajb such that

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . , n} (2)

∑
b∈Dj

yiajb = xia ∀ϕij ∈ Φ,∀a ∈ Di (3)

∑
a∈Di

yiajb = xjb ∀ϕij ∈ Φ,∀b ∈ Dj (4)

ui multiplier for (2), pija/pjib for (3) and (4)
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Example
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The power of local consistencies

The local polytope proved to be “Universal for LP” [PW15]

This means that

Any (well-behaved) LP can be transformed in linear time in a CFN such that the OSAC
bound is the optimum of the LP

On this CFN, VAC will provide an approximation of the bound (faster)

On VAC/LP, see also [DW20b; DW20a]
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The power of local consistencies

Problem solved by OSAC/VAC [Coo+10; KZ17]

Tree-structured problems

Permutated submodular problems (eg. Min-Cut, Min/Max-closed relations)

OSAC/VAC + ∀Xi,∃!u ∈ Di s.t. ϕi(u) = 0 [Coo+10; HSS18; TGK20]

OSAC empirically too expensive

CFN local consistencies provide fast approximate LP bounds

and deal with constraints seamlessly

CFN Local Consistencies
Enhance CP with fast incremental approximate Linear Programming dual bounds
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VAC vs. LP on Protein design problems

CPLEX V12.4.0.0

Problem '3e4h.LP' read.

Root relaxation solution time = 811.28 sec.

...

MIP - Integer optimal solution: Objective = 150023297067

Solution time = 864.39 sec.

tb2 and VAC (AC3 based)

loading CFN file: 3e4h.wcsp

Lb after VAC: 150023297067

Preprocessing time: 9.13 seconds.

Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.
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On Toulbar2 performances

Kind words from OpenGM2 developpers

“ToulBar2 variants were superior to CPLEX variants in all our tests”[HSS18]

Kind words from a famous Protein Designer (Bruce Donald, [HD19])

The Toulbar[2] package for WCSPs significantly improved the state-of-the-art e�iciency for
protein design in the discrete pairwise model.
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VAC: can we plan our cost shifts w/o LP?

CFN (V ,Φ)

Bool(P ) is the constraint network (V ,Φ− {ϕ∅}) (k = 1)

Bool(P ) forbids all positive cost assignments, ignoring ϕ∅

In P , a solution of Bool(P ) is optimal and has cost ϕ∅

Virtual AC[Coo+08; Coo+10]

A CFN P is Virtual AC i� Bool(P ) has a non empty AC closure
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How do we enforce VAC w/o LP?

Loop[Coo+10]

1. Enforce AC in Bool(P ) until wipe-out (record propagation DAG)

2. Extract a minimal DAG D that wipes-out

3. Apply suitable cost shi�ing on D

Generalizes. . .

1. Ford-Fulkerson: an augmenting path is an augmenting DAG

2. The “roof-dual” lower bound of QPBO [BH02]

3. Solves submodular problems + all AC-decided Bool(P )

Related to convergent MP in MRFs

Same fixpoints as TRW-S [Kol06], MPLP1[Son+12], SRMP [Kol15], Max-+ di�usion [KK75; Coo+10]. . .
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A “simple” example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

Original problem
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AC: deleting (3, F ) and (2, T )
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•

•

•

•
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AC: deleting (3, T ): wipe out with 3 EPTs !
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λ

1

2

3

We want to bring λ cost unit to x3, λ unknown.
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2

3

we need 2λ on (1, T ) and have only 1 unit of cost: λ = 1
2

44 76



A “simple” example

•

•

•

•

•

•

1

1

2

3

F F

F

T T

T

•

•

•

•

•

•

1
2

1
2

1
2

1
2

1
2 1
2

11

2

3

We replay the EPTs using the values of λ
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c∅ =
1
2
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3

At the end we are able to project λ to c∅ (this means 1 (integrality))
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What if the language is CNF?

So� UP and Max resolution [LH05; BLM07] Some issues

combination and elimination are Ok

but subtracting a clause from another clause does not yield a clause (CNF/DNF)

generates additional “compensation” clauses [LH05; HLO07; BLM07; LHG08])
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Variable/bucket elimination
Non Serial Dynamic Programming [BB69b; BB69a; BB72; Sha91; Dec99; AM00]

Definition (Message from X to its neighbors)

Let X ∈ V , and ΦX be the set {ϕS ∈ Φ s.t. X ∈ S}, T , the neighbors of X .

The message mΦX
T from ΦX to T is:

mΦX
T = (

∑
ϕS∈ΦX

k
ϕS)[−X]

The message contains all the e�ect of X on the optimization problem Distributivity

min
v∈DV

 k∑
ϕS∈Φ

(ϕS(v[S]))

 = min
v∈DV −{X}

 k∑
ϕ<S∈Φ−ΦX∪{mΦX

T }

(ϕS(v[S]))
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Variable elimination

Daoopt & mini-buckets [DR03] split ΦX in subsets of controlled size (lower bound)
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On the fly Variable elimination

Boosting search with VE [Lar00]

If a variable has a small degree, eliminate it (backtrackable) else branch
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Presentation Outline

1 Algorithms

2 All Toulbar2 bells and whistles

3 Learning CFN from data
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Toulbar2

Additional algorithmic ingredients

Value ordering (for free): existential or virtual supports

Variable ordering: weighted degree [Bou+04], last conflict [Lec+09], VAC-based [TGK20]

Dominance analysis (substitutability/DEE) [Fre91; Des+92; DPO13; All+14]

Function decomposition [Fav+11]

Global cost functions (weighted Regular, All-Di�, Among. . . ) [LL12; All+16]

Incremental solving, guaranteed diverse solutions [Ruf+19]

Unified (Parallel) Decomposition Guided VNS/LDS (UPDGVNS [Oua+20])
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Unified Decomposition Guided VNS [Oua+20; Oua+17]
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Benchmarking [Hur+16]

3026 instances of various origins genoweb.toulouse.inra.fr/˜degivry/evalgm

MRF: Probabilistic Inference Challenge 2011

CVPR: Computer Vision & Pa�ern Recognition OpenGM2

CFN: Cost Function Library

MaxCSP: MaxCSP 2008 competition

WPMS: Weighted Partial MaxSAT evaluation 2013

CP: MiniZinc challenge 2012/13

52 76

http://genoweb.toulouse.inra.fr/~degivry/evalgm


HBFS - Normalized lb and ub profiles (hard problems) [Hur+16]
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Comparison with Rosetta’s Simulated annealing [Sim+15]

Optimality gap of the Simulated annealing solution as problems get harder
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Quantum computing (DWave),Toulbar2 & SA [Mul+19]

DWave approximations kcal/mol

gap > 1.16 90% of the time > 4.35, 50% of the time > 8.45, 10% of the time
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UDGVNS - Number of solved problems [Oua+17]
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UDGVNS - Upper bound profiles[Oua+17]
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UPDGVNS - Upper bound profiles[Oua+20]
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Let’s try this in practice again

with Simon de Givry

Before going back to algorithms for learning CFN from data.
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Learning from historical solutions [BGS20]

Definition (Learning a pairwise CFN from high quality solutions)

Given:

a set of variables V ,

a set of assignments E i.i.d. from an unknown distribution of high-quality solutions

Find a pairwise CFNM that can be solved to produce high-quality solutions

MRFs tightly connected to CFNs (k =∞) (additive energy)

MRFM −−−−−→
− log(x)

CFNM` −−−−−→
exp(−x)

MRFM
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Maximum loglikelihood creates contrast

The MRF connection opens the door to learning from data E

E a set of i.i.d. assignments of V

The log-likelihood ofM given E is log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))

Maximizing loglikelihood over all binaryM

Maximum loglikelihoodM onM`

L(M,E) = log(
∏

v∈E PM(v)) =
∑

v∈E log(PM(v))
=
∑

v∈E log(ΦM(v))− log(ZM)

=
∑
v∈E

(−CM`(v))︸ ︷︷ ︸
-costs of E samples

− log(
∑

t∈
∏

X∈V DX

exp(−CM`(t)))

︸ ︷︷ ︸
Soft-Min of all assignment costs
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What does learning a CFN means exactly?

We use the language of pairwise tensors/tables

There are at most n(n−1)
2 pairwise functions 81×80

2 = 3240

Each with |Di| × |Dj | costs in R (di�erentiability) 81

For the Sudoku, 262, 440 parameters to learn.

Ideally, plenty of them will be equal to zero and ignored (no function)
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Regularization

Regularized loglikelihood

Penalizes loglikelihood by the norm of the costs learned (all the tables)

Avoids over-fi�ing by pushing non-essential costs towards 0

Regularized loglikelihood estimation

maxL(M,E)− λ||Φ||
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Regularized Max Loglikelihood

Various approaches Normalization #P-hard

Expensive Monte Carlo methods (MCMC)

Pseudo-loglikelihood (no pseudo-counts)

Approximate loglikelihood (expectations of counts as su�icient statistics)

Convex optimization, di�erentiable or not (L1).

We use PE_MRF [Par+17]

Approximate loglikelihood based (probabilistic input)

ADMM based: easy to add norms, can use L1, L2, L1/L2,. . .

Can learn hybrid continuous and discrete models (contextual models)

λ needs to be adjusted (single dimension optimization)
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The general picture
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How can we tune λ in general?

Using empirical risk minimization

for each solution v in the validation set, assign a fraction of v (Sudoku)

prefer values λ that give solutions close to the full v

Close to ?

exact solutions: prefer a small Hamming distance between the solution found and the
expected one.

probabilistic ML output: prefer a large probability that the solution found is the
expected one.

Or
Set λ using heuristic ML solutions (e.g. StARS [LRW10])
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The cost of tuning λ

Influence of λ of learned CFNs (L1)

Low λ: a lot of noisy functions, very hard to solve

Best λ: less functions, also less noise (zero costs)

High λ: less and less functions, ultimately an empty CFN.

Controlling PyToulbar2 optimization e�ort

bounded optimization e�ort (backtracks, time, optimality gap)

controllable faction of v assigned (more means exponentially easier)

Constraints: empirical hardening

Set positive costs that are never violated in the training/validation sets to∞.
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Better with less data and comparable biases
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Better with less data and comparable biases

69 76



Better with less data and comparable biases
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Efficient prediction, exact from 13,000 samples

70 76



Let’s do this on the Sodoku

Datasets

Precomputed su�icient statistics" from RRN training set (8,000 samples)

PE-MRF with L1-norm Regularization

Validation set from the SAT-Net paper [Wan+19] (36.2 hints)

Validation set from the RRN paper [PPW18] with 17 hints.
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Benefits from numerical learning and solving

Learning from uncertain DL output is possible

LeNet has 99.2% accuracy on handwri�en digits

SAT-Net test set, hints as images (36.2 avg): . . . . . . . . . . . . . . . . . . . . 74.7% max. accuracy

Let’s try again

Same 8, 000 sample, λ precomputed

Hard RRN and SAT-Net test sets

Toulbar2 is again able to correct LeNet errors
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Learning CFNs

Not only Sudokus of course, protein design too and. . .

If Simon did not cover it, see our CP2020 paper where we show how it can learn user
preferences and combine them with configuration constraints on Renault dataset (thanks to
H. Fargier (IRIT)). It ’s in the Sudoku-CFN-learn directory on the VM.
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A conclusion

CFN/WCSP solving has made important progress

Fast approximate LP-bounds (tighter than COP) subsuming AC

Reduced cost based filtering (cost backpropagation)

Structure aware search, guided by cost, with improving optimality gap

CFN can be learned from data and combined with constraints

Shares with ILP the capacity of dealing with fine grained numerical information

Tractable learning with probabilistic input (DL connection)

With the (adjustable) power of (exact) solvers
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Yet far from mature

To do

Global cost function and non monotonicity

Interval variables and “arithmetic” filtering

How can we preserve CP e�iciency on constraints

Can we accelerate LP with So� ACs (universality [PW13])

Unify CFN with COP: cost variables, multiple criteria

Improve parallel search

Can we minimize average tardiness in scheduling with So� ACs

Can we improve CFN learning (sample size, (global) constraints)

Can we integrate CFN and DL more tightly

. . .
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Thank you all for your attention!

�estions?
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